Alignment Correlation Terms In β-Ray Angular **Distributions From Spin Aligned** ²⁰**F And** ²⁰**Na**

T.Nagatomo¹, K.Minamisono², K.Matsuta³, C.D.P.Levy⁴, T.Sumikama¹, A.Ozawa⁵, Y.Tagishi⁵, M.Mihara³, M.Ogura³, R. Matsumiya³, M.Fukuda³, M.Yamaguchi¹, J.A.Behr⁴, K.P.Jackson⁴, H.Fujiwara³, H.Ohta⁵, T.Yasuno⁵, Y.Hashizume⁵ and T. Minamisono⁶

¹RIKEN (Hirosawa 2-1, Wako, Saitama 351-0106, Japan) ²NSCL,MSU (East Lansing, Michigan 48824-1321, USA) ³Osaka University (Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan) ⁴*TRIUMF* (4004 Wesbrook Mall, Vancouver, B.C. Canada, V6T 2A3) ⁵University of Tsukuba (Tennodai 1-1, Tsukuba, Ibaraki 305-8577, Japan) ⁶Fukui University of Technology (Gakuen 3-6-1, Fukui, Fukui 910-8505, Japan)

The alignment correlation term in the β ray-angular distribution is one of the good probes to search for the induced tensor term g_{II} in the axial vector current in the weak interaction. The induced tensor term g_{II} causes the breaking of the G-symmetry that is well conserved in the strong interaction. From the difference between the alignment terms of the mirror nuclei, the induced tensor term is obtained as the ratio, g_{II}/g_A , where g_A is the GT strength. In the present work, the alignment correlation terms of the mirror nuclei in mass number 20 system, ²⁰F and ²⁰Na, have been measured by the spin manipulation technique based on the β -NMR.

optical pumping method), were implanted into the MgF_2 (Mg) catcher. With the spin manipulation technique, the polarization was converted to the pure alignment, and then we observed the angular distribution of the β rays emitted from the aligned nuclei. The obtained alignment correlation terms $\alpha(E)$ of ²⁰F and ²⁰Na are shown in Fig.1. From the $\alpha(E)$ of ²⁰F and ²⁰Na, we will discuss the limit of the G-parity symmetry.

FIGURE 1. Obtained alignment correlation terms of ²⁰F and ²⁰Na as a function of the β -ray total energy.