Gluon Saturation Effects On Single Spin Asymmetries

Daniël Boer

Dept. of Physics and Astronomy, Vrije Universiteit Amsterdam De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

Single spin asymmetries (SSA) in hadronic reactions, such as $p^{\uparrow}p \to \pi X$ or $pp \to \Lambda^{\uparrow} X$, are spin-orbit coupling effects which can be described in terms of transverse momentum dependent parton distribution functions (TMDs) if the energy scales involved are large enough to allow for a factorized partonic description. The phenomenology of such TMDs, which was developed over the last decade, has already been quite successful. A full understanding of such SSA in terms of TMDs can turn them into tools for probing changes in underlying physics. For example, SSA in proton-nucleus collisions at large energies and high baryon number can be sensitive to gluon saturation effects and in nucleus-nucleus collisions to the formation of a quark-gluon plasma.

In this talk the effects of gluon saturation on SSA will be discussed. Classical and quantum saturation effects on the process $p A \to \Lambda^{\uparrow} X$ will be discussed. This is based on results by D. Boer & A. Dumitru, published in Phys. Lett. 556 (2003) 33, and on new results. Possible saturation effects in forward pion production in $p^{\uparrow} p$ will also be discussed. The latter work is done in collaboration with A. Dumitru and A. Hayashigaki (in preparation). The relevance for ongoing and future collider experiments will be discussed.