

Low Energy Tests of the Standard Model with Spin Degrees of Freedom

SPIN 2006 Kyoto, October 3, 2006

Jens Erler (IF-UNAM)

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

- Introduction
- Polarized electron scattering and the weak neutral current
- Muon decay
- g-2
- Electric Dipole Moments (advertisement)
- Conclusions

Introduction

- $SU(3) \times SU(2) \times U(1)$ SM is well tested (0.1% level).
- New Physics: small deviation and of decoupling type.
- Motivation (theory): instability of EW scale, gravity.
- Motivation (observation): dark matter and energy, and matter anti-matter asymmetry in the universe.
- Strategies: high energy or high precision.
- 2 general types of precision test: SM allowed (PV scattering) or SM forbidden/highly suppressed (EDMs).

The Standard Model $\mathcal{L}_F = \sum \bar{\Psi}_f \left(i \, \partial \!\!\!/ - m_f - \frac{\lambda_f}{\sqrt{2}} \right) \psi_f$ $-\frac{g}{2\sqrt{2}}\sum \bar{\Psi}_f \gamma^{\mu} (1-\gamma_5) (T^+ W^+_{\mu} + T^- W^-_{\mu}) \psi_f$ $\left|-e\sum Q_f\bar{\Psi}_f\gamma^\mu\psi_f A_\mu\right|$ $-\frac{\sqrt{g^2 + g'^2}}{2} \sum \bar{\Psi} \gamma^\mu (v_f - a_f \gamma_5) \psi Z^0_\mu$ $v_f \equiv T_3^f - 2Q_f \sin^2 \theta_W \qquad a_f \equiv T_3^f$

Weak Mixing Angle

$$Z^{\theta}_{\mu} = \cos \theta_W W^3_{\mu} - \sin \theta_W B_{\mu}$$
$$A_{\mu} = \sin \theta_W W^3_{\mu} + \cos \theta_W B_{\mu}$$

$$\sin^2 \theta_W = \frac{g'^2}{g^2 + g'^2} = 1 - \frac{M_W^2}{M_Z^2}$$

 $e = g\sin\theta_W = g'\cos\theta_W$

SM parameters

Besides Yukawa sector, SM described by 3 gauge couplings (α, sin² θ_W, α_s)
2 parameters from Higgs potential (G_F, M_H)
α, G_F, M_Z known with negligible uncertainty α_s, M_H (or alternatively sin² θ_W) from precision EW data

Some Background $\sin^2 \hat{\theta}_W(M_Z) \equiv \hat{s}^2 = \frac{A^2}{M_W^2(1 - \Delta \hat{r}_W)}$ A^2

$$\hat{s}^2 \hat{c}^2 = \frac{1}{M_Z^2 (1 - \hat{\Delta} r_Z)}$$

$$A = \left[\frac{\pi\alpha}{\sqrt{2}G_F}\right]^{1/2} = 37.2805(2) \text{ GeV}$$

 $\hat{\Delta}r_W, \hat{\Delta}r_Z$ collect radiative corrections...

September 2005

Global Fit

September 2005 + new top quark and W boson masses as of October 2006 $M_H = 84^{+32}_{-25} \text{ GeV}$ $m_t = 171.4 \pm 2.1 \,\,\mathrm{GeV}$ $\alpha_s(M_Z) = 0.1216 \pm 0.0017$ χ^2 /d.o.f. = 47.3/42 (27%) indirect only: $m_t = 171.0^{+9.5}_{-7.1} \text{ GeV}$

October 2006

Physics Beyond the SM

- Supersymmetry stabilizes Higgs potential, $V(\phi) = m_{\phi}^2 \phi^{\dagger} \phi + \frac{\lambda^2}{2} (\phi^{\dagger} \phi)^2$, by virtue of non-renormalization theorems.
- Dynamical symmetry breaking (e.g. technicolor) avoids fundamental scalar.
- Large extra dimensions relate gauge hierarchy to geometry of higher dimensional space-time.
- Little Higgs: Higgs as pseudo-Goldstone boson → postpone quadratic divergences.

Weak Neutral Current

- The effective Lagrangian
- Parity violating DIS
- Polarized electron-proton scattering
- Polarized Møller scattering
- Parity violation in atoms
- Neutrino scattering
- The running weak mixing angle

effective lepton-hadron Lagrangian $\mathcal{L}_{\rm NC}^{\ell h} = \frac{G_F}{\sqrt{2}} \sum \left[C_{1q} \bar{\ell} \gamma^{\mu} \gamma_5 \ell \bar{q} \gamma_{\mu} q + \right]$ $C_{2q}\bar{\ell}\gamma^{\mu}\ell\bar{q}\gamma_{\mu}\gamma_{5}q + C_{3q}\bar{\ell}\gamma^{\mu}\gamma_{5}\ell\bar{q}\gamma_{\mu}\gamma_{5}q$ $C_{1q} = -T_3^q + 2Q_q \sin^2 \theta_W,$ $C_{2u} = -C_{2d} = -\frac{1}{2} + 2\sin^2\theta_W,$ $C_{3u} = -C_{3d} = \frac{1}{2}.$

PV-DIS

$$A_{RL} = \frac{3G_F Q^2}{10\sqrt{2}\pi\alpha} [(2C_{1u} - C_{1d}) + g(y)(2C_{2u} - C_{2d})]$$

- eD-DIS experiment by Prescott et al. (SLAC) crucial to establish SM (before W/Z discovery!)
- Situation from APV confused at the time.
- CERN-NA-004: μ-↑ μ+↓
- JLab @ 6 GeV (approved) and I2 GeV will improve on SLAC and world average by factors of 54 and 17.
- Issues: higher twist and CSV; functions of Q^2 and x.
- Limited by polarization and Q² measurements (0.5%).

CEBAF at Jefferson Lab

Larry Lee

Similar $Q^2 = 0.03 \text{ GeV}^2$ as E-158 but E = 1.165 GeV. P = 0.85 ± 0.01

$A_{PV} = (-2.68 \pm 0.05 \pm 0.04) \times 10^{-7}$

 $A_{PV} = 9 \times 10^{-5} \text{GeV}(Q^2 Q_W^p + Q^4 B)$ $\Rightarrow \Delta Q_W^p = \pm 0.003$ $\Rightarrow \Delta \sin^2 \theta_W = \pm 0.0007$

don't miss plenary talk by Bob Michaels!

The Møller Asymmetry $Q^2 = 0.026 \text{ GeV}^2$ (E = 45 and 48 GeV), P = 0.89 ± 0.04 Very high rates: 660 M pulses, 500 G electrons per pulse $A_{PV} = (-1.31 \pm 0.14 \pm 0.10) \times 10^{-7}$

$$A_{PV} = -\mathcal{A}(Q^2, y)Q_W^e \Rightarrow Q_W^e = -0.0403 \pm 0.0053$$

 $\Rightarrow \sin^2 \hat{\theta}_W(M_Z) = 0.2330 \pm 0.0014$

SLD: ± 0.00029, best LEP: ± 0.00028

With a factor of 5 improvement would become world's best measurement

Radiative Corrections to Q_W^e

Czarnecki & Marciano

All Z graphs suppressed by $1 - 4 \sin^2 \theta_W$

Radiative Corrections to Q_W^p Marciano & Sirlin, Ramsey-Musolf & JE $Q_{W}^{p} = [\rho_{NC} + \Delta_{e}][1 - 4\sin^{2}\hat{\theta}_{W}(0) + \Delta_{e}']$ $+\Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$

Similar structure as for Møller scattering.

- \Im γ Z box: long-distance QCD, suppressed by 1 4 sin² θ .
- \bigcirc WW-box has factor 7 over Møller \Rightarrow 26% effect!
- \implies need 2-loop mixed electroweak-QCD corrections.

$$\Box_{WW} = \frac{\hat{\alpha}}{4\pi \sin^2 \hat{\theta}_W} \left[2 + 5 \left(1 - \frac{\alpha_s(M_W^2)}{\pi} \right) \right]$$

Proton and Electron Measurements Are Needed

Atomic Parity Violation

• Need to understand atomic structure below %-level.

• Most precise: $Q_W(Cs) = -72.62 \pm 0.46$ $Q_W(Tl) = -116.4 \pm 3.64$

Wood et al., Bouchiat et al. Edwards et al., Vetter et al.

- Bi: $\pm 1\%$ experiment, Meekhof et al., but $\pm 15\%$ theory.
- Fr: ±1% theory but ±10% experiment (atom trap),
 Orozco et al.

talk by Victor Flambaum after this

APV (contd.)

- future directions: Ba+ (Cs-like) ion trap: ±0.35%
 Fortson et al.
- Yb isotope ratios: $\pm 0.1\%$ (mostly sensitive to Q_W^p). DeMille, Kimball, Stalnaker et al.
- Finite nuclear size effects dominated by neutron distribution (0.15%) → problem for isotope chains.
- APV = nuclear spin independent + spin dependent terms: nuclear anapole moment dominates (A>20).
- Improve experiment and theory on neutron density. Or use APV to study nuclear structure.

September 2005

LEPTON-HADRON COUPLINGS

beam	Process	$\overline{Q^2} \; [{ m GeV}^2]$	Combination	Result/Status	SM
SLAC	e^- -D DIS	1.39	$2C_{1u} - C_{1d}$	-0.90 ± 0.17	-0.7181
SLAC	e^{-} -D DIS	1.39	$2C_{2u} - C_{2d}$	$+0.62\pm0.81$	-0.0979
CERN	μ^{\pm} -C DIS	34	$0.66(2C_{2u} - C_{2d})$		
			$+2C_{3u}-C_{3d}$	$+1.80\pm0.83$	+1.4354
CERN	μ^{\pm} -C DIS	66	$0.81(2C_{2u} - C_{2d})$		
			$+2C_{3u}-C_{3d}$	$+1.53\pm0.45$	+1.4207
Mainz	e^- -Be QE	0.20	$2.68C_{1u} - 0.64C_{1d}$		
			$+2.16C_{2u}-2.00C_{2d}$	-0.94 ± 0.21	-0.8532
Bates	e^- -C elastic	0.0225	$C_{1u} + C_{1d}$	$+0.138 \pm 0.034$	+0.1528
Bates	e^- -D QE	0.1	$C_{2u} - C_{2d}$	-0.042 ± 0.057	-0.0621
Bates	e^- -D QE	0.04	$C_{2u} - C_{2d}$	-0.12 ± 0.074	-0.0621
JLab	e^- - p elastic	0.03	$2C_{1u} + C_{1d}$	approved	-0.0356
JLab	e^{-} -D DIS	1.1 & 1.9	$2C_{2u} - C_{2d}$	approved	-0.0979
JLab	e^{-} -D DIS	3.3	$2C_{2u} - C_{2d}$	letter of intent	-0.0979
	133 Cs APV	0	$-376C_{1u} - 422C_{1d}$	-72.69 ± 0.48	-73.17
	205 Tl APV	0	$-572C_{1u} - 658C_{1d}$	-116.6 ± 3.7	-116.8

Fit to effective couplings

	value	error	SM	Correlation		tion
$C_{1u} + C_{1d}$	0.147	±0.004	0.1529(1)	0.95	-0.75	-0.10
$C_{1u} - C_{1d}$	-0.604	±0.066	-0.5297(4)		-0.79	-0.10
$C_{2u} + C_{2d}$	0.72	±0.89	-0.0095			-0.11
$C_{2u}-C_{2d}$	-0.071	±0.044	-0.0621(6)			

NuTeV

- 2.7 σ (largest deviation)
- new QED radiative corrections (Diener, Dittmaier, Hollik) but not yet included by NuTeV collaboration
- Charge Symmetry Violation can remove or double the effect (MRST); model dependent
- s-quark asymmetry: 25% of effect (CTEQ), wrong sign (NuTeV) based on same data
- nuclear effects: different for NC and CC; ~ 20% of effect, both signs possible (Brodsky, Schmidt, Yang)

September 2005

Radiative Corrections

Marciano & Sirlin; Ramsey-Musolf & JE

Need e+e- → hadrons and/or hadronic tau decay data for quark (hadron) contribution.
 Assume (and correct for) isospin symmetry.
 Separate strange quark contribution → study scaled heavy quark and SU(3) limits.
 Discuss singlet (QCD-annihilation) contribution (very small).
 ⇒ small theory error = ± 0.00007.

$\tau_{\mu} \Rightarrow G_F = 1.16637 \pm 0.00001 \text{ (exp.)} \rightarrow$

2 new experiments at PSI (FAST and µLan); goal | ppm

Michel parameters

	value	error	SM	TWIST
(spectral shape)	0.7518	±0.0026	3/4	±0.0001
δ (asymmetry shape)	0.7486	±0.0040	3/4	±0.00014
P(μ)ξ (asymmetry)	I.0027	±0.0085		±0.000 3
n e-mass suppressed	-0.007	±0.0 3	0	±0.003

talk by Wulf Fetscher in Session 1,3 on Friday

Muon g-2

- 2 to 3 σ deviation from SM
- for 2-loop vacuum polarization contribution need optical theorem and same data as for running α and running weak mixing angle
- inconsistencies between e+ e- annihilation data
- inconsistencies between τ decay and e+ e- data
- extra trouble: 3-loop light-by-light contribution

talk by Gerry Bunce in Session 1,3 on Friday

vacuum polarization effects

Light-by-light contribution

- free quark estimate (using quark masses for running α)
- exact for infinitely heavy quarks (short distances OK)
- overestimate in chiral limit with m_μ/m_π fixed ightarrow(charged pointlike pions contribute negatively)
- VMD: $1.36 \pm 0.25 \times 10^{-9}$ (error: "rough guess"; $\mu \sim$ 0.6 GeV) Melnikov & Vainshtein, PRD70, 113006 (2004)

free quarks $\begin{cases} 1.37^{-0.27}_{+0.15} \times 10^{-9} \\ < 1.59 \times 10^{-9} \text{ (95\% CL)} \text{ Toledo, JE} \end{cases}$

Electric Dipole Moments

- SM weak CP (CKM-phase) mixing and mass suppressed (many orders too small).
- SM strong CP (topological θ -term) limited by EDMs, $\mathcal{L}_{\theta} = \theta_{QCD} \frac{\alpha_s}{8\pi} G_{\mu\nu} \tilde{G}^{\mu\nu}$

 Baryon asymmetry ⇒ CP violation beyond the SM, but precise implication for EDMs unclear.

talk by Koichiro Asahi in Session 1,3 on Friday

EDM experiments

System	Present Limit (e-cm)	Group	Future	SM (CKM)
$\begin{array}{c} e^-\\ e^-\\ e^- \end{array}$	$1.6 \times 10^{-27} (90\% \text{ CL})$	Berkeley Yale LANL	$\sim 10^{-29} \ \sim 10^{-30}$	$< 10^{-38}$
$\mu \ \mu$	$1.05 \times 10^{-18} (90\% \text{ CL})$	CERN BNL	$\sim 10^{-24}$	$< 10^{-36}$
$egin{array}{c} n \\ n \\ n \end{array}$	$6.3 \times 10^{-26} (90\% \text{ CL})$	ILL PSI LANL	$ \begin{array}{c} 1.5 \times 10^{-26} \\ 7 \times 10^{-28} \\ 2 \times 10^{-28} \end{array} $	1.4×10^{-33} \rightarrow 1.6×10^{-31}
¹⁹⁹ Hg ²²⁵ Ra ¹²⁹ Xe <i>D</i>	$2.1 \times 10^{-27} (95\% \text{ CL})$	Seattle Argonne Princeton BNL	$5 \times 10^{-28} \\ 10^{-28} \\ 10^{-31} \\ \sim 10^{-27}$	$< 10^{-33}$ $< 10^{-34}$

I am sticking my neck out: the next generation of EDM searches is virtually guaranteed to make a discovery.

PAUL LANGACKER

Conclusions

- A network of high precision polarized electron scattering experiments is set to study TeV scale.
- Next generation µ-decay experiments is looking for deviations from V-A.
- Searches for permanent EDMs highly motivated with spectacular experimental developments.

Low energy measurements will remain indispensable even with loads of LHC data!