Hadron Optics: Diffraction Patterns in Deeply Virtual Compton Scattering

S. J. Brodsky^a, D. Chakrabarti^b, A. Harindranath^c, A. Mukherjee^d, J. P. Vary^{e,a,f}

^a Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309, USA.

^b Department of Physics, University of Florida, Gainesville, FL-32611-8440, USA.

^c Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India.

 d Department of Physics, Indian Institute of Technology, Powai, Mumbai 400076, India.

^e Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA.

^f Lawrence Livermore National Laboratory,

L-414, 7000 East Avenue, Livermore, California, 94551, USA.

abstract

We show that the Fourier transform of the Deeply Virtual Compton Scattering (DVCS) amplitude with respect to the skewness variable ζ provides a unique way to visualize the structure of the target hadron in the boost-invariant longitudinal coordinate space variable $(\sigma = \frac{P+y^-}{2})$. The results are analogous to the diffractive scattering of a wave in optics in which the dependence of the amplitude on σ measures the physical size of the scattering center of a one-dimensional system. If one combines this longitudinal transform with the Fourier transform of the DVCS amplitude with respect to the transverse momentum transfer Δ^{\perp} , one can obtain a complete three-dimensional description of hadron optics at fixed lightfront time $\tau = t + z/c$. As a specific example, we utilize the quantum fluctuations of a spin-1/2 state at one loop in QED to obtain the behavior of the helicity flip and non-flip DVCS amplitudes for electron-photon scattering. We then simulate the wavefunctions for a hadron by differentiating the above LFWFs with respect to M^2 and study the corresponding DVCS amplitudes in σ space.