Magnetic Field measurement of the S-2S D1 magnet

@SNP School 2016 *Kyoto University, RCNP^A, KEK^B, Yamagata University^C* **T. Nanamura**, T. Gogami^A, T. Nagae, S. Kanatsuki,
M. Naruki, H. Takahashi^B, E. Hirose^B, S. Kato^C,
S. Ashikaga, S. Ichikawa, K. Inaba, A. Koshikawa, Y. Takahashi,
T. Takeda, S. Matsumoto, K. Watanabe

Contents

- Introduction
- Study of operation characteristics S-2S D1 magnet
- Field map measurement of S-2S D1 magnet

Study of Xi-hypernuclei

- What can we know from Ξ -hypernuclei ?
 - baryon-baryon interaction(Ξ -N, Λ - Λ)
 - role of multi-strangeness system in NS core

• Spectroscopic study via the ¹²C(K⁻,K⁺) reaction

- BNL-E885 experiment
 - Suggested existence of ¹²_EBe
 - Estimated V_{Ξ} and $d\sigma/d\Omega$
 - V_{Ξ} ~-14 MeV
 - d σ /d Ω =89±14nb/Sr (θ <8°)
- J-PARC E05 pilot run (2015)
 - SKS was used as the spectrometer for K+
 - Better missing mass resolution achieved
 - Observe significant excess in bound region

Why do we aim for better resolution ?

- To observe Ξ-hypernuclear state definitely as peak(s) in missing mass spectra
- To resolve excited states of Ξ-hypernuclei
 Key to verify shell model and baryon-baryon
 - interaction model
 - $\Delta E < 2$ MeV is essential

 ${}^{12}{}_{\Xi}$ Be production cross section calculated with DWIA (for ESC08a interaction) *T. Motoba and S. Sugimoto, NPA 835 (2010) 223*

J-PARC E05 with S-2S

- New spectrometer S-2S
 (Strangeness -2 Spectrometer)
 - Consists of two Q magnets and D magnet
 - Acceptance $\sim 60 \text{ msr}$
 - Momentum resolution $\Delta p/p = 5 \times 10^{-4}$ (FWHM)

 $K+ \sim 1.4 \text{ GeV/c}$

D1

Q2

Q1

- \rightarrow better missing mass resolution and statistics
- will be installed K1.8 beamline \sim 2018 fiscal year

	Acceptance [mSr]	Peak counts	ΔM[MeV]
BNL E885	50	42(θ<8°)	14
Eo5 (pilot)	110	39	7
E05 With S-2S	60	100	2

Significance of Magnetic Field Measurement

- We will use calculated magnetic field for analysis
 - The difference between calculated magnetic field and real one may make momentum resolution worse.
- Optimizing B-H curve and 3D-model, we make calculated magnetic field accurate.
 - As for the field map of the Q magnets, the consistency has been confirmed within +/-0.1%.
- For S-2S D1 magnet, we study operation characteristics and measure magnetic field map.

S-2S D1 magnet

- Gap volume:800×320×3650 [mm³]
- Maximum central magnetic Field : 1.475 [T]
- Maximum current: 2500 [A]

study of operation characteristics S-2S D1 magnet

- We put NMR probe in D1 magnet
 - NMR is also used to correct calculated field map and measured one with Hall-probe
- We take data for
 - Long-term stability
 - Excitation curve
 - Hysteresis

Long-term stability

• From excitation @1500A, we had taken NMR data for about 90minutes. (every 30seconds) Time dependance of NMR value @1500A

very stable. (σ = 1.6 μ T)

Excitation and hysteresis curve

- Changing current and taking value of NMR
- $0A \rightarrow 300A \rightarrow 500A \rightarrow \cdots \rightarrow 2500A (UP)$
- $2500A \rightarrow 2300A \rightarrow \cdots \rightarrow 500A \rightarrow 0A (DOWN)$
- $0A \rightarrow 1100A \rightarrow 1500A \rightarrow 2000A (UP2)$

NMR value of "UP2" correspond with "UP" within 0.05 %. \rightarrow hysteresis effect is enough small.

Consideration of field mapping volume

- 800mm×320mm×1700mm for each side (up stream, down stream)
- Step:50 mm \times 20 mm \times 50 mm

Field mapping system

• To cover whole mapping area, we change position of this system 12 ways for each side of magnet.

Transformation between coordinates

Defined three coordinates

- "probe coordinates"
 - Measured (B_x, B_y, B_z)
- "mover coordinates"
 - Position of probe (x,y,z)
- "S-2S coordinates"

- (x,y,z), (B_x, B_y, B_z) of calculated magnetic field
- To compare two magnetic field maps, transform measured value to S-2S coordinates.

 $(x_{meas}, y_{meas}, z_{meas})$

Parallel shift and Change axis labeling according to survey

 $(x_{S-2S}, y_{S-2S}, z_{S-2S})$

(Bx_{meas},By_{meas},Bz_{meas}) Rotation

according to survey (check ing symmetry of magnetic field)

 $(Bx_{S-2S}, By_{S-2S}, Bz_{S-2S})$

Error evaluation

parameters	Precision	accuracy
position	25µm	125 µm
Angle		0.01 degree
By (NMR)	2.0×10 ⁻⁴ %	
Bx,By,Bz(Hall probe)	50μΤ	0.1 %

- considering these errors in the field map, the total momentum resolution is estimated to be 6×10⁻⁴ (FWHM) by simulation.
 - Event generation: Geant4, with calculated map
 - Analyzer :using Runge-Kutta method (when it reads calculated map, these parameters were fluctuated)

Present status

Progress of measurement

Red···completed Orange···To be measured

- About 50 % of down stream side was completed.
- Data analysis just started...

Summary

- New generation spectroscopy of Ξ-hypernuclei via the (K⁻,K⁺)reaction with the S-2S will provide us keys to understand baryon-baryon interactions by achieving unprecedented missing-mass resolution.
- The basic operation performance was studied for the D1 magnet.
- The magnetic field measurement of the D1 magnet is ongoing to check the consistency between the measured and calculated field maps.

Back up

How long should we wait to take data from the mover moving?

- When the mover move, the position of hall probe may oscillate and therefore magnetic field will oscillate.
- @1500A
- Moving x±5 cm, y±5cm, z± 5cm(and conposition of these shift) and read hall probe value every 200ms, during 12minutes from moving.
- When we wait two seconds, magnetic field vary within 0.05%.

Standard and resolution of survey

- We set two theodolite and level on standard line.
- Move probe to see marking in center of theodolite and record value of mover moved.
- We could resolve 25µm \rightarrow angler resolution \sim 0.01 deg.

Probe almost fixed this two point

X standard (336mm from pole tip, 20mm from End guard)

Z standard (2m height)

Simulation for error estimate

- Generated K+
 - Momentum 1.3000 ± 0.0975 [GeV/c]
 - Angle $\theta < 10^{\circ}$

