

17th International Spin Physics Symposium (SPIN2006), Kyoto, October 2–7, 2006

Collins Effect in SIDIS and in e^+e^- Annihilation and Transversity

A. Efremov, JINR, Dubna, Russia In collaboration with K.Goeke and P.Schweitzer Based on PRD 73 (2006) 094025 and work in progress

Overview:

- What is Collins effect?
- Collins effect in SIDIS.
- Emerging picture of Collins function & transversity.
- Transversity and Drell-Yan.
- Collins effect in e^+e^- -annihilation
- Summary & conclusions.

Asymmetry in transversally polarized parton fragmentation.

•SIDIS, transversely polarized target

- Expressions in LO 1/Q (Boer, Mulders, \dots 1990s)
- k_T -factorization (Ji, Ma, Yuan&Collins, Metz 2004)

$$\frac{\mathrm{d}^{3}\sigma_{UT}}{\mathrm{d}x\mathrm{d}z\mathrm{d}\phi} = \frac{\mathrm{d}^{3}\sigma_{\mathrm{unp}}}{\mathrm{d}x\mathrm{d}z\mathrm{d}\phi} \{1 + S_{T} \left[\frac{\sin(\phi - \phi_{S})}{\mathrm{Sivers~effect}} + \frac{\sin(\phi - \phi_{S})}{\mathrm{Sin}(\phi + \phi_{S})} + \frac{\sin(\phi + \phi_{S})}{\mathrm{Sin}(\phi + \phi_{S})} \right] \}$$

HADRON PRODUCTION PLANE • $H_1^{\perp}(z, \mathrm{K}_T^2)$ "twist-2", chirally odd & "naively T-odd" (Collins 1992, Efremov, Mankiewicz, Tornquist 1992, ...)

•
$$h_1^{\mathbf{a}}(x)$$
 twist-2, chirally odd
(Ralston&Soper 1979, ...) (Ralston&Soper 1979, ...)

z-axis

$$\Rightarrow \text{Collins SSA}: \begin{array}{l} A_{UT}^{\text{cin}(\phi+\phi_S)} \propto \frac{h_1^a(x,\mathbf{p}_T^2)H_1^{\perp a}(z,\mathbf{K}_T^2)}{f_1^a(x)D_1^a(z)} \end{array}$$

Available data

- SIDIS: HERMES (PRL94,012002(2005), hep-ex/0408013 & AIP 792,933(2005), hep-ex/0507013)
 - SIDIS: COMPASS (PRL94,202002(2005), hep-ex/0503002)

- and:
- SIDIS: SMC preliminary (Bravar, Nucl.Phys.Proc.Suppl.79(1999)520)
- DELPHI preliminary (AE, Smirnova, Tkatchev, Nucl.Phys.Proc.Suppl.79(1999)554) e^+e^-

Question : Are all these data due to the same Collins	s effect?
Problems : HERMES & COMPASS BELLE DELPHI	Ι
 Different scales. 	
Unknown H_1^{\perp} evolution.	
• Soft factors.	$\begin{array}{c c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
 Sudakov suppression. 	
$ullet$ Unknown k_T -dependence.	
• Unknown functions $H_1^{\perp}(z, K_T)$, $h_1^a(x, p_T)$.	
Way out:	
• Different scales $\Rightarrow \operatorname{compare} H_1^\perp/D_1$, presumably less scale-o	-dependent.
 Neglect soft factors, disregard Sudakov suppression. 	
$ullet F(x,k_T)=F(x)\!\cdot\!G(k_T)\&$ Gaussian, if $\langle P_{h_\perp} angle\ll\langle Q angle\checkmark$ & at H	HERMES 🗸
• $h_1^a(x)$ from chiral quark-soliton model (PRD64(2001)034013) — about 20 $\%$)% accuracy.
• $f_1^a(x)$ from GRV98, $D_1^a(z)$ from Kretzer2000; Kretzer,Leader,Christova200	001.
$\Rightarrow Basically one unknown H_1^{\perp} can be extracted — modulo un$	uncertainties
due to our assumptions.	

 $\langle z
angle \sim 0.45$ and $\langle P_{h\perp}
angle \sim (0.5-0.8)\,{
m GeV}$ Reason to worry? Data are preliminary ... Grain of salt: preliminary SMC $\langle Q^2 \rangle \sim 5 \, {\rm GeV}^2, \quad \langle x \rangle \sim 0.08$ charged hadrons

deutron

 \Rightarrow **Picture:** $h_1^u(x)$ within 30% of Soffer bound, other $h_1^a(x)$ unconstrained. proton Emerging picture of transversity from SIDIS -0.1 Question: How much is $h_1^a(x)$ allowed to vary? Compare to Vogelsang & Yuan, (PRD72,054028(2005)) Look closer: demand extracted $\langle B_{
m Gauss} H_1^\perp
angle$ same $\langle B_{
m Gauss} H_1^{\perp a}
angle$ (different p_T -dependence) but assume saturation of Soffer bound. How model dependent is our result? to vary within 1- $\sigma.$ $|h_1^a(x)| \le \frac{1}{2}(f_1^a + g_1^a)(x)$

supported by lattice QCDSF

- Emerging picture of transversity from SIDIS will improve
- Data on π^0 & kaons.
- ullet More data from HERMES proton & deuteron target.
- ullet More data from COMPASS deuteron & proton target.
- Data from CLAS with transv. pol. target.
- Data from HALL-A, transv. ${}^3 ext{He}pprox$ neutron target, $\langle Q^2
 angle\sim 2~ ext{GeV}^2,$ $\longrightarrow \!\!\!h_1^d(x)$ green: $h_1^d(x) < 0$ from chiral quark-soliton model,
 - error bars: projections for 24 days of beam time (Chen, et al. nucl-ex/0511031). dashed: $h_1^d(x)$ of opposite sign,

h_1	$x_{1/2} = \sqrt{\frac{Q^2}{s}} e^{\pm y} .$	predictions (χ QSM):	$A_{TT}(y,Q^2)$ PAX	0.4 PD	0.2 - 0.1	0 P	0 0.5 1 y	$g_1^a(x)$ would give $A_{TT}pprox 30\%)$
Transversity and Drell-Yan The best and the cleanest way to access transversity <i>l</i>	$A_{TT}(y,Q^2) = \frac{\sum_a e_a^2 h_1^a(x_1,Q^2) h_1^{\overline{a}}(x_2,Q^2)}{\sum_b e_b^2 f_1^b(x_1,Q^2) f_1^{\overline{b}}(x_2,Q^2)},$	Are planned to be measured at PAX & J-PARC. Our p (A.E.,Goeke, Schweitzer EPJC35:207(04) and work in progress)	$A_{TT}(y,Q^2)$ J-PARC $A_{TT}(y,Q^2)$ J-PARC	$-0.02 - E_{\text{beam}} = 30 \text{ GeV}0.02 - E_{\text{beam}} = 50 \text{ GeV}0.02 $	-0.04 - 0.04 - 0.04 - 0.04 - 0.06 -	$-0.08 \begin{bmatrix} -0.08 \\ -0.08 \end{bmatrix} = -0.08 \begin{bmatrix} -0.08 \\ $	• Rather noticeable effect even for $p\uparrow~\bar{p}\uparrow!$	• Mostly sensitive to $h_1^u(x).$ • Allow discriminate models (e.g. popular guess $h_1^a(x) \approx \frac{1}{2}$

Important most recent news from BELLE (hep-ex/0607014)

New double ratio was measured, could decrease $C_{\text{fav}}, C_{\text{unf}}$ correlation

$$\frac{A_1^U(\phi)}{A_1^C(\phi)} \equiv 1 + \cos(2\phi_1) \mathbf{P}_{\mathbf{c}}(H_1^{\text{fav}}/H_1^{\text{unf}}, \text{ Gauss})$$

Excellent confirmation of our picture of Collins effect

New (preliminary) data, will provide valuable constraints and improve the fits Faith in our first understanding of Collins effect strengthened. after officially released.

• DELPHI preliminary (AE, Smirnova, Tkatchev, Nucl.Phys.Proc.Suppl.79(1999)554) $e^+e^- \rightarrow Z_0 \rightarrow h_1h_2X$, $h_{1,2} =$ charged hadrons	$\frac{\mathrm{d}\sigma(e^+e^- \to h_1h_2X)}{\mathrm{d}\phi_1} = P_0(1 + \cos(2\phi_1) P_2), P_2 = \tilde{F}(H_1^{\mathrm{fav}} + H_1^{\mathrm{unf}})$ with $P_{2,\mathrm{DELPHI}} = -(\mathbf{0.26 \pm 0.18})\% \pm \mathrm{unknown}$ systematics.	• Different scales! Assume $\frac{H_1^{\perp}}{D_1}$ one scale $\approx \frac{H_1^{\perp}}{D_1}$ another scale • $H_1^{\perp c}, H_1^{\perp b}$? Since $m_c, m_b \ll M_Z$: Maybe unfavoured? Maybe zero? • Charged hadrons = $\pi^{\pm}, K^{\pm}, \dots$ with $\lim_{m_{\pi} \to 0} \frac{H_1^{\perp}(1/2)_{a/\pi}}{D_{a/\pi}} = \lim_{m_K \to 0} \frac{H_1^{\perp}(1/2)_{a/K}}{D_{a/K}^{\perp}}$	⇒ $P_{2, \text{ estimate}} \approx -(0.06 \dots 0.29)\%$ ⇒ Preliminary DELPHI seems not incompatible with BELLE!	Intermediate STATUS : SIDIS: HERMES & COMPASS compatible $\begin{cases} e^+e^- \\ e^+e^- \end{cases}$ BELLE & DELPHI not incompatible $\end{cases} \Rightarrow \frac{1}{vs}$ W. BELLE?
---	---	---	---	---

 \Rightarrow BELLE & HERMES compatible!

HERMES preliminary 🔶

0.6

0.5

0.4

0.3

0.2

N

0.6

0.5

 $0.2 \quad 0.3 \quad 0.4$

C

-0.2

 Summary & Conclusions Collins effect: try of first "global" analysis of data. As good as possible at present stage, but assumptions & approximations necessary.
• e^+e^- BELLE consistent with SIDIS HERMES & COMPASS , preliminary DELPHI consistent with those, preliminary SMC not.
• Emerging picture: $H_1^{\perp u} \approx -H_1^{\perp d}$ possible explanations: Artru et. al, Vogelsang & Yuan.
$ullet$ $h_1^u > 0$ and within 30% of Soffer bound in agreement with lattice.
\bullet Other $h_1^a(x)$ unknown, to be improved: HERMES, COMPASS, JLAB & BELLE.
• Use emerging picture to understand other interesting data, e.g. CLAS & HERMES $A_{UL}^{\sin 2\phi}$ or twist-3 $A_{UL}^{\sin \phi}$ and $A_{LU}^{\sin \phi} \longrightarrow$ applications (to be done).
• Encouraging progress! (In spite of many forced theoretical uncertainties: soft factor, $1/N_c$, scale dependence, transverse momenta,) However, optimism! New & more
precise data coming in, improved analyses necessary. We are learning!
Thank you!