ELPH 第18回課題採択説明会 (平成31年)

グザイハイパー核分光実験J-PARC E70に用いる アクティブシンチレーションファイバ標的の性能試験

京都大学大学院理学研究科 原田 健志 金築 俊輔,後神利志,永江知文,七村拓野 2019年1月21日

ELPH PAC meeting T. Harada

本発表の内容

研究動機

- ハイパー核研究の意義
- J-PARC E70 におけるグザイハイパー核分光
- アクティブファイバー標的(AFT)の概要
- これまでの開発状況
 - RCNPにおける性能試験
 - Geant4 モンテカルロシミュレーション

<u>本申請実験 @ELPH</u>

- 実験目的
- 実験セットアップ
- 要求ビームタイム

まとめ

ハイパー核研究の意義

- (核子間) 核力 ^{拡張}→ s クォークを含むバリオン間力
- 高密度核物質におけるストレンジネス量子数の役割

S = -2ハイパー核分光と相互作用研究

- 欠損質量分光
 - KEK E224 ($\Delta E = 22$ MeV FHWM)
 - BNL E885 (ΔE = 14 MeV FWHM)
 → いずれも束縛状態のピーク構造の直接測定
 には至らず

K. Nakazawa et al., PTEP (2015) 033D02

ELPH PAC meeting T. Harada

J-PARC E70 の実験セットアップ

新設 S-2S 電磁石

Quadrupoles	Q1	Q2	Dipole	D
Field Gradient (T/m)	8.72	5.0	Field Strength(T)	1.5
Weight (ton)	37	12	Weight (ton)	86
Aperture (cm)	31	36	Pole Gap (cm ²)	32×80
Current (A)	2500	2500	Current (A)	2500
Power (kW)	400	156	Power (kW)	450

また、粒子検出器 (TOF, DC, チェレンコフ検出器) はほぼ完成

2019/1/21

ELPH PAC meeting T. Harada

J-PARC E70 で目標とするエネルギー分解能

高エネルギー分解能の必要性

欠損質量分解能△M < 2MeV により励起状態の分離が可能となる

高分解能を得つつ標的を厚くするために

600k K⁻/spill を仮定

^(*) P. Khaustov, et al., PRC 60, 054603 (2000).

アクティブ標的

 シンチレーション光量から、イベントごとにK中間子の エネルギーを補正

アクティブ標的

 シンチレーション光量から、イベントごとにK中間子の エネルギーを補正

アクティブ標的

 シンチレーション光量から、イベントごとにK中間子の エネルギーを補正

- バックグラウンドを除去するため粒子識別が必要
 標的をセグメント化
 マーイバーを使用
 - ファイバーを使用

E70 アクティブファイバー標的の構成

• $3mm \phi \nabla r \uparrow \vec{N}$ (Saint-Gobain BFC-10; single clad)

- xx'yy'を1組とし計9組をE70に使用(1800ch)

- MPPC (S13360-3075PE, Hamamatsu; 3 mm square, 75 µm ピッチ, 開口率 82%)
- VME EASIROC

MPPC + EASIROC: 2 MHz w/ 5000 ch @J-PARC E40 (実績あり)

今後の開発事項(E70 AFT)

<AFTに求めること> □ AFTを用いてK-, K+のエネルギー損失を導出する

- □ グザイハイパー核の崩壊粒子のバックグラウンドを解析上で除去する 必要がある(様々な角度、位置においてシンチレーション光を発光)
- パターン認識とアルゴリズム開発(進行中)
 - 周囲に設置するドリフトチェンバの情報等を利用したパターン認識
- 多チャンネル読み出し下での性能確認
 - ファイバー個体差による光量のばらつき
 - ファイバーの組み上げ精度と位置分解能
 - 計数率依存性(<500kHz @J-PARC E70)
 - ビーム入射角依存性
 - ビーム入射位置依存性 正確にパターン認識を行うために不可欠
 - ファイバー間のクロストーク亅

今後の開発事項(E70 AFT)

<AFTに求めること> □ AFTを用いてK-, K+のエネルギー損失を導出する

- □ グザイハイパー核の崩壊粒子のバックグラウンドを解析上で除去する 必要がある(様々な角度、位置においてシンチレーション光を発光)
- パターン認識とアルゴリズム開発(進行中)
 周囲に設置するドリフトチェンバの情報等を利用したパターン認識

本申請実験のセットアップ

- GeV ガンマ 照 射室
- ビーム強度:数 kHzから200 kHzまでの5点

本申請実験のセットアップ

- GeV ガンマ 照 射室
- ビーム強度:数 kHzから200 kHzまでの5点

本申請実験のセットアップ

- GeV ガンマ 照 射室
- ビーム強度:数 kHzから200 kHzまでの5点

本申請実験のセットアップ

- GeV ガンマ 照 射室
- ビーム強度:数 kHzから200 kHzまでの5点

本申請実験で使用する検出器

トリガー用プラスチックシンチレータ(TS)
 – 30mm^H×40mm^W×5mm^D
 – トリガー生成とビーム計数率測定

ビームタイム要求

ビームタイム = 2日間 (日中のみ; 9:00-21:00)

1日目 昼	表 1 測定条件		
<u> 検出器・DAOのコミッショニング</u>	ビーム計数率 (kHz)	角度 (°)	位置 (mm)
		0	-32
 ・ 主テヤノイルのADU方中の唯市 	态 ₁₀	0	32
	200	0	0
	150	0	0
<u>1日目夜</u>	100	0	0
データの解析・確認	10	0	0
	1	0	0
	10	0	0
	10	40	0
データ取得	10	50	0
√ 測定条件は12占	10	55	0
	10	60	0
↓ * セット/ッノの変史			

まとめ

<u>S = -2バリオン間相互作用の理解</u>

- 三ハイパー核のピーク構造を測定 → 三N 相互作用
- J-PARC E70 実験において高分解能・高統計で三ハイパー核分光 を目指す

<u>これまでのアクティブファイバー標的の開発</u>

- RCNPにおいて、エネルギー分解能の評価 ($\Delta E/E(\sigma) = 10\%$)
- Geant4モンテカルロシミュレーションによるエネルギー損失補正 後の欠損質量分解能の評価 (ΔM < 2 MeV/c²)

本申請実験

- 800 MeV/c 陽電子 or 電子 @GeVガンマ照射室
- ビーム計数率: 1,10,100,150,200 kHz
- 多チャンネル読み出し下での動作確認 (位置・角度依存性・クロス トーク等)
- ビームタイム要求:2日間(日中のみビーム12時間+12時間)

Back up

	コア部	クラッド部
材質	ポリスチレン	メタクリル系樹脂
屈折率	1.60	1.49
密度	1.05	1.2

ELPH PAC meeting T. Harada

ピクセルピッチ	$75\mu\mathrm{m}$	$50\mu\mathrm{m}$	$25\mu\mathrm{m}$
開口率 (%)	82	74	47
検出効率(%)	50	40	25
ピクセル数	1600	3600	14400

使用するのは75umピッチ