Time Projection Chamber at SPring-8/LEPS

M.Niiyama¹, H.Fujimura², D.S.Ahn¹, J.K.Ahn³, S.Ajimura⁴, H.C.Bhang⁵,
W.C.Chang⁶, J.Y.Chen⁶, O.Dmitry⁶, S.Fukui⁷, H.Funahashi², T.Ishikawa⁸,
K.Imai², ⁹K.Hicks, ⁴K.Horie, ¹T.Hotta, ¹Y.Kato, ¹K.Kino, ¹H.Kohri,
¹⁰S.Makino, ¹¹T.Matsumura, ⁹T.Mibe, ²M.Miyabe, ²K.Miwa,
¹N.Muramatsu, ¹⁰M.Nakamura, ¹T.Nakano, ²Y.Nakatsugawa, ⁴T.Ogama,
²N.Saito, ¹T.Sawada, ⁴Y.Sugaya, ¹²M.Uchida, ¹T.Yorita and ¹M.Yosoi

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan
 ²Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
 ³Department of Physics, Pusan National University, Pusan 609-737, Korea
 ⁴Department of Physics, Osaka University, Toyonaka, Osaka, 560-0043, Japan
 ⁵School of Physics, Seoul National University, Seoul 151-747, Korea
 ⁶Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
 ⁷Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
 ⁸Laboratory of Nuclear Science, Tohoku University, Sendai, Miyagi 982-0826, Japan
 ⁹Department of Physics, Ohio University, Athens, Ohio 45701, USA
 ¹⁰ Wakayama Medical College, Wakayama, Wakayama 641-0012, Japan
 ¹¹ National Defense Academy in Japan, Yokosuka, Kanagawa, 239-8686, Japan
 ¹²Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan

We have constructed a Time Projection Chamber (TPC) as the 4π detector for hadron photo-production experiments at SPring-8. One of the features of this TPC is to detect low

momentum hyperons as close as 16 mm from the target center, especially to detect the decay topology of hyperons such as Σ , Λ and $K^0{}_s$. The purpose of the experiment is to study the structure of Λ (1405) and the in-medium modification of the properties of vector mesons, ϕ and K(890), in a nucleus. The hadron photo-production experiment was carried out in the year 2004 and 2005 with CH₂, carbon and copper target and with incident photon energy up to 2.9 GeV. In this presentation we report basic performances of the TPC such as the ability of particle identification by dE/dx measurement (Figure 1) and the momentum resolution.

