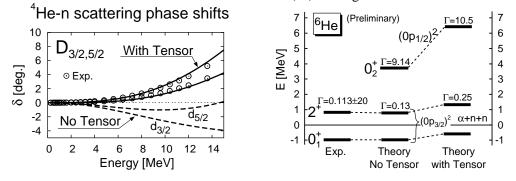
Role of the Tensor Correlation on the Spin-Orbit Splitting in Neutron Halo Nuclei


Takayuki Myo, Kiyoshi Kato, Hiroshi Toki and Kiyomi Ikeda

¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki567-0047, Japan ²Department of Physics, Graduate School of Science, Kyoto University, Kyoto606-8502, Japan ³Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan ⁴The Institute of Physical and Chemical Research (RIKEN), Wako 351-0198, Japan.

The tensor force is an important ingredient related to the spin in the nuclear force and plays a characteristic role in the nuclear structure. In ⁴He, the exact calculations show that the contribution of the tensor force in the energy is comparable to the central one.

It is an important problem to understand the effect of the tensor force on the nuclear structure in a physically transparent manner by explicitly describing the tensor correlation. In this talk, we investigate the roles of tensor force for He isotopes, ⁴He to a halo nuclei ⁶He, and also ¹¹Li. We start with the extended shell model type model for ⁴He, which can optimize the tensor correlation of this nuclei. For ^{5,6}He and ¹¹Li, we employ the "Tensor-optimized core cluster"+n(+n) models, and see the effect of the tensor correlations on these nuclei.

We describe ⁴He within the 2p2h excitations to converge the solutions for the tensor correlation. The large contribution of the tensor force is obtained as -51 MeV and the $(0s_{1/2})^2(0p_{1/2})^2$ component is largely mixed to be 5% via 0⁻ coupling of the $0s_{1/2}$ - $0p_{1/2}$ orbits. This reflets the pion nature. Next, we analyze the ⁴He+n scattering in the coupled channel method. Due to the large mixing of $0p_{1/2}$ component in ⁴He, the Pauli blocking occurs in the ⁵He(1/2⁻) state and 30% of the observed LS splitting energy of 1/2-3/2 states arises. The tensor correlation also affects the *d*-wave properties of the ⁴He+n system, which improves the phase shifts shown in Figure. The Pauli-blocking can be seen in the neutron halo nuclei ⁶He. We show the preliminary energy spectrum of ⁶He with three-body calculation in Figure. It is found that the 0⁺₂ states is affected by the tensor correlation in which two valence neutrons occupy the $0p_{1/2}$ orbit and suppress the tensor correlation in ¹¹Li to mix the (1s)² configuration.

[1] T. Myo, K. Kato and K. Ikeda, Prog. Theor. Phys.113(2005)763.