Transverse Target-spin Asymmetry Associated with Deeply Virtual Compton Scattering on the Proton and a Resulting Model-dependent Constraint on J_u and J_d

Wolf-Dieter Nowak

DESY, D-15738 Zeuthen, Germany

Abstract:

Results are reported on the transverse target-spin asymmetry (TTSA) associated with deeply virtual Compton scattering on the proton. The data have been accumulated in the years 2002-2004 by the HERMES experiment at DESY, in which the HERA 27.6 GeV e⁺ beam scattered on a transversely polarized hydrogen target. The azimuthal amplitudes of the TTSA appearing to LO in 1/Q and α_s , $A_{UT}^{\sin(\phi+\phi_s)\cos\phi}$ and $A_{UT}^{\cos(\phi+\phi_s)\sin\phi}$, are given as a function of -t, x_B and Q² in the kinematic range $|t| < 0.7 \text{ GeV}^2$, $0.3 < x_B < 0.35$ and $1 < Q^2 < 10 \text{ GeV}^2$. The TTSA amplitude $A_{UT}^{\sin(\phi+\phi_s)\cos\phi}$ is sensitive to the generalized parton distribution (GPD) E of the proton. Within a GPD model that includes the total angular momentum carried by the quarks in the nucleon, J_q (q=u, d), in the parameterization of the GPD E, it has been found that the TTSA amplitude $A_{UT}^{\sin(\phi+\phi_s)\cos\phi}$ is sensitive to J_q and insensitive to the other model parameters. By comparing the HERMES result and the theoretical predictions based on the GPD model, a model-dependent constraint on J_u and J_d is obtained.