

Recent Results from the BLAST Experiment (Nucleon Electromagnetic Form Factors)

Wilbur A. Franklin MIT-Bates Accelerator Center

Presented at SPIN2006 Conference Kyoto, Japan October 5, 2006

Overview

- Electromagnetic structure of nucleons
- Polarization techniques
- The BLAST experiment at MIT-Bates
- Results at low Q²
 - Proton
 - Neutron
- Concluding Remarks

BLAST Collaboration

Electron scattering from the nucleon

- Electron a clean probe of hadron structure
 - Electron vertex is well-known from QED
 - One-photon exchange dominates, higher-order diagrams suppressed
- Characterize structure of hadron in terms of form factors
- $G_{\rm E}({\rm Q}^2)$ and $G_{\rm M}({\rm Q}^2)$ related to charge and magnetization density
- One-photon exchange approximation, form factors are observables

$$\begin{split} \frac{d\sigma/d\Omega}{(d\sigma/d\Omega)_{Mott}} &= S_0 = A(Q^2) + B(Q^2) \tan^2 \frac{\theta}{2} \\ &= \frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + 2\tau G_M^2(Q^2) \tan^2 \frac{\theta}{2} \\ &= \frac{\epsilon G_E^2 + \tau G_M^2}{\epsilon (1 + \tau)}, \qquad \epsilon = \left[1 + 2(1 + \tau) \tan^2 \frac{\theta}{2} \right]^{-1} \\ &\quad , \quad \tau = \frac{Q^2}{4M^2} \end{split}$$

Polarization and Form Factors

 Double polarization in elastic ep scattering: Recoil polarization or polarized target

¹H(e,e'p), ¹H(e,e'p)

Polarized cross section

$$\sigma = \sigma_0 \left(1 + P_e \, ec{P_t} \cdot ec{A}
ight)$$

Double spin asymmetry

$$\frac{\vec{P_t}}{P_t} \cdot \vec{A} = -\frac{\sqrt{2\tau\epsilon(1-\epsilon)}G_E G_M \tilde{P}_x + \tau\sqrt{1-\epsilon^2}G_M^2 \tilde{P}_z}{\epsilon G_E^2 + \tau G_M^2}$$

Asymmetry ratio ("Super ratio")

independent of polarization or analyzing power

$$rac{A_{\perp}}{A_{\parallel}} \propto rac{G_E}{G_M}$$

Proton $\mu G_E/G_M$

- High Q² recoil polarimetry measurements
 - Large deviation from 1
 - Discrepancy from Rosenbluth
- New polarized and unpolarized experiments confirm to high precision
- 2-photon exchange amplitudes important in discrepancy

First result from a polarized target Jones et al, PRC 74 035201 (2006)

Polarization and Neutron Electric Form Factor

•No free neutron targets (2 H and 3 He)

•Cross section is dominated by G^{M}_{n} insensitive to G^{E}_{n}

 Recent precise spindependent experiments (multiple techniques and targets) span wide Q² range

- More precise G^n_E data needed at low Q^2
 - Essential for parity-violation experiments
 - Meson cloud physics

Neutron Magnetic Form Factor Gⁿ_M

- In pre-polarization era extraction from ratio d(e,e'n) to d(e,e'p)
- Inclusive measurements polarized neutron target
 ³He (Xu et al)
- Sensitivity in polarized
 Deuterium asymmetries

Polarized beam-target program at low Q² (BLAST)

BLAST Polarized Beam

MIT-Bates South Hall Ring

- Stored electron beam, 850 MeV
- High intensity, I > 200 mA
- Pre-polarized injection
- Siberian Snake (BINP)
- Compton polarimeter
- Spin flipper (Michigan)
- Stable longitudinal pol. (P_b ~.65)

BLAST Polarized Target

- Atomic Beam Source (NIKHEF)
 - Internal gas target
 - Isotopically pure H and D
 - Vector and tensor pol. D
 - Inside high B field
 - Thickness: 6 x 10¹³ atoms/cm²
 - Vector pol. P_t ~ .82
- Luminosity: $6 \times 10^{31}/(\text{cm}^2\text{s})$

The BLAST Detector

Bates Large Acceptance Spectrometer Toroid

- Left-right symmetric
- Large acceptance
 - **20° < θ < 80°**
 - -15° < φ < 15°
 - 0.1 < Q²/(GeV/c)² < 0.8</p>
- Detection of e_{\pm} , π_{\pm} , p, d, n.
- Extended neutron coverage on right

Open trigger

BLAST physics program

Target Spin Orientation

Target Spin Orientation

BLAST Elastic Hydrogen Data H(e,e'p)

Proton Form Factor Ratio μ_nG^p_F/G^p_M

- First polarized target data at $Q^2 < 1 (GeV/c)^2$
- Very precise data statistically and systematically

$\mathbf{G}^{\mathbf{p}}_{\mathbf{E}}$ and $\mathbf{G}^{\mathbf{p}}_{\mathbf{M}}$

- Previous unpolarized data
 to for local Rosenbluth at
 each BLAST Q²
- Addition of BLAST data
 significantly shrinks errors
- Smoothing of G_E and G_M
- Hints of structure at low Q²

* Ph.D. work of C. Crawford (MIT) and A. Sindile (UNH)

Form Factor Parameterizations

- Structure at low Q² in analysis of Friedrich-Walcher
- **G**ⁿ_F world data from double pol. experiments
- Phenomenological fit with bump \rightarrow effects of meson cloud
- Consistent bump seen in all 4 form factors at low Q^2 with broad width

"smooth part"

"bump part"

BLAST Neutron Data

- Large deuterium data set (Q > 2 MC in 2004 and 2005)
- Very clean quasielastic ²H(e,e'n) spectra
- Highly efficient proton veto (drift chambers + TOF)

 $egin{aligned} &A_{ed}^V = rac{a\,G_M^{n-2}\!\cos heta^* + b\,G_E^nG_M^n\sin heta^*\cos\phi^*}{c\,G_E^{n-2} + G_M^{n-2}} pprox a\cos\phi^* + b\,rac{G_E^n}{G_M^n}\sin heta^*\cos\phi^* \end{aligned}$

- Quasielastic ²H(e,e'n)
- Full Montecarlo simulation of the BLAST experiment
- Deuteron electrodisintegration by H. Arenhövel
- Accounted for FSI,MEC,RC,IC
- Compare measured A^V_{ed} with BLASTMC, vary Gⁿ_E

Extraction of Gⁿ_F

- BLAST 2004 complete
- Final results including 2005 run expected soon
- Mostly consistent with other data at low Q²
- BLAST fit
 - Includes BLAST 2004
 - Modified F&W
 - Slope as Q² nears 0 from <r²_n> = -0.115 fm²

*Ph.D. work of V. Ziskin (MIT) and E. Geis (ASU)

Bump contributes at lower Q²
Pion cloud effect?

*Ph.D. work of V. Ziskin (MIT) and E. Geis (ASU)

Model calculations of G_E^N

Extraction of Gⁿ_M

- Quasielastic ²H(e,e') inclusive
- Beam-target vector asymmetry A^V_{ed}

$$\begin{split} A_{\perp} \approx \frac{c \; \left(G_E^p / G_M^p\right)}{a + b \left(1 + \left(\frac{G_M^n / G_M^p}{M}\right)^2\right)} \\ \textbf{PWIA} \\ A_{\parallel} \approx \frac{d \left(1 + \left(\frac{G_M^n / G_M^p}{M}\right)^2\right)}{a + b \left(1 + \left(\frac{G_M^n / G_M^p}{M}\right)^2\right)} \end{split}$$

- Full Montecarlo simulation of BLAST
- Spin-parallel & perp.
 show sensitivity to Gⁿ_M
- Enhanced sensitivity in super ratio

Summary

- Significant improvement in nucleon form factor data from polarization
 - Multiple facilities and techniques
 - High precision, low systematics
- Consistent and precise determination of elastic nucleon form factors at low momentum transfer
 - Evidence for structure at low Q²
 - Improvement in calculations
- Polarization to play important role in addressing further open areas
 - $G_{\rm E}^{\rm N}$ at high Q²
 - Transverse pol. observables with e⁺,e⁻ (2 photon effects)
- BLAST program coming to conclusion
 - Final stage analysis on many channels (e-d elastic, pions)
 - Detector could play role in future experimental program

MIT-Bates

- Concluded NP operations in 2005
 - Polarization experiments
 - Polarization technique
- Facility
 - MIT ownership (interdisciplinary mission)
 - Experiments decommissioned
 - Accelerator intact and operable
 - SHR has unique features for select beam studies
 - Optical stochastic cooling
 - Coherent THz radiation
 - Polarization studies
 - Continued involvement of MIT faculty and Bates staff in spin physics
 - RHIC SPIN, Q-weak experiments
 - Polarized electron-ion collider design, source and target development
 - Expect to continue to participate in future SPIN conferences

