
Search for the G-Parity Violation of Weak Nucleon Current in β decays of Mass 8 System

T. Sumikama^a, K. Matsuta^b, T. Nagatomo^a, M. Ogura^b, T. Iwakoshi^b, Y. Nakashima^b, H. Fujiwara^b, M. Fukuda^b, M. Mihara^b, K. Minamisono^c, T. Yamaguchi^d and T. Minamisono^e

^aRIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ^bDepartment of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ^cNSCL, Michigan State University, East Lansing, Michigan 48824, USA ^dDepartment of Physics, Saitama University, Sakura-ku, Saitama 338-8570, Japan ^eFukui University of Technology, 3-6-1 Gakuen, Fukui 910-8505, Japan

The G parity of the weak nucleon current relates to the symmetry between β decays of a proton and a neutron. Strong interactions induce additional terms conserving the G parity into the weak nucleon current. However, the G-parity irregular induced tensor term g_{II} may be caused by a small asymmetry between a proton and a neutron or more fundamentally between up and down quarks.

The experiment was performed by using the Van de Graaff accelerator at Osaka University. The nuclear-spin polarized 8 Li or 8 B was obtained by restricting the recoil angle of reaction products. In order to obtain the pure spin alignment, the spin orientation of the polarized nuclei was manipulated by using the β -NMR technique. We observed the alignment correlation terms in the β -ray angular distribution from the purely aligned 8 Li and 8 B to extract g_{II} . Figure 1 shows the g_{II} extracted in the present mass A=8 system and the A=12 and 20 systems [1].

FIGURE 1. G-parity violating induced tensor term $g_{\rm II}$ in the present mass 8 system and the others [1].

[1] K. Minamisono et al., Phys. Rev. C 65 (2002) 015501; R.D. Rosa et al., Phys. Rev. C 37, 2722 (1988)