Unexpected Enhancements and Reductions of RF Resonance Strengths^{*}

M.A. Leonova¹, A.D. Krisch¹, V.S. Morozov¹, R.S. Raymond¹, D.W. Sivers¹, V.K. Wong¹; R. Gebel², A. Lehrach², B. Lorentz², R. Maier², D. Prasuhn², A. Schnase², H. Stockhorst²; F. Hinterberger³, K. Ulbrich³

¹ Spin Physics Center, University of Michigan, Ann Arbor, MI 48109-1120 USA
² Forschungszentrum Jülich Institut für Kernphysik, Postfach 1913, D-52425 Jülich
³ Helmholtz Institut für Strahlen- und Kernphysik, Universität Bonn, Nussallee 14-16, D-53115 Bonn

We recently analyzed all available data on spin-flipping stored beams of protons, deuterons and electrons. We first obtained the ratio $\mathcal{E}_{FS}/\mathcal{E}_{Bdl}$ of the rf-induced spin resonance strength \mathcal{E}_{FS} obtained by fitting the measured polarizations to the modified Froissart-Stora equation to the \mathcal{E}_{Bdl} calculated using the $\int Bdl$ of the rf dipole or rf solenoid. We found that $\mathcal{E}_{FS}/\mathcal{E}_{Bdl}$ was as much as 15 times lower than predicted for deuterons and was often 10 to 80 times higher than predicted for protons.

We studied this discrepancy with a 2.1 GeV/c vertically polarized proton beam¹ and a 1.85 GeV/c vertically polarized deuteron beam stored in the COSY cooler synchrotron in Jülich, Germany. To flip the beam's polarization direction, we swept the frequency of a water-cooled ferrite rf dipole, with $\int Bdl = 0.5$ T·mm rms, through an rf-induced spin resonance.

We studied the dependence of $\mathcal{E}_{FS}/\mathcal{E}_{Bdl}$ on the beam size, the momentum spread and the distance from the nearest 1st-order intrinsic spin resonance for both protons and deuterons, and on the frequency sweep range Δf for deuterons. We observed no measurable dependence of $\mathcal{E}_{FS}/\mathcal{E}_{Bdl}$ on the beam size and momentum spread for both protons and deuterons. When we varied the vertical betatron tune v_y near a 1st-order intrinsic spin resonance for both protons and deuterons and deuterons, we observed a strong enhancement of $\mathcal{E}_{FS}/\mathcal{E}_{Bdl}$ with a hyperbolic dependence on the distance from the 1st-order intrinsic spin resonance; this explained much of the discrepancy for protons, but not the very small $\mathcal{E}_{FS}/\mathcal{E}_{Bdl}$ for deuterons.

We initially had deuteron data only with very small Δf values of 100-200 Hz; when we increased Δf in four steps from 100 to 3000 Hz, we observed no dependence of $\varepsilon_{FS}/\varepsilon_{Bdl}$ on Δf . Thus, this anomalously small $\varepsilon_{FS}/\varepsilon_{Bdl}$ ratio may be due to some unexpected behavior of relativistic spin-1 deuterons in an rf dipole.

^{*} This research was supported by grants from the German BMBF Science Ministry.

¹ M.A. Leonova et al., Phys. Rev. ST Accel. Beams 9, 051001 (2006)