E492

Test of a Scintillating Fiber Target for the Hypernuclear Spectroscopy

Shunsuke Kanatsuki for the E492 collaboration Kyoto University 2016/8/24

RCNP B-PAC meeting, S. Kanatsuki

Outline

- Motivation
 - Spectroscopy of hypernuclei at J-PARC
 - Active fiber target
- Experiment at RCNP
 - Purpose : study response of a fiber using proton beam
 - Setup
 - Run time estimation : 2 days including beam tuning.
- Summary

Physics Motivation

nuclear force A role of strangeness in dense nuclear matter Neutron stars neutron star core S=-∞ (K⁻, K⁺) Spectroscopy Three-Dimensional quark-hybrid traditional neutron star Nuclear Chart Double-A Hyperpuclei N+e E Hypernuclei N+e+n n,p,e, μ Λ,Σ,Ξ,.. neutron star with S=-2 Strangeness Λ. Σ Hypernuclei Λ~35 Σ1 Fe 10⁶ g/cm ³ color-superconducting strange quark matter (u.d.s quarks) S=-1 g/cm³ toton Humber 2SC CFL 10¹⁴ a/cm CEL-K gCFL CFL-K⁰ CFL-π⁰ Hydrogen/He atmosphere stable ~300 К-, .. strange star unstable > 3000 eon star Ordinary nuclei R ~ 10 km S=0

Neutron Number

Hypernuclear spectroscopy

F. Weber, PPNP 54(2005)193

Spectroscopy at J-PARC K1.8BL

J-PARC E05

- Missing-mass spectroscopy of Ξ -hypernucleus, using the ¹²C(K^- , K^+)¹²_{Ξ}Be reaction (Nagae et al.)
- observe peak structures of the bound states
 → deduce the information of ΞN interaction
- Approved as highest priority "Day-1 experiment"

Momentum analysis

- K⁺ : S-2S spectrometer
 - magnet construction completed in 2015
 - will be installed to J-PARC in 2018
- K- : Beam spectrometer

Missing-mass resolution ΔM

- 1-1.8 MeV_{FWHM} w/o energy loss straggling in the target (E_{strag})
- Our goal: ∆M<2 MeV
 → E_{strag}<0.8 MeV

RCNP B-PAC meeting, S. Kanatsuki

Expected Spectrum

- DWIA calculation
 - ${}^{12}C (K^-, K^+)_{\pm}{}^{12}Be \text{ at } 1.8 \text{ GeV/c}$
 - Core nucleus excitation is taken into account

Production Rate

	Cross section	Yield [/4weeks /1g/cm2]
¹² ₌ Be	89±14 nb/sr*	37 counts

- K^- beam intensity = 0.6MHz
- *BNL-E885 exp. : P. Khaustov, et al., PRC 60, 054603 (2000)
- Target thickness
 - 10 g/cm² is desirable to achieve good statistics within reasonable run time at J-PARC
 - \rightarrow E_{strag.} >4 MeV_{FWHM}
 - → Direct measurement of the energy loss event-by-event to achive both high mass resolution and statistics

- Scintillating fiber
 - scintillation light yield → correction of the energy of kaons event-by-event

- Scintillating fiber
 - scintillation light yield → correction of the energy of kaons event-by-event

- Scintillating fiber
 - scintillation light yield → correction of the energy of kaons event-by-event

Energy losses of

- Beam *K*-
- Scat. *K*+
- Decay particles from hypernucleus should be measured separately → Target must be segmented → Use fibers

- Scintillating fiber bundle
 - 3x3 mm square or 3 mm Φ (→ 50×18+16×18 \rightleftharpoons 1000)
 - MPPCs attached on the both ends of each fiber

Performance Test at RCNP

- Measurement with a single fiber
 - study the correlation between
 - the energy loss measured with Grand Raiden
 light yield Scintillating Fiber

- The whole performance of the target (fiber bundle)
- ightarrow estimate by simulation using the response of a single fiber

Experimental Setup

- Beam
 - WS beam line
 - proton at 392 MeV

 High-resolution measurement with high velocity particle feasible only in RCNP with the Grand Raiden

Experimental Setup

- Fiber
 - fixed by a target ladder in the scattering chamber
 - specification
 - cross-section: 3x3mm² square, 3mmΦ
 - crad: single, double
 - company: KURARAY, SAINT-GOBAIN
 - candidates narrowed down in advance
- Target ladder
 - will be newly fabricated
 - hold a fiber and
 - Au foil : beam & spectrometer tuning
 - ZnS : beam profile check
 - Empty : beam energy check

13

MPPC

beam

4 cm

I FD

Empty

Au

ZnS

Schematic of target ladder

FΓ

MPPC

Bias

Signal

Run time estimation

- Beam tuning and spectrometer start-up : 1 day
 - start up the spectrometer
 - tuning the accelerator
 - optimization the dispersion matching condition
- Fiber test : 2 hours ×12 conditions = 1 day
 - Conditions
 - 3 kinds of fibers × 4 (for check the individual difference)
 - Setup change : 1.5 hour
 - replace a fiber with chamber open
 - Beam irradiation : 0.5 hour
 - ZnS, Empty : beam check
 - Fiber : energy loss measurement

14

Summary

- We propose a performance test of a scintillating fiber using proton beam at 392 MeV at WS course.
 - Feasible only at RCNP with Grand Raiden
- The responses of fibers for the energy loss of proton beams are studied.
 - correlation between light yield in fiber and the energy loss measured by Grand Raiden
- - to optimize the mass resolution and statistics
 - will be carried out in FY2018 in the earliest case.
 - We request beam time for this test in FY2017

Collaboration List

- Kyoto University
 - H. Fujioka, T. Furuno, S. Kanatsuki, T. Kawabata,
 M. Murata, T. Nagae, T. Nanamura, A. Sakaue
- Osaka University, RCNP
 T. Gogami, A. Inoue, N. Kobayashi, A. Tamii
- JAEA, ASRC
 - Y. Ichikawa

Back up

PROPOSAL FOR EXPERIMENT AT RCNP

2 July 2016

TITLE:

Test of a scintillating fiber target for the hypernuclear spectroscopy

SPOKESPERSON:

Full Name	Shunsuke KANATSUKI
Institution	Department of Physics, Kyoto University
Title or Position	Graduate student
Address	Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
Phone number	+81-75-753-3842
FAX number	+81-75-753-3887
E-mail	kanatsuki@scphys.kyoto-u.ac.jp

EXPERIMENTAL GROUP:

EAT ERIMENTAL	GROUI.			
Full Name	Institution			Title or Position
Hiroyuki Fujioka	Department of Physics, Kyoto University		Assistant Professor	
Shunsuke Kanatsuki	Department of Physics, Kyoto University		Graduate student	
Takahiro Kawabata	Department of Physics, Kyoto University		Associate Professor	
Tomofumi Nagae	Department of Physics, Kyoto University		Professor	
Takuya Nanamura	Department	Department of Physics, Kyoto University		Graduate student
Azusa Inoue	Research Ce	enter for Nuclear Physics	, Osaka University	Graduate student
Nobuyuki Kobayashi	Research Ce	enter for Nuclear Physics	, Osaka University	Assistant Professor
Atsushi Tamii	Research Ce	enter for Nuclear Physics	, Osaka University	Associate Professor
RUNNING TIME:	Installatio	n time without beam		3 days
	Beam com	missioning		1 days
	Data runs	0		1 days
BEAM LINE:			Ring :	WS course
BEAM REQUIREN	MENTS:	Type of particle	101	polarized p
		Beam energy		392 MeV
		Beam intensity	< 5	5×10^3 nms
		Other requirements	onormy resolution	$\sim 100 \text{ keV}$
		Other requirements	help free amall	l ∼100 kev
			nato-free, sman	ennitiance
BUDGET:	Vacuum fe	edthrough	1	.00,000 yen
	Travel exp	oense	2	200,000 yen

2016/8/24

RCNP B-PAC meeting, S. Kanatsuki

Energy Loss Distribution

Geant4 simulation

- Sum of the energy losses in the whole target
- Target system : xx'yy' ×9 sets = 36 layers
- Thickness : 10.8 cm = 11.23 g/cm² (Carbon fraction: 10.4 g/cm²)
- Beam: K- 1.8 GeV/c, position: uniform, direction: 0 degree

Incident Position Dependence

- 3mm PRound type fiber
- Energy loss of proton at 392 MeV
- Pencil beam : incident position fixed at center
- Broad beam : incident position uniform
 - distribution includes position dependence

Energy Loss in Crad

- Simulation condition
 - 3mmΦ Round type fiber
 - Energy loss of proton at 392 MeV
 - Broad beam : incident position uniform
- Eloss(all) Eloss(core)

Beta and Eloss

particle	beta	Energy loss (MPV) [MeV]	ΔE (FWHM) [MeV]
1.8 GeV/c K-	0.964	0.701	0.16
1.3 GeV/c K+	0.935	0.745	0.18
392 MeV proton	0.709	1.267	0.24
350 MeV proton	0.685	1.370	0.29
300 MeV proton	0.653	1.500	0.32
250 MeV proton	0.614	2.098	0.48
200 MeV proton	0.566	2.355	0.62

Readout

EASIROC: Multi-channel Readout Module

Event-by-event correction

RCNP B-PAC meeting, S. Kanatsuki

Energy Resolution

- Assumption
 - Case 1: good spectrometer resolution (dp/p = 5×10^{-4} for both Beam and S-2S)
 - Case 2: current performance of beam spectrometer (dp/p = 1×10^{-3})
- $\Delta E_{\text{strag.}}$ should be <0.8 MeV_{FWHM} in case 2 for ΔM <2 MeV_{FWHM}

2016/8/24

 \rightarrow J-PARC and

new spectrometer

RCNP B-PAC meeting, S. Kan; T. Harada et al., Phys. Lett. B 690, 363 (2010)

360

 ω (MeV)

380

400

Production Rate

	Cross section	Yield [/4weeks /1g/cm2]
¹² _∃ Be	89±14 nb/sr (ref.1)	37 counts
¹² _{AA} Be	5-7 nb/sr (ref.2)	3 counts

- K^- intensity = 1M/4s, (Acc. Power ~80kW in 2018?)
- ref1. BNL-E885 exp. : P. Khaustov, et al., PRC 60, 054603 (2000),
- ref2. T. Harada, et al., PLB 690, 363 (2010)
- Target thickness
 - >10 g/cm² is desirable to achieve good statistics within reasonable run time at J-PARC
 - \rightarrow Energy loss straggling >4 MeV_{FWHM}
 - → Can't perform high-resolution spectroscopy

Scintillating Fiber and MPPC

Fiber: Material

- Core: Polystyrene(CH) (1.05 g/cm³)
- Cladding: Acrylic (1.18 g/cm³)

Clad thickness T: 2% of fiber size

MPPC

- HAMAMATSU S13360-3075PE
- Photosensitive area: 3mm×3mm
- Gain 1.7×10⁶
- Air contact to fiber

Eloss in Crad (all)

- Simulation for 36 layers
- Eloss(all) Eloss(core)

Energy loss in 1 fiber

Energy loss in 1 fiber

Position Dependence

• 中心だけに当てた時との比較

• 位置依存性

クラッドの効果の位置依存性(p)

Energy loss – Energy deposit

• (Energy loss – Energy deposit) /Energy loss

