

Exploring the nucleon helicity structure with pp collisions

October 4, 2006

Abhay Deshpande

Stony Brook University RIKEN BNL Research Center

THIS IS NOT A SUMMARY TALK! Those were done already on Monday afternoon by each experiment

So if you do not see your favorite slide or your own work,

I apologize

Outline

- Aftermath of EMC Spin Crisis
- Motivation of a proton-proton collider
- The RHIC Spin program at BNL
 - Status: An experimentalist's view
- Double spin asymmetry results
 - Limitations and aspirations: short term outlook
 - Needs
- Summary & closing comments

Ellis's beer

The spin crisis & its aftermath

- European Muon Collaboration's discovery in 1988/89
 - Quarks (+ anti-quarks) do not carry the expected fraction of nucleon spin!
- Nature's message: Look again, look elsewhere....

PDFs & Fixed target DIS

Limitations:

- Virtual photon can <u>not</u> directly interact with gluons
 - Charge-less gluons and colorless quarks: don't see "eye-to-eye"
 - Indirect contacts: Photon-Gluon-Fusion process(es)
- Fixed target experiments ==> <u>low center of mass:</u>
 - clean interpretation of results using pQCD difficult in certain processes
- Virtual photon can <u>not</u> distinguish quarks from anti-quarks: To accomplish this one has to consider fragmentation functions π,Ks etc.... uncertainties arise.

<u>Not</u> "limitations" of polarized DIS, but of fixed target polarized DIS See talks on October 7, by K. De Jaeger & S. Aronson

What other options do we have?

- Why not collide **protons on protons?**
 - Each is an ample source of "glue", could be used to probe the gluon's role *directly*
- To keep the interpretation of results clean using pQCD
 - A collider at high energy

This was the motivation for

the RHIC Spin program

It also allows a beautiful & elegant way to explore the **quark vs anti-quark** spin contribution

RHIC as A Polarized Collider

Polarized Collider Development

Parameter	Unit	2002	2003	2004	2005	2006
No. of bunches		55	55	56	106	III
bunch intensity	IO ^{II}	0.7	0.7	0.7	0.9	1.4
store energy	GeV	100	100	100	100	100
β*	m	3	Ι	Ι	Ι	I
peak luminosity	10 ³⁰ cm ⁻² s ⁻¹	2	6	6	IO	35
average luminosity	10 ³⁰ cm ⁻² s ⁻¹	I	4	4	6	20
Collision points		4	4	4	3	2
average polarization, store	%	15	35	46	47	60-65

The RHIC Spin: Physics

- 1. Direct determination of the polarized **gluon distribution** using many independent probes
 - Requires double longitudinally polarized pp collisions
- 2. Direct determination of the **polarized quark & anti-quark polarization** using W^{+/-} production in pp collisions and its PV decay
 - Requires at least one beam longitudinally polarized
 - Also 500 GeV in CM
- 3. Transversity and other transverse spin effects which may lead to better understanding of the transverse spin structure of the proton
 - Requires at least one transversely polarized proton beam
 - This will be described in A. Ogawa's talk which follows

Exquisite Control: Systematic Uncertainties

I will not have a detector slide!

- PHENIX Design philosophy: (details in Ken Barish's talk, 2A, Monday)
 - Detector Redundancy
 - Fine Granularity, Mass Resolution
 - High Data Rate
 - Good Particle ID
 - Limited Acceptance in central calorimetry and forward muon detectors
- STAR (details in B. Surrow's talk, 2A, Monday)
 - Large acceptance with azimuthal symmetry
 - Good tracking, particle ID
 - Central & forward calorimetry
- Both have collisions counters and zero-degree-calorimeters to characterize events

YOU HAVE SEEN THEM IN MANY TALKS!

Method of accessing ΔG : example

- Different hard scattering process: which result in final states (1) and (2)
 - They could be: 2-Jets, Jet-photon
 - Jets --> hadronize/fragmentation--> (π , K, p...)
 - Fragmentation function required for the appropriate process
 - Inclusive and semi-inclusive: measurements in RHIC detectors

The Processes..... On a partonic level

Double Longitudinal Asymmetry

• The measurement:

$$A_{LL} = \frac{1}{P_y P_b} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}} \qquad R = \frac{N_{++}}{N_{+-}}$$

- Where + and indicate (longitudinal) spin orientations
- R is a ratio of the number of collisions with [++ vs. +-] spin orientations in the experiment: **Relative Luminosity ratio**

- Experiments have to confirm that the spin orientation is indeed longitudinal when they collide in the experimental IR
 - Local Polarimetry
 - Does not really measure polarization; only checks spin orientation in collisions

Interpretation of A_{LL}

- The measured double longitudinal asymmetries have to be interpreted in terms of ΔG :
 - This is done in the framework of perturbative QCD

• How do we know that the perbative QCD approach is appropriate for the kinematics in which A_{LL} is measured?

• Compare the NLO pQCD calculations in the kinematics of the experiment with their data

BR p+p->π°+X, 200 GeV CM & central rapidity

- Central rapidity of PHENIX ۲
- Next-to-Leading order calculations match very well with

STONY

K.Boyle, 2A, Tuesday

π^o asymmetry at 200 GeV CM

- Run-5 (preliminary) + Run-6 (partial, preliminary)
- Compared with the different ∆G scenarios coming from DIS fixed target experiments & some model dependent inputs to them
- **Preliminary**: Zero Gluon more likely than the GRSV-Std (after Run-6 inclusion) ??
 - Caveat: the variation in theory uncertainty is not considered in these Confidence Level calculations yet. Detailed analyses underway.

D. Relyea, 2A, Tuesday STAR Inclusive Jet measurement

F.Simon, 2A, Tuesday

STAR: π° production

- Cross section at NLO in agreement with data
- First asymmetry measurement
- Consistent with PHENIX previously released and new data.

consistent with previous results from PHENIX

RHIC Spin: inclusive π° and jet

A. Kocoloski, 2A, Tuesday STAR 2005 Inclusive π^{+/-} A_{LL}

Charged pion measurements luminosity hungry

Theoretical calculations agree with the expectations

∆G Prospects

- <u>Left:</u> A_{LL} (π°) prospects by 2009 (65 pb-1 luminosity intregrated by **PHENX** using π° double spin asymmetries
- <u>**Right:</u>** A_{LL} (jets) prospects by 2012 by **STAR** with 500 GeV in Center of Mass data</u>

Anti Quark Polarization

 Measured through single longitudinal proton collisions at 500 GeV center of mass

• PHENIX needs Muon Trigger upgrade (funded NSF, JSPS) and the STAR detector needs the forward tracker (proposal being written)

Now in the x space... how does this look?

62 GeV CM: probes a different x

Maximal utilization of the facility.....

- Vary the range of CME at RHIC: 62 GeV --> 200 GeV --> 500 GeV.
 - Difficult and with limited gain in x range...
 - A_{LL}s and quark-anti-quark parton distributions would be available
- What else?
 - Different probes
 - Di-Jets, photon-Jet, open heavy quark production....
 - W production and decay (anti-quark distributions..)
 - Detector upgrades to increase the physics cabapabilities: heavy quark program
 - Si VTX tracker for PHENIX
 - Inner tracker for STAR
- Last but not the least: A comprehensive pQCD analysis at NLO of the global data set: A Global Analysis

Global Analysis... an urgent need!

- To most fruitfully utilize all the data ==> to get the best possible determination of polarized parton distributions we need a Global Analysis of all available data sets:
- Perturbative QCD at the highest possible level of sophistication needs to be used to analyze these data (presently NLO)
- An example : The Successful multi-year effort by the CTEQ collaboration
 - Experiments and theorists come together to and extract the unpolarized parton distribution and their uncertainties
 - Judicious input from experimentalists and theorists on various issues
 - Statistical, experimental systematics and its correlation, and theory uncertainties need to be dealt with

The method: A simplistic view

- Observation:
 - Stat+Syst errors: mostly added in "quadrature" ignoring all correlations: this can clearly be improved
 - Syst_{theory} often least emphasized... but typically large

One "recent" attempt of global analysis....

hep-ph/0607063: clearly says....

The large uncertainty in type-3 $\Delta g(x)$ in the smaller-xregion is also reflected to the first moment: -0.56 ± 2.16 . The large error comes from the small-x region, where there is no experimental data which constrains the small-x behavior of $\Delta g(x)$. In fact, if the type-3 $\Delta g(x)$ is

- Asymmetry analysis collaboration (AAC)
 - Hirai, Kumano, Saito
- Pre-print: hep-ph/0603213
- Recent: hep-ph/0607063
 - This new paper deals with large x only (!) and only shows error bars of the fit type 1 and 2
 - Recently the hep/ph 607063 was quoted (not by authors) and value of ΔG and its uncertainty:

>> 0.30 +/- 0.30

>> ignoring theoretical uncertainties (low x)

Initiation of the global analysis

- As RHIC data starts becoming significant (next year or so), it is absolutely <u>timely</u> that we have a framework in which they can be analyzed in the most comprehensive manner
- A group of people not unlike the CTEQ collaboration is needed:
 - AAC collaboration exists (could this be a seed?)
 - Other theoretical groups already are working developing novel techniques
 - A fast Method for analysis of Inclusive DIS + RHIC pp data M. Stratmann, W. Vogelsang PRD64, (2001) 114007
 - Inclusive & Semi-Inclusive data + PHENIX π° data *D. de Florian et al*, PRD71 (2005) 094018
 - Others?... apologies for not mentioning...
 - Many experimenters are interested...
- Let this effort begin... earlier the better!

The Elephant & the village of the blind

The Elephant The nucleon spin.....

Summary

- RHIC Spin program has begun: early data already on tape
- Exciting prospects for new data and unraveling of nucleon spin!
- While there is a lot to do in the next few years, the returns may be phenomenal: Many exciting results anticipated in the SPIN2008, 2010, 2012 symposia....
- Stay tuned...

That's it!

You want more???!!