Measurements of Single and Double Spin Asymmetries in *pp* Elastic Scattering in the CNI region with Polarized Hydrogen Gas Jet target

H. Okada^{1,2}, I. Alekseev³, A. Bravar⁴, G. Bunce^{4,5}, S. Dhawan⁶,
K.O. Eyser⁷, R. Gill⁴, W. Haeberli⁸, H. Huang⁴, Y. Makdisi⁴,
I. Nakagawa^{1,5}, A. Nass⁹, N. Saito², E. Stephenson¹⁰,
D. Sviridia³, T. Wise⁸, J. Wood⁴, and A. Zelenski⁴

¹ RIKEN, Wako, Saitama, 351-0198, Japan; ²Kyoto University, Kyoto 606-8502, Japan
 ³ Institute for Theoretical and Experimental Physics (ITEP), 117259, Moscow, Russia
 ⁴ Brookhaven National Laboratory, Upton, NY 11973, USA

⁵ RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973-5000, U.S.A.

⁶ Yale University, New Haven, CT 06520, USA; ⁷ University of California, Riverside, CA 92951, USA
 ⁸ University of Wisconsin, Madison, WI 53706, USA; ⁹ University of Erlangen, 91058 Erlangen, Germany
 ¹⁰ Indiana University Cyclotron Facility, Bloomington, IN 47408, USA

A precise measurement of the single spin asymmetry, A_N , in *pp* elastic scattering in the region of four-momentum transfer squared $0.001 < |t| < 0.032 (GeV/c)^2$ has been performed using a polarized atomic hydrogen gas jet target and the 100GeV/c RHIC proton beam ($\sqrt{s}=13.7GeV$). This kinematic region is known as the Coulomb Nuclear Interference (CNI) region. The interference of the electro-magnetic spin-flip amplitude with a hadronic spin-non-flip amplitude is predicted to generate a significant A_N of 4-5\%, peaking at $|t|\approx 0.003 (GeV/c)^2$, and the presence of a hadronic spin-flip amplitude would modify this calculable prediction.

The hydrogen gas jet target system provides highly polarized atomic hydrogen, $P_t = 0.924 \pm 0.018$. The system performance meets the design specifications. The recoil spectrometer, which consisted of the three left-right symmetric pairs of silicon detectors, was newly developed for this experiment. We have collected 4 million elastic *pp* events in the region of 0.001 < |t| < 0.032 (GeV/*c*)².

We present the first precise results of A_N in the CNI region as a function of |t| which were measured in 2004 ($\Delta A_N/A_N \sim 0.05$). Our data are well described by the CNI prediction with the electro-magnetic single spin-flip amplitude alone and do not support the presence of a large hadronic single spin-flip amplitude.

At the same time, we have also accomplished the precise measurement of the double spin asymmetry, A_{NN} , in the same |t| region for the first time. A_{NN} measurement in the CNI region. Since there is no purely one photon exchange contribution to this asymmetry, A_{NN} is sensitive to the hadronic double spin-flip amplitude. However there is no solid theoretical prediction for its energy dependence nor magnitude. The new results of A_{NN} for each measured points are consistent with zero within the errors.

 A_N and A_{NN} results in the CNI region provide significant constraints to determine the magnitude of poorly known hadronic single and double spin-flip amplitudes at this energy.