Electroweak Analysis on Spin-Dependent DIS Cross Sections at HERA

Masahiro Kuze (Tokyo Inst. of Tech.)

5 Oct. 2006, SPIN2006, Kyoto

The HERA collider

* The only e-p collider in the world.

* 920 GeV p × 27.5 GeV $e^* \rightarrow \sqrt{s}=320$ GeV

* Highest $Q^2 \approx 40,000 \text{ GeV}^2 \rightarrow \text{probe the}$ proton structure down to 0.001 fm

* Running since 1991. Till 2000: HERA-I data (unpolarized e*p collision)

DESY, Hamburg

HERA upgrade: HERA-II

* 2001-2002: upgrade machine and exp'ts.

- * (1) Higher luminosity: 5XHERA-I
- * (2) Longitudinally polarized e[±] beam for H1/ZEUS
 Spin rotators
 - Available only to HERMES (fixed target) in HERA-I
- ★ Elecroweak physics in DIS at high Q² (Nb: no proton polarization →No proton-spin physics)

HERA-II performances

* Polarization

* Luminosity

Lepton-hadron scattering (DIS)t-channel (space-like) propagator boson * Virtuality Q²: $Q^2 = -(k - k')^2$ e(k) $e, \nu(k')$ resolving power $x = \frac{Q^2}{2P \cdot (k - k')}$

 $y = \frac{P \cdot (k - k')}{P \cdot k}$

* Bjorken x: parton

distribution (PDF)

 $\sigma \approx (coupling)^2 \times propagator \times PDF(x,Q^2)$ Electroweak QCD

 γ, Z, W

p remnant

q(xP)

cf. LEP, TeVatron: s-channel (time-like) boson

Collider detectors @ HERA

• ZEUS Detector

- Uranium-Scintillator calorimeter
 - $\sigma(E)/E = 18\%/\sqrt{E}$ for electrons
 - $\sigma(E)/E = 35\%/\sqrt{E}$ for hadrons
- Central tracking detector
 - $\sigma(p_T)/p_T =$ 0.0058 $p_T \oplus 0.0065 \oplus 0.0014/p_T$
- H1 Detector
 - Liquid-Ar calorimeter
 - $\sigma(E)/E = \frac{12\%}{\sqrt{E}}$ for electrons
 - $\sigma(E)/E = 50\%/\sqrt{E}$ for hadrons
 - Central tracking detector

2 out of $(E_e, \theta_e, E_h, \theta_h)$ → Reconstruction of (x, Q^2)

Polarized PIS cross sections

* Charged Current (CC) e⁺ and e⁻ interact with different quarks

$$\frac{d^{2}\sigma(e^{+}p)}{dxdQ^{2}} = \frac{G_{F}^{2}}{2\pi} \left(\frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}}\right)^{2} \left\{\left(\bar{u} + \bar{c}\right) + (1 - y)^{2}(d + s)\right\}$$
$$\frac{d^{2}\sigma(e^{-}p)}{dxdQ^{2}} = \frac{G_{F}^{2}}{2\pi} \left(\frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}}\right)^{2} \left\{\left(u + c\right) + (1 - y)^{2}(\bar{d} + \bar{s})\right\}$$

 W is pure left-handed: Cross section is linear to Pol.
 σ[±](Pol) = (1±Pol) σ(Unpol)

h_{adrons} (jet) q_{uark} for the second secon

e⁺p(e⁻p) xsec vanishes for P=-1(+1)

 $y=Q^2/sx=inelasticity=(1-\cos \theta^*)/2$ in e-q CMS

Polarized CC: results

* Clear left-handed nature of weak currents

★ Extrapolation to P=±1 → limits on W_R (assuming gl=gr and light vr) m(W_R) > 208 GeV @ 95% C.L. (H1 e⁺ data)

Neutral current VIS * Cross section proton ladrons (jet) quarl $\frac{d^2\sigma(e^{\pm}P)}{dxdQ^2} = \frac{2\pi\alpha^2}{Q^4} \{Y_+\tilde{F}_2 \mp Y_-x\tilde{F}_3\} \qquad \begin{array}{l} Y_+ = 1 + (1-y)^2 \\ Y_- = 1 - (1-y)^2 \end{array}$ For simplicity, xF_3 is written as F_3 in the following. e^{-},e^{+} * Structure functions (unpol.) $\begin{array}{rclcrcl} \tilde{F}_2 &=& \Sigma A_q x(q+\overline{q}) &=& F_2^{\gamma} &-& v_e \chi_Z F_2^{\gamma Z} &+& (v_e^2+a_e^2)\chi_Z^2 F_2^Z \\ \tilde{F}_3 &=& \Sigma B_q x(q-\overline{q}) &=& -& a_e \chi_Z F_3^{\gamma Z} &+& 2v_e a_e \chi_Z^2 F_3^Z \end{array}$ $\chi_{Z} = \frac{1}{\sin^{2} 2\theta_{w}} \frac{Q^{2}}{M_{Z}^{2} + Q^{2}} \xrightarrow{\text{pure } \gamma \text{ (EM)}} \gamma \text{-Z interference (1st order EW)} \text{pure Z (2nd order EW)}$ $\rightarrow \text{ only visible at high } Q^{2} (Q^{2} \rightarrow M_{z}^{2})$ * Electroweak couplings $v_f = T^3_f - 2e_f \sin^2 \theta_W$ $a_f = T^3 f$

 $2\sin^2 \theta_{\rm w} \sim 1/2 \rightarrow v_e \sim 0$ EW effects in unpol. DIS \rightarrow only visible is $F_3^{\gamma Z}$: $\sigma(e^-) - \sigma(e^+)$

Polarized NC DIS

* Structure functions (pol.)

$$\begin{split} \tilde{F}_2 &= F_2^{\gamma} - (v_e \pm P_e a_e) \chi_Z F_2^{\gamma Z} + ((v_e^2 + a_e^2) \pm P_e 2 v_e a_e)) \chi_Z^2 F_2^Z \\ \tilde{F}_3 &= - (a_e \pm P_e v_e) \chi_Z F_3^{\gamma Z} + ((2v_e a_e \pm P_e (v_e^2 + a_e^2)) \chi_Z^2 F_3^Z) \end{split}$$

pure γ (EM) γ -Z interference (1st order EW)

$$egin{array}{rcl} F_2^{\gamma Z}&=&2e_f v_f \Sigma_i x [q_f+\overline{q_f}]\ F_2^Z&=&(v_f^2+a_f^2) \Sigma_i x [q_f+\overline{q_f}]\ F_3^{\gamma Z}&=&2e_f a_f \Sigma_i x [q_f-\overline{q_f}]\ F_3^Z&=&2v_f a_f \Sigma_i x [q_f-\overline{q_f}]\ F_3^Z&=&2v_f a_f \Sigma_i x [q_f-\overline{q_f}] \end{array}$$

10

$$v_f = T^3_f - 2e_f \sin^2 \theta_W$$
$$a_f = T^3_f$$

 $v_e \sim 0 \Rightarrow$ Lepton polarization gives access to $F_2{}^{\gamma Z}$: $\sigma(e_R) - \sigma(e_L) \Rightarrow v_f$ of quarks

As shown before, $\sigma(e^-) - \sigma(e^+)$ gives $F_3^{\gamma Z} \Rightarrow a_f$ of quarks (and valence-quark PDF)

* Four lepton beams (+ and -, L and R) give vector- and axial-vector coupling of quarks (mainly u and d quarks)

NC DIS results (2) * Polarization asymmetry at high Q²

∢

* Parity violation in weak neutral current at EW scale: observed for the first time in PIS

Combined QCD & EW fits

HERA kinematic plane

③ Based on own knowledge of PDFs, EW parameters can be extracted at high-Q²

2 Perturbative QCD can predict the Q² evolution of PDFs, DGLAP equation

(1) x-dependence of PDFs at initial scale, Q²₀ are determined from fits to the measured cross sections at low Q²

Such a unique study, the simultaneous determination on PDFs and EW parameters, is only possible at HERA!

* Y. Ri, ICHEP06

m, (GeV)

* Better precision than TeVatron, LEP.

Testing SM

* Determine weak isospin of quarks & sin²9w

★ Improved precision at large Q² →good news for LHC physics

Obtained PDFs

Updated "unification plot"

HERA II

* At low Q²: **EM** and weak forces are much different. (large W mass) * At EW scale: Two forces unify to Electroweak interaction.

Beyond SM (example)

- Is quark pointlike?
 If composite, cross section will dump once the resolution reaches its size.
- * Repeat Hofstadter's proton form-factor meas. for quarks.
- $\sigma(Q^2) = \sigma_{\rm SM}(1 \langle R_q^2 \rangle Q^2/6)^2$
 - $R_q < 0.85 \times 10^{-16}$ cm

smaller distance

Summary

- * HERA-II is delivering large luminosity with lepton polarization.
- Using its unique data, determination of PDF and EW parameters are possible, taking full correlations between them.
- * Competitive/complementary results are obtained in fundamental EW physics.
- * Continue to take (e+) data till Jun. 2007: valuable data set before LHC start-up.