Muon Decay: Measurement Of The Transverse e^+ Polarization And Its Implications On G_F (Fermi Coupling Constant) And Time Reversal Invariance

Wulf Fetscher

Institute for Particle Physics

ETH Zurich Zurich, Switzerland

Abstract

The two transverse polarization components P_{T_1} and P_{T_2} of the e^+ from the decay of polarized μ^+ have been measured as a function of the e^+ energy. Their energy averaged values are $\langle P_{\text{T}_1} \rangle = (6.3 \pm 7.7 \pm 3.4) \times 10^{-3}$ and $\langle P_{\text{T}_2} \rangle = (-3.7 \pm 7.7 \pm 3.4) \times 10^{-3}$. From the energy dependence of P_{T_1} and P_{T_2} the decay parameters η , η'' and α'/A , β'/A are derived, respectively.

Assuming only one additional coupling besides the dominant V - A interaction improved limits on η , β'/A , and the scalar coupling constant g_{RR}^S are derived: $\eta = (-2.1 \pm 7.0 \pm 1.0) \times 10^{-3}$, $\beta'/A = (-1.3 \pm 3.5 \pm 0.6) \times 10^{-3}$, $Re\{g_{RR}^S\} = (-4.2 \pm 14.0 \pm 2.0) \times 10^{-3}$ and $Im\{g_{RR}^S\} = (5.2 \pm 14.0 \pm 2.4) \times 10^{-3}$.