Identification of New Physics Scenarios in Fermion Pair Production at Polarized ILC

N. Paver

University of Trieste & INFN-Sezione, Trieste, Italy SPIN-2006, 2 – 7 October 2006, Kyoto, Japan

with A.A. Pankov & A.V. Tsytrinov (ICTP Affiliated Centre, Gomel, Belarus)

Introduction

A Plethora of *New Physics* (NP) beyond the SM [conceptual problems] It is generally expected that NP will manifest itself at future colliders either:

- directly, as in the case of new particle production (Z' and W' vector bosons, SUSY, Kaluza-Klein (KK) resonances...)
- indirectly through *deviations* of observables from SM predictions: typical case of NP interactions mediated by *heavy quanta exchanges* $[\Lambda \gg M_{W,Z}]$ when collider energy is below production threshold.

In the case of **indirect** discovery, different NP scenarios may cause the same or similar experimental deviations.

Need for strategies to identify the source of corrections to SM predictions.

Proposed techniques:

- Monte Carlo-based analysis
 (*G. Pasztor, M. Perelstein*, hep-ph/0111471)
- Integrated cross sections weighted by Legendre polynomials (*T. Rizzo*, JHEP 0210 (2002))
- polarized Center-Edge Asymmetries [spin-1 vs. spin-2 exchange] (P. Osland, N. Paver, A.A. Pankov, Phys. Rev. D68 (2003); A.A. Pankov, N. Paver, Phys. Rev. D 72 (2005))
- here: combined χ² analysis of longitudinally polarized differential cross sections for e⁺e⁻ → f̄f (A.A. Pankov, N. Paver, A.V. Tsytrinov, Phys. Rev. D 73 (2006), hep-ph/0608285)

Outline

Phenomenology at the International Linear Collider (ILC) with e^- and e^+ polarized beams $E_{C.M.} = 0.5 - 1 \text{ TeV}$, (see G.Moortgat-Pick et al., hep-ph/0507011)

• Fermion pair production:

 $e^+e^- \to l^+l^- \ (l = e, \mu, \tau);$ $e^-e^- \to e^-e^$ $e^+e^- \to \bar{q}q \ (q = c, b)$

- observables: polarized differential cross sections ($d\sigma_{LL}$, $d\sigma_{RR}$, $d\sigma_{RL}$, $d\sigma_{LR}$)
- individual NP scenarios
- sensitivity to Λ 's
- rôle of beam polarization for identification reach enhancement

Nonstandard Scenarios

- Framework of effective Lagrangians (expansion in s/Λ^2)
- **CI**: Four-fermion contact interactions [compositeness]:

- Can describe also exchanges of heavy Z', W', Leptoquarks, etc.
- Current limits on "compositeness scales" [Tevatron, LEP]: $\Lambda > 10 20 \, {\rm TeV}$

• ADD: Gravity in "large" compactified extra dimensions (gauge hierarchy)

Gravity only can propagate in the full 4+N space

Effective Planck mass M_* vs. compactification radius R and Newton constant $(M_{\rm PL})$:

$$M_{\rm PL}(10^{16}\,{\rm TeV}) = M_*^{(1+N/2)} R^{(N/2)}$$

For $N \ge 2$, $R \le \text{mm}$: $M_* \sim \text{TeV}$ (standard model cut-off)

In the 4-dimensional space: virtual exchange of tower of spin-2 massive graviton KK excitations (spectrum spaced by 1/R).

Effective (contactlike) Lagrangian (*Hewett* convention):

$$\mathcal{L}^{\text{ADD}} = i \frac{4\lambda}{\Lambda_H^4} T^{\mu\nu} T_{\mu\nu}, \qquad \lambda = \pm 1$$

 $T_{\mu\nu}$: energy-momentum tensor of SM particles Λ_H : cut-off scale on KK summation (expected of TeV size).

Current lower limit: $\Lambda_H > 1.3 \,\mathrm{TeV}$

• TeV⁻¹-scale extra dimensions

Also SM gauge bosons may propagate in the additional dimensions: exchange of γ and Z KK excitations. Effective (contactlike) interaction:

$$\mathcal{L}^{\mathrm{TeV}} = -\frac{\pi^2}{3M_C^2} \left[Q_e Q_f (\bar{e}\gamma_\mu e) (\bar{f}\gamma^\mu f) + (g_{\mathrm{L}}^e \bar{e}_{\mathrm{L}}\gamma_\mu e_{\mathrm{L}} + g_{\mathrm{R}}^e \bar{e}_{\mathrm{R}}\gamma_\mu e_{\mathrm{R}}) \times (g_{\mathrm{L}}^f \bar{f}_{\mathrm{L}}\gamma^\mu f_{\mathrm{L}} + g_{\mathrm{R}}^f \bar{f}_{\mathrm{R}}\gamma^\mu f_{\mathrm{R}}) \right],$$

 $M_C \gg M_{W,Z}$: inverse of the compactification radius Current limit [LEP2]: $M_C > 6.8 \,\mathrm{TeV}$

Discovery reaches on Models

- $d\sigma \propto |SM + NewPhysics|^2$
- **Deviations** of observables from the SM predictions:

$$\Delta(\mathcal{O}) = \frac{\mathcal{O}(SM + NP) - \mathcal{O}(SM)}{\mathcal{O}(SM)}, \qquad \mathcal{O} = d\sigma/d\cos\theta$$

• deviations must be compared to foreseen experimental uncertainties δO [statistical plus systematic]:

$$\chi^2(\mathcal{O}) = \sum_{\text{bins}} \left(\frac{\Delta(\mathcal{O})^{\text{bin}}}{\delta \mathcal{O}^{\text{bin}}} \right)^2$$

- Assumption: no deviation from the SM is observed within the experimental accuracy.
- Constraints on Λ_H , Λ 's [expected discovery reaches] from:

$$\chi^2(\mathcal{O}) \le 3.84 \quad (95\% \text{ C.L.})$$

Experimental inputs:

Bhabha and Møller scattering ($|\cos \theta| < 0.9$, $\epsilon \simeq 100\%$, bin width: $\Delta \cos \theta = 0.2$); $\mu^+\mu^-$, $\tau^+\tau^-$ ($|\cos \theta| < 0.98$, $\epsilon = 95\%$); $\bar{c}c$ ($\epsilon = 35\%$); $\bar{b}b$ ($\epsilon = 60\%$) radiative corrections included; $\delta P^{\pm}/P^{\pm} = 0.2\%$, $\delta \mathcal{L}_{int}/\mathcal{L}_{int} = 0.5\%$.

95% C.L. discovery reaches (in TeV). Left and right entries refer to the polarization configurations $(|P^-|, |P^+|)=(0,0)$ and (0.8,0.6), respectively. $\sqrt{s} = 0.5$ TeV, $\mathcal{L}_{int} = 100 f b^{-1}$

	Process			
Model	$e^+e^- \rightarrow e^+e^-$	$e^+e^- \rightarrow l^+l^-$	$e^+e^- \to \overline{b}b$	$e^+e^- \to \bar{c}c$
Λ_H	4.1; 4.3	3.0; 3.2	3.0; 3.4	3.0; 3.2
Λ_{VV}^{ef}	76.2; 86.4	89.7; 99.4	76.1; 96.4	84.0; 94.1
Λ^{ef}_{AA}	47.4; 69.1	80.1; 88.9	76.7; 98.2	76.5; 85.9
Λ^{ef}_{LL}	37.3; 52.5	53.4; 68.3	63.6; 72.7	54.5; 66.1
Λ^{ef}_{RR}	36.0; 52.2	51.3; 68.3	42.5; 71.2	46.3; 66.8
Λ^{ef}_{LR}	59.3; 69.1	48.5; 62.8	51.3; 68.7	37.0; 57.7
Λ^{ef}_{RL}	$\Lambda^{ee}_{RL} = \Lambda^{ee}_{LR}$	48.7; 63.6	46.8; 60.1	52.2; 60.7
M_C	12.0; 13.8	20.0; 22.2	6.6; 10.7	10.4; 12.0

See also S.Riemann, T.Rizzo, S.Godfrey.

Distinction among the New Physics models

- expected identification reaches
- Assumption: One of the models, say the ADD, is found consistent with experimental data with some value of Λ_H
- Deviations of observables from the ADD model prediction due to other models (say, the **CI** ones):

$$\tilde{\Delta}(\mathcal{O}) = \frac{\mathcal{O}(CI) - \mathcal{O}(ADD)}{\mathcal{O}(ADD)}$$

• assess the level at which ADD is distinguishable from the other models

Example: CI=VV (ADD vs. VV)

• **Region of confusion** of ADD with VV model determined by:

$$\tilde{\chi}^2(\mathcal{O}) = \sum_{\text{bins}} \left(\frac{\tilde{\Delta}(\mathcal{O})^{\text{bin}}}{\tilde{\delta}\mathcal{O}^{\text{bin}}} \right)^2 \le 3.84 \quad (95\% \text{ C.L.})$$

$$\mathcal{L}_{e^+e^-}=100~{\rm fb}^{-1}$$
, $\sqrt{s}=0.5~{\rm TeV}.$

One can find a maximal absolute value of the scale parameter λ/Λ_H^4 for which the VV model hypothesis is expected to be **excluded** at the 95% C.L. for **any value of the CI parameter** η/Λ_{VV} . We call this Λ_H^{VV} as **exclusion reach** of the VV model.

ID reach for **ADD** model

Exclusion reach: $\Lambda_H^{\rm VV}$, ...

Identification reach:

$$\begin{split} \Lambda_{H}^{\mathrm{ID}} &= \min\{\Lambda_{H}^{\mathrm{VV}}, \, \Lambda_{H}^{\mathrm{AA}}, \Lambda_{H}^{\mathrm{RR}}, \, \Lambda_{H}^{\mathrm{LL}}, \, \Lambda_{H}^{\mathrm{LR}}, \, \Lambda_{H}^{\mathrm{TeV}} \} \\ &\rightarrow \Lambda_{H}^{\mathrm{ID}} = 2.5(3.1) \, \, \text{TeV}. \end{split}$$

ID reach for **ADD** model

Current limit: $\Lambda_H > 1.3$ TeV

ID reach for **CI** models

Current limit: $\Lambda_{LL} > 15 \text{ TeV}$

ID reach for TeV^{-1} model

Current limit: $M_C > 6.8$ TeV

Conclusions

- If New Physics effects are discovered, it is crucial to have good search strategies to determine its origin.
- We have considered the problem of how to distinguish the potential New Physics scenarios from each other at the ILC by using polarized differential distribution for fermion pair production processes.
- Identification reach (95% CL) at ILC:
 - ADD: $\Lambda_H = 3.1 6.9$ TeV depending on the ILC energy and luminosity
 - TeV⁻¹: $M_C = 15 35$ TeV
 - VV: $\Lambda_{VV}=62-160~{\rm TeV}$
 - AA: $\Lambda_{AA} = 70 170 \text{ TeV}$
 - LL: $\Lambda_{LL} = 55-135~\text{TeV}$
 - RR, LR and RL: $\Lambda = 57-142~{\rm TeV}$
- Polarization is quite important, in particular in case of CI models.