J-PARCにおける マルチストレンジネス原子核の分光実験

Spectroscopic measurement of multi-strangeness hypernuclei at J-PARC

「ストレンジネスを含む原子核の最近の展開」研究会 @ 熱川 2014/9/26

京都大学大学院理学研究科 後神利志 (Toshi Gogami)

Contents

- Introduction
- Previous experiments of Ξ hypernuclei
- Theoretical predictions
- J-PARC E05 experiment

Contents

Introduction

- Previous experiments of **E** hypernuclei
- Theoretical predictions
- J-PARC E05 experiment

Significance of hypernuclear investigation

Unified understanding of the strong force (SU(3) symmetry)

Nucleon-nucleon (NN) interaction \rightarrow (Rich data of NN scattering exp.)

Baryon-Baryon (BB) interaction

(Scarce data of YN/YY scattering exp.)

Significance of hyperr

Unified understanding of the

Nucleon-nucleon (NN) interaction (Rich data of NN scattering exp.)

p

n

Almost No information for **EN** interaction

(Scarce data of YN/YY scattering exp.)

(K^{-}, K^{+}) reaction

The (K⁻, K⁺) reaction to produce S=-2 nuclei

Contents

- Introduction
- Previous experiments of Ξ hypernuclei
- Theoretical predictions
- J-PARC E05 experiment

Experimental situations before 1990

Ξ-'s binding energy

π

⁸_EHe: 5.9 ± 1.2 MeV^[1] ¹¹_EB: 9.2 ± 2.2 MeV^[2] ¹³_EC: 18.1 ± 3.2 MeV^[3] ¹⁵_EC: 16.0 ± 4.7 MeV^[4] ¹⁷_EO: 16.0 ± 5.5 MeV^[4] ²⁸_EAI: 23.2 ± 6.8 MeV^[4]

50 µ

⁵He

⁴He

[1]D.H.Wilkinson et al., PRL 3 (1959)8
[2]J.Catala et al., Proc. Int. Conf. on Hypernuclear Physics, Argonne, Illinois vol.2, p.758 (1969)
[3]A.S.Mondal et al., Nuovo Cimento 54A(1979)3
[4]A.Beckdolff et al., PL26B(1968)3

Experimental situations before 1990

Emulsion-counter hybrid experiment (KEK E176)

Two events of ${}^{12}C + \Xi^-$ bound states

 $\implies V_{0\Xi} = 16 \text{ MeV}$ Shallower than before !!

S.Aoki et al., Physics Letters B 355(1995)45-51

 $B_{\Xi}(^{12}\text{C} + \Xi^{-}) = 0.62^{+0.18}_{-0.19} \text{ MeV}$

Counter experiment at KEK T.Fukuda et al., PRC 58 (1998) 2

(The **first** direct measurement in the missing mass spectrum.)

- 1. Differential cross section (E_{\pm} <7 MeV) comparison with theory
- 2. Distribution shape analysis.

→ $V_{0\Xi} < 20$ MeV Consistent with KEK E176 !!

Counter experiment at BNL P.Khaustov et al., PRC 61 (2000) 054603

(The second direct measurement in the missing mass spectrum.)

KISO event (2014)

Overall scanning for old emulsion

 $\rightarrow \Xi^{-} + {}^{14}\mathbb{N} \Rightarrow {}^{10}_{\Lambda}\mathbb{Be} + {}^{5}_{\Lambda}\mathbb{He}$ was uniquely identified^[1]!!

[1] 仲澤和馬、新学術研究領域「実験と観測で解き明かす中性子星の核物質」第3回研究会

Contents

Introduction

• Previous experiments of Ξ hypernuclei

Theoretical predictions

• J-PARC E05 experiment

Theoretical calculations/predictions

Y.Yamamoto, E.Hiyama, Th.A.Rijken, Few-Body Syst. (2013) 54:1267-1270

Experimental resolution is assumed to be FWHM = 2 MeV

Theoretical calculations/predictions

T.Harada, Y.Hirabayashi, A.Umeya, NPA914 (2013) 85-90

1-

Double Λ hypernuclei

Theoretical calculations/predictions

T.Motoba and S.Sugimoto, NPA 835 (2010) 223-230

Contents

Introduction

- Previous experiments of **E** hypernuclei
- Theoretical predictions
- J-PARC E05 experiment

J-PARC E05 experiment

Confirmation of the existence of ¹¹B + Ξ^- bound state (¹²_EBe)

Improvement of the energy resolution ← High momentum spectrometer systems

More statistics ← High intensity K⁻ (J-PARC)

Experiment KEK BNL **J-PARC** Item E224 E885 E05 FWHM 22 14 2.5 [MeV] × 0.18 $\times 0.64$ Sensitivity 1.6 0.05 2.1 [/(nb/sr)] $\times 32$ X 1.3

 $^{12}C(K^-, K^+)^{12}_{\Xi}Be$

Rough schedule of experiments in K1.8 Beam line

Missing mass resolution with SKSMinus (E05 Phase-0 experiment)

Expected yield with SKSMinus (E05 Phase-0 experiment)

Assumptions

Ω = 0.110 sr (SKSMinus)
10 cm (9.3 g/cm²) CH₂ target
4.5 × 10⁵ K⁻ /spill
6 seconds beam cycle
K⁺ survival ratio: 0.6
Efficiency: 0.7

$$N_{t} = \frac{9.3 \times 6.022 \times 10^{23}}{14 \times 1.0 \times 10^{4}} \, [/m^{2}]$$

$$N_{\text{beam}} = 4.5 \times 10^{5} \times \frac{3600}{6} \times 24 \times 7 \times 4$$

$$[/\text{month}]$$

$$\varepsilon = 0.6 \times 0.7 \text{ (Total efficiency)}$$

Then, sensitivity is $S = 10^{-9} \times 10^{28} \times \Omega \times N_t \times N_{beam} \times \varepsilon$ = 3.35 [/ (nb/sr) / month].

$$\frac{d\sigma}{d\Omega} = 42 \pm 5 \text{ nb/sr } \cdots (\theta < 14^\circ)^{[1]}$$

140 events [/month] ($-20 < -B_{\Xi} < 0$ MeV)

[1] P.Khaustov et al., PRC 61 (2000) 054603

Missing mass resolution and yield comparison

$C(K, K^{+})^{-\Xi}Be$

Details will be talked by S.Kanatuski

	-				
	KEK E224 ^[1]	BNL E885 ^[2]		J-PARC E05 PHASE-0	J-PARC E05 (3 / 5 [g/cm ²])
FWHM [MeV]	22	14		5	2.2 / 2.5
Sensitivity	0.05	$\theta < 8^{\circ}$	$\theta < 14^{\circ}$	3.4	1.3 / 2.1
[/(nb/sr)]		0.47	1.6		
Cross section	60 ± 45	89 ± 14	42 ± 5	42 ^[2]	89 ^[2]
[nb/sr]				$(heta < 14^\circ)$	$(heta < 8^\circ)$
$(-20 < -B_{\Xi} < 0 \text{ MeV})$	3	42	67	140 [/month]	112 / 187 [/month]

[1] T.Fukuda *et al.*, *PRC* **58** (1998) 2
[2] P.Khaustov *et al.*, *PRC* **61** (2000) 054603

SKSMinus

Missing mass resolution and yield comparison

 $^{12}C(K^-,K^+)^{12}_{\Xi}Be$

	KEK E224 ^[1]	BNL E	885 ^[2]	J-PARC E05 PHASE-0	J-PARC E05 (3 / 5 [g/cm ²])
FWHM [MeV]	22	14	4 × 0.	→ 5 ← 36 ×2	2.2 / 2.5 2. 0
Sensitivity	0.05	$\theta < 8^{\circ}$	$\theta < 14^{\circ}$	3.4	1.3 / 2.1
[/(nb/sr)]		0.47	1.6		
Cross section	60 <u>+</u> 45	89 <u>+</u> 14	42 <u>+</u> 5	42 ^[2]	89 ^[2]
[nb/sr]				$(heta < 14^\circ)$	$(heta < 8^\circ)$
Yield $(-20 < -B_{\Xi} < 0 \text{ MeV})$	3	42	67 🗙	2 140 × () (/month)	12/187 (/month)

[1] T.Fukuda *et al.*, *PRC* **58** (1998) 2
[2] P.Khaustov *et al.*, *PRC* **61** (2000) 054603

SKSMinus

<u>S-2S</u>

Strangeness -2 Spectrometer (S-2S)

Strangeness -2 Spe

K⁺

Q2

Q1

2.4 m

K-

4 m

11 7

Cherenkov Magnets are almost ready

IUI particle tra

Strangeness -2 Spe

Cherenkov *k*+ Magnet:

- Optical design
- Construction status

will be given by S. Kanatsuki

ioi particie tra

Strangeness -2 Spectrometer (S-2S)

NEW Water Cerenkov Detector

Summary

J-PARC E05 will be performed

to confirm the existence of ${}^{11}B + \Xi^-$ bound state (${}^{12}_{\Xi}Be$).

① FWHM = 5 MeV, yield = 140 [/month] (*PHASE-0*, **SKS**)

→ Bound state as a bump structure.

- ② FWHM = 2.5 MeV, yield = 190 [/month] (S-2S)
 - → Structures would be measured as peaks.

Collaborators of J-PARC E05 experiment

- Kyoto University, Japan: Tomofumi Nagae (spokesperson), Hiroyuki Ekawa, Hiroyuki Fujioka, Yudai Ichikawa, Toshiyuki Gogami, Shunsuke Kanatsuki, Megumi Naruki, Kouhei Takenaka
- KEK, Japan: Toshiyuki Takahashi, Kanae Aoki, Masaharu leiri, Yoshinori Sato, Shin'ya Sawada, Michiko Sekimoto, Hitoshi Takahashi, Akihisa Toyoda
- JAEA, Japan: Kenichi Imai, Hitoshi Sugimura
- **Tohoku University, Japan**: Yu Fujii, Takatsugu Ishikawa, Hiroki Kanda, Masashi Kanda, Takeshi Koike, Yue Ma, Kazushige Maeda, Satoshi Nakamura, Hirokazu Tamura, Mifuyu Ukai, Hirohito Yamazaki
- **RIKEN, Japan**: Kenta Itabashi
- **Gifu University, Japan**: Kazuma Nakazawa,
- **Osaka University, Japan**: Shuhei Ajimura, Toshihiko Hiraiwa, Tadafumi Kishimoto, Manabu Moritsu, Hiroyuki Noumi, Atsushi Sakaguchi, Koutarou Shiratori, Tomonori Takahashi Atsushi Tokiyasu, Yu Yosoi
- □ JINR Dubna, Russia: Petr Evtoukhovitch, Vladimir Kalinnikov, W. Kallies, N. Kravchuk, A. Moiseenko, Valentine Samoilov, Zviadi Tsamalaidze, O. Zaimidoroga
- **ITEP. Russia**: A.P. Krutenkova. V.V. Kulikov
- **Seoul National University, Korea:** Kiyoshi Tanida, Ryuta Kiuchi, Kim Mijung
- **Korea University, Korea:** JungKeun Ahn
- **D** Pusan, Korea: B.H. Choi
- CIAE, China: Y.Y. Fu, C. Li, X. Li, C.Zhou, S.H.Zhou, L.H.Zhu
- **Broohaven National Laboratory:** R.E. Chrien
- **University of New-Mexico:** B. Bassalleck, Yuncheng HAN
- **Florida, International University:** Jeorg Reinhold
- **Hampton University/J-Lab:** L. Tang
- **Torino(Universit), Italy:** B. Luigi, S. Marcello, S. Bufalino
- Thank you for your attents on Jo MUSINA YOU TOF YOUF SUCCINUM MANNIN, SCONYS, KYOLOU SUCCINIS, SCONYS, KYOLOU SUCCINIS, SCONS, SUCCINIS, SUCONIS, SUCONIS, SUCCINIS, SUCCINIS, SUCCINIS, SUCC **Torino(INFN), Italy:** M. Ombretta, E. Botta, M. Agnello, A. Feliciello
- **Saha Institute:** Chhanda Samanta
- **BARC, India:** Bidyut Jyoti Roy, Harphool Kumawat

Backup

Expected yield with S-2S

Assumptions

 $\Omega = 0.055 \text{ sr}$ $\Im g/\text{cm}^{2} \, {}^{12}\text{C} \text{ target}$ $\Im 9 \times 10^5 \, \text{K}^{-} / \text{spill}$ $\Im 4 \text{ seconds beam cycle}$ $\coprod \text{K}^{+} \text{ survival ratio: } 0.4$ $\square \text{ Efficiency: } 0.7$

$$\begin{bmatrix} N_t = \frac{3.0 \times 6.022 \times 10^{23}}{12 \times 1.0 \times 10^4} \, [/m^2] \\ N_{\text{beam}} = 9 \times 10^5 \times \frac{3600}{4} \times 24 \times 7 \times 4 \\ [/month] \\ \varepsilon = 0.6 \times 0.7 \text{ (Total efficiency)} \end{bmatrix}$$

Then, sensitivity is $S = 10^{-9} \times 10^{28} \times \Omega \times Nt \times Nbeam \times \varepsilon$ = **1.26 [/ (nb/sr) / month].**

 $\frac{d\sigma}{d\Omega} = 89 \pm 14 \text{ nb/sr } \cdots (\theta < 8^\circ)^{[1]}$

112 events [/month] ($-20 < -B_{\Xi} < 0$ MeV)

[1] P.Khaustov et al., PRC 61 (2000) 054603

Missing mass resolutions with ¹²C target (3, 5 and 8 g/cm²)

Missing mass resolutions with ¹²C target (3, 5, 8 g/cm²)

- 3 g/cm² ¹²C SKSM: FWHM = 3.99874 +/- 0.0501584 MeV S-2S: FWHM = 2.1545 +/- 0.00934945 MeV
- 5 g/cm² ¹²C SKSM: FWHM = 4.25089 +/- 0.0613503 MeV S-2S: FWHM = 2.49876 +/- 0.0130645 MeV
- 8 g/cm² ¹²C SKSM: FWHM = 4.78436 +/- 0.0931848 MeV S-2S: FWHM = 3.0576 +/- 0.0240659 MeV

Fitting range = (-2.5,1.3);//MeV

Assumed Momentum/Angular Resolutions: dp/p (K-Beam): 10.0E-4 dp/p (S-2S): 5.0E-4 dp/p (SKSM): 27.0E-4 d_theta: 2 mrad

hyperdragon3: /home/dragon/POSI2/analysis/root/elos/ By Toshi Gogami on 22Sep2014

Figures (ESC08)

Missing mass resolution

Toshi Gogami 28Aug2014

Assumptions

The natural width was not taken into account. dE resolution was not considered. Effect of the inverse transfer matrix is zero. Assumed resolutions are the following: $K^{-}: \frac{\Delta p}{p} = 1.0 \times 10^{-3}$, $K^{+}: \frac{\Delta p}{p} = 5.0 \times 10^{-4}$ (S-2S), 2.7 × 10⁻³ (SKSMinus), $\Delta \vartheta = 2.0 \text{ mrad}$.

Simulation results

		Results [MeV]			Remarks	
Target [g/cm ²]		-	-	-	CH ₂ (2.79/4.65/9.30/13.95)	
Reaction		р(К⁻,К⁺)Ξ	⁷ Li(K⁻,K⁺) ⁷ <u>=</u> H	¹⁰ B(K⁻,K⁺) ¹⁰ _Ξ Li	¹² C(K ⁻ ,K ⁺) ¹² _Ξ Be	
Intrinsic Resolution [MeV]	р _{К-}	1.16	1.62	1.66	1.67	Calculations for S-2S
	р _{К+}	-0.38	-0.57	-0.58	-0.59	
	θκ	-0.35	-0.12	-0.09	-0.07	
	Total	1.27	1.72	1.76	1.77	Quadratic sum
Simulatio w/o targe (S-2S)	on et	1.29	1.73	1.77	1.78	
Simulatio w/o targe (SKSMinu	on et is)	2	2.9	3	3	
Simulatic w/ targe (S-2S)	on It				2.3 / 2.7 / 3.7 / 4.6	
Simulatic w/ targe (SKSMinu	on et is)				4.1 / 4.3 / 5.1 / 5.6	
Simulatic Only targ	on et				1.0 / 1.6 / 2.8 / 4.1	

Simulation results

Each term contribution to the missing mass resolution

Missing mass,
$$M_H$$

$$M_H^2 = (E_1 + m_t - E_2)^2 - (\vec{p_1} - \vec{p_2})^2$$

$$\begin{bmatrix} \left(\frac{\partial M_H}{\partial p_1}\right) \Delta p_1 = \frac{1}{M_H} \left[\frac{p_1}{E_1}(m_t - E_2) + p_2 \cos\theta\right] \Delta p_1 \\ \left(\frac{\partial M_H}{\partial p_2}\right) \Delta p_2 = \frac{1}{M_H} \left[-\frac{p_2}{E_2}(m_t + E_1) + p_1 \cos\theta\right] \Delta p_2 \\ \left(\frac{\partial M_H}{\partial \theta}\right) \Delta \theta = -\frac{p_1 p_2}{M_H} \sin\theta \cdot \Delta \theta$$
(Missing mass に対する各項の寄与)

Calculated event by event

 \rightarrow Mean values will be shown in results.

Each term contribution to the missing mass resolution

Calculated event by event

 \rightarrow Mean values will be shown in results.

Monte Carlo simulation with Geant4

Momentum Loss in Target (Sample figures)

Momentum loss correlations between K⁻ and K⁺

Data of 10 cm CH₂ target for all figures.

