Nuclear Moment Measurements of Neutron-rich Aluminum Isotopes Using Spin-polarized RI Beams: Determination of the Boundary of the "Island of Inversion"

D. Kameda^a, H. Ueno^a, K. Asahi^{a,b}, M. Takemura^b, D. Nagae^b, K. Shimada^b, A. Yoshimi^a, Y. Kobayashi^a, T. Haseyama^a, M. Uchida^b, K. Takase^b, T. Arai^b, T. Inoue^b, S. Suda^b, J. Murata^c, H. Kawamura^c, H. Watanabe^d and M. Ishihara^a

^a RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Nuclear moments (a magnetic moment and an electric quadrupole moment) directly reflect the nuclear wave function. The measurement, therefore, often plays a decisive role to reveal the nuclear structure such as spin. In particular, nuclear moment studies in the neutron-rich *sd*-shell region have played an important role to understand the shell structures of the strongly deformed nuclei observed in the region of Z=10-12 and N=20-22, so-called the "island of inversion" [4]. The nuclear moments of ³⁰Na and ³¹Na [1,2] and the magnetic moment of ³¹Mg [3] provide clear evidence that the intruder configurations in which some neutrons occupy the *pf* orbits via the neutron excitations across the N=20 shell gap dominate these ground states. It is interesting to investigate the mixing of the *pf*-intruder configuration in the ³²Al (Z=13, N=19) ground state, which is the neighbor of ³¹Mg, because, according to recent shell model studies, the transition process between the normal *sd*-shell and the intruder structures *gradually* occurs as the neutron to proton ratio N/Z increases. In this talk, focusing on the electric quadrupole moments of ³²Al which has been measured to be $|Q(^{32}Al_{g,s})|=24(3)$ mb with the precise μ -moment, the possibility of the *pf* intrusion of the ³²Al nucleus will be discussed with interest in the location of the boundary of the island of inversion.

References

- [1] M. Keim et al., Eur. Phys. J. A 8 (2000) 31-40.
- [2] Y. Utsuno et al., Phys. Rev. C 70 (2004) 044307.
- [3] G. Neyens et al., Phys. Rev. Lett. 94 (2005) 022501.
- [4] E. K. Warburton, J. A. Becker and B. A. Brown, Phys. Rev. C 41 (1990) 1147-66.

^b Department of Physics, Tokyo Institute of Tehcnology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan

^c Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan ^d Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra AT 0200, Australia