Gluon saturation effects on single spin asymmetries

Daniël Boer Free University Amsterdam

SSA in $p p^{\uparrow} \rightarrow h X$ at moderately large p_T are naturally described with k_T -odd TMDs (Sivers; Collins; Anselmino *et al.*; Mulders *et al.*; ...)

 $m{k}_T$ -odd TMDs essentially probe the derivative of the cross section

Changes in underlying physics \Rightarrow changes in cross section \Rightarrow changes in SSA

This talk: small-x effects on SSA in forward hadron production at RHIC Based on: D.B., Dumitru, Hayashigaki, hep-ph/0609083

17th International Spin Physics Symposium, SPIN2006, October 2-7, 2006, Kyoto

Single transverse-spin asymmetries

$$A_N = \frac{\sigma(p \, p^{\uparrow} \to \pi \, X) - \sigma(p \, p^{\downarrow} \to \pi \, X)}{\sigma(p \, p^{\uparrow} \to \pi \, X) + \sigma(p \, p^{\downarrow} \to \pi \, X)}$$

SSA have been observed in $p p^{\uparrow} \rightarrow \pi X$ E704 Collab. ('91); AGS ('99); STAR ('02); ... STAR data is for $\sqrt{s} = 200$ GeV and rapidities up to $y_h \sim 4$

This talk is restricted to the Sivers effect $(\Delta^N f_{q/p^{\uparrow}}, f_{1T}^{\perp})$

$$f_{1T}^{\perp} = \frac{P}{s_{T}}$$

Since it is k_T -odd, it essentially probes the derivative of the cross section

Probing the derivative

$$\begin{split} A_N &\propto d\sigma(p^{\uparrow}p \to hX) - d\sigma(p^{\downarrow}p \to hX) \\ &\propto \int d^2k_t \; \Delta^N f_{q/p^{\uparrow}}(x, \vec{k}_t) \; d\sigma^{qp \to q'X}(\vec{q}_t - \vec{k}_t) \\ &= \int_{\text{h.p.}} d^2k_t \; \Delta^N f_{q/p^{\uparrow}}(x, \vec{k}_t) \; \left[d\sigma^{qp \to q'X}(\vec{q}_t - \vec{k}_t) - d\sigma^{qp \to q'X}(\vec{q}_t + \vec{k}_t) \right] \\ &\approx \; \Delta^N f_{q/p^{\uparrow}}(x) \; \left[d\sigma^{qp \to q'X}(q_t - \langle k_t \rangle) - d\sigma^{qp \to q'X}(q_t + \langle k_t \rangle) \right] \\ &\approx \; \Delta^N f_{q/p^{\uparrow}}(x) \; (-2\langle k_t \rangle) \; \frac{d\sigma^{qp \to q'X}(q_t)}{dq_t} \end{split}$$

Here $q_t \gg \langle k_t \rangle \approx 200 \text{ MeV}$

Gluon saturation - Color Glass Condensate

If y_h is sufficiently large, then one can probe small x values in the unpolarized proton One probes mainly gluons and resummation of logarithms in 1/x may be necessary The gluon distribution is thought to display saturation (characterized by a scale Q_s) For $p_T \sim Q_s$ saturation effects modify the cross section, important for SSA

In $p p \rightarrow h X$ at RHIC: $y_h \sim 4 \Rightarrow x \sim 10^{-4}$

HERA data: $x \sim 10^{-4} \Rightarrow Q_s \sim 1$ GeV (a perturbative scale \Rightarrow CGC formalism) Golec-Biernat & Wüsthoff, PRD 59 (1999) 014017 & PRD 60 (1999) 114023

Despite the relatively low Q_s , small-x effects for $p_t \gtrsim Q_s$ in p p scattering do lead to a modification w.r.t. standard pQCD treatment

Small-x evolution

For $Q_s \lesssim p_t \lesssim Q_s^2/\Lambda$ (the 'extended geometric scaling' region) quark-CGC scattering is well-described by

$$d\sigma^{qp \to q'X} \otimes g(x,q_t) \quad \to \quad N_F(x,q_t) \propto Q_s^2(x) \; \mathsf{F.T.} \, (r_t^2)^{\gamma(x,r_t)}$$

Alters the slope of the cross section w.r.t. standard pQCD $% \left({{{\rm{A}}} \right) = {{\rm{A}}} \right)$

At large p_T , $\gamma \to \gamma_{\text{DGLAP}} = 1 - \mathcal{O}(\alpha_s)$

The anomalous dimension γ follows partly from theory and partly from phenomenology

$$\gamma(x, r_t) = \gamma_s + (1 - \gamma_s) \frac{\log(1/r_t^2 Q_s^2(x))}{\lambda y + d\sqrt{y} + \log(1/r_t^2 Q_s^2(x))}$$

with $\gamma_s \simeq 0.627$ (BFKL+saturation b.c.), $y = \log 1/x$, $\lambda \simeq 0.3$ (GBW), $d \simeq 1.2$ (dAu) Dumitru, Hayashigaki, Jalilian-Marian, NPA 770 (2006) 57 & NPA 765 (2006) 464

dAu phenomenology

Dumitru, Hayashigaki, Jalilian-Marian, NPA 770 (2006) 57

Note: overall p_T -independent K-factors do not alter the derivative of the cross section

Extended geometric scaling region

 γ_{DHJ} works well in dAu at RHIC, it describes the slope of the cross section well That is very important for SSA, but are these small-x effects relevant for pp?

D.B., Dumitru, Hayashigaki, hep-ph/0609083

$p\,p$ phenomenology: NLO pQCD

STAR Collaboration, J. Adams *et al.* nucl-ex/0602011

For very forward rapidities the slope seems to deviate from NLO pQCD

p p phenomenology: CGC formalism

CGC formalism forms a good starting point for fits of Sivers functions

Single transverse-spin asymmetry

Data can be described reasonably by the Sivers function parameterization for valence quarks of Anselmino & Murgia (PLB 442 (1998) 470) *times* 2

Such quantitative adjustment not surprising for fits from fixed target data

Conclusions

- The CGC formalism can describe RHIC data (cross section and derivative) very well: *d* Au → h X from mid to forward rapidities and p p → h X at forward rapidities The slope changes are well described by the small-x anomalous dimension
- This is important for the extraction of Sivers functions from forward pion SSA Changes in slope may otherwise be attributed to $\Delta^N f_{q/p^{\uparrow}}(x)$ or to $\langle k_t \rangle$
- For p[↑] p → π⁰ X at √s = 200 GeV and y_h ~ 4 we considered CGC & Sivers effect We studied the y_h, p_T and √s dependence using simple Sivers functions Steeper slope (with increasing y_h) indeed leads to larger A_N
 Details can be found in: D.B., Dumitru, Hayashigaki, hep-ph/0609083
- Improved analysis (following more recent work by Anselmino, D'Alesio & Murgia) is worth doing

Cross section - NLO pQCD

Bourrely & Soffer Eur.Phys.J. C36 (2004) 371

dAu phenomenology

Dumitru, Hayashigaki, Jalilian-Marian, NPA 765 (2006) 464

Conclusion: small-x evolution is relevant at RHIC energies

dAu phenomenology

STAR Collaboration, J. Adams *et al.* nucl-ex/0602011