Deeply Virtual Compton Scattering @ JLab

Franck Sabatié
Saclay

On behalf of the Hall A and CLAS collaborations

From GPD s to DVCS, to GPDs back
Onto the DVCS harmonic structure E00-110 experiment in Hall A

Scaling tests \& GPD measurement E1-DVCS experiment at CLAS in Hall B Summary

GPDs from Theory to Experiment

2. The GPD senter the DVCS amplitude as an integral over x :

- GPDs appear in the real part through a PP integral over x
- GPDs appear in the imaginary part but at the line $x=\xi$
$T^{D V C S}=\int_{-1}^{+1} \frac{G P D(x, \xi, t)}{x-\xi+i \varepsilon} d x+\ldots$

$$
=P \int_{-1}^{+1} \frac{G P D(x, \xi, t)}{x-\xi} d x \quad-\quad \mathrm{i} \pi G P D(x=\xi, \xi, t) \quad+\quad \ldots
$$

Experimental observables linked to GPDs

3. Experimentally, DVCS is undistinguishable with Bethe-Heitler

However, we know FF at low tand BH is fully calculable
Using a polarized beam on an unpolarized target, 2 observables can be measured:

$$
\begin{aligned}
& \frac{d^{4} \sigma}{d x_{B} d Q^{2} d t d \varphi} \approx\left|T^{B H}\right|^{2}+2 T^{B H} \cdot \operatorname{Re}\left(T^{D V C S}\right)+\left|T^{D V C S}\right|^{2} \\
& \begin{array}{r}
\frac{d^{4} \vec{\sigma}-d^{4} \stackrel{\leftarrow}{\sigma}}{d x_{B} d Q^{2} d t d \varphi} \approx 2 T^{B H} \cdot \operatorname{Im}\left(T^{D V C S}\right)+\left[\left|T^{D V C S}\right|^{2}-\left|T^{\text {DVCS }}\right|^{2}\right] \\
\text { At JLab energies, } \\
|T D V C S|^{2} \text { should be small }
\end{array}
\end{aligned}
$$

Observables and their relationship to GPDs

$$
T^{D V C S}=\int_{-1}^{+1} \frac{G P D(x, \xi, t)}{x-\xi+i \varepsilon} d x+\cdots
$$

The cross-section difference accesses the imaginary part of DVCS and therefore GPDs at $x=\xi$

The total cross-section accesses the real part of DVCS and therefore an integral of GPDs over x

Into the harmonic structure of DVCS

$$
\begin{gathered}
\frac{d^{4} \sigma}{d x_{B} d Q^{2} d t d \varphi}=\frac{1}{\mathrm{P}_{1}(\varphi) \mathrm{P}_{2}(\varphi)} \Gamma_{1}\left(x_{B}, Q^{2}, t\right)\left\{c_{0}^{B H}+c_{1}^{B H} \cos \varphi+c_{2}^{B H} \cos 2 \varphi\right\},\left|\mathrm{T}^{B H}\right|^{2} \\
+\frac{1}{\mathrm{P}_{1}(\varphi) \mathrm{P}_{2}(\varphi)} \Gamma_{2}\left(x_{B}, Q^{2}, t\right)\left\{c_{0}^{I}+c_{1}^{I} \cos \varphi+c_{2}^{I} \cos 2 \varphi+c_{3}^{I} \cos 3 \varphi\right\} \\
\frac{d^{4} \vec{\sigma}-d^{4} \overleftarrow{\sigma}}{d x_{B} d Q^{2} d t d \varphi}=\frac{\Gamma\left(x_{B}, Q^{2}, t\right)}{\mathrm{P}_{1}(\varphi) \mathrm{P}_{2}(\varphi)}\left\{s_{1}^{I} \sin \varphi+s_{2}^{I} \sin 2 \varphi\right\}, \text { Interference term }
\end{gathered}
$$

Belitsky, Mueller, Kirchner

Tests of scaling

$$
\begin{aligned}
\frac{d^{4} \sigma}{d x_{B} d Q^{2} d t d \varphi}= & \frac{1}{\mathrm{P}_{1}(\varphi) \mathrm{P}_{2}(\varphi)} \Gamma_{1}\left(x_{B}, Q^{2}, t\right)\left\{c_{0}^{B H}+c_{1}^{B H} \cos \varphi+c_{2}^{B H} \cos 2 \varphi\right\} \\
& +\frac{1}{\mathrm{P}_{1}(\varphi) \mathrm{P}_{2}(\varphi)} \Gamma_{2}\left(x_{B}, Q^{2}, t\right)\left\{{c_{0}^{I}+c_{1}^{I} \cos \varphi}+c_{2}^{I} \cos 2 \varphi+c_{3}^{I} \cos 3 \varphi\right\} \\
\frac{d^{4} \vec{\sigma}-d^{4} \overleftarrow{\sigma}}{d x_{B} d Q^{2} d t d \varphi}= & \frac{\Gamma\left(x_{B}, Q^{2}, t\right)}{\mathrm{P}_{1}(\varphi) \mathrm{P}_{2}(\varphi)}\left\{\mathrm{s}_{1}^{I} \sin \varphi+s_{2}^{I} \sin 2 \varphi\right\}
\end{aligned}
$$

1. Twist-2 terms should dominate σ and $\Delta \sigma$
2. All coefficients have Q^{2} dependence which can be tested!

Analysis - Extraction of observables

Re-stating the problem (difference of cross-section):

$$
\frac{d^{4} \vec{\sigma}-d^{4} \overleftarrow{\sigma}}{d x_{B} d Q^{2} d t d \varphi}=\frac{\Gamma\left(x_{B}, Q^{2}, t\right)}{\mathrm{P}_{1}(\varphi) \mathrm{P}_{2}(\varphi)}\left\{s_{1}^{I} \sin \varphi+s_{2}^{I} \sin 2 \varphi\right\}
$$

Special case of the asymmetry

The asymmetry can be written as:

$$
\frac{d^{4} \vec{\sigma}-d^{4} \stackrel{\leftarrow}{\sigma}}{d^{4} \vec{\sigma}+d^{4} \stackrel{\leftarrow}{\sigma}}=\Gamma_{A}\left(x_{B}, Q^{2}, t\right) \frac{s_{1}^{I} \sin \varphi+s_{2}^{I} \sin 2 \varphi}{c_{0}^{I}+c_{0}^{B H}+\left(c_{1}^{I}+c_{1}^{B H}\right) \cos \varphi+\ldots}
$$

Pros: easier experimentally, smaller RC
Cons: - extraction of GPDs model-dependent
(denominator complicated and not well known)

- Large effects of the BH propagators in the denominator

Asymmetries are largely used in CLAS and HERMES measurements, where acceptance and systematics are more difficult to estimate.

E00-110 experimental setup and performances

- 75% polarized 2.5 uA electron beam
- 15 cm LH2 target
- Left Hall A HRS with electron package
- 11×12 block PbF2 electromagnetic calorimeter
- 5×20 block plastic scintillator array

E00-110 kinematics

Kin	Q^{2} $\left(\mathrm{GeV}^{2}\right)$	x_{B}	$\theta_{\gamma^{*}}$ $($ deg. $)$	W (GeV)
1	$\mathbf{1 . 5}$	0.36	$\mathbf{2 2 . 3}$	1.9
2	$\mathbf{1 . 9}$	0.36	$\mathbf{1 8 . 3}$	2.0
3	$\mathbf{2 . 3}$	0.36	$\mathbf{1 4 . 8}$	2.2

The calorimeter is centered on the virtual photon direction

50 days of beam time in the fall 2004, at $2.5 \mu \mathrm{~A}$ intensity

$$
\int L u \cdot d t=13294 \mathrm{fb}^{-1}
$$

Analysis - Looking for DVCS events

HRS: Cerenkov, vertex, flat-acceptance cut with R-functions
Calo: 1 cluster in coincidence in the calorimeter above 1 GeV
With both: subtract accidentals, build missing mass of (e, γ) system

Analysis - π^{0} subtraction effect on missing mass spectrum

Using $\pi^{0} \rightarrow 2 \gamma$ events in the calorimeter, the π^{0} contribution is subtracted bin by bin

Analysis - Exclusivity check using Proton Array and MC

Using Proton-Array, we compare the missing mass spectrum of the triple and double-coincidence events.
The missing mass spectrum using the Monte-Carlo gives the same position and width. Using the cut shown on the Fig., the contamination from inelastic channels is estimated to be under 3%.

Analysis - Extraction of observables

Difference of cross-sections

$$
\begin{aligned}
& \left\langle Q^{2}\right\rangle=2.3 \mathrm{GeV}^{2} \\
& \left\langle x_{B}\right\rangle=0.36
\end{aligned}
$$

$$
\frac{1}{2}\left(\frac{d^{4} \sigma^{+}}{d Q^{2} d x_{B} d t d \varphi_{Y Y}}-\frac{d^{4} \sigma^{-}}{d Q Q^{2} \mathrm{dx}_{\mathrm{B}} \mathrm{dtd} \varphi_{Y Y}}\right)\left(\mathrm{nb} / \mathrm{GeV}^{4}\right)
$$

Corrected for real+virtual RC Corrected for efficiency Corrected for acceptance Corrected for resolution effects

- E00-110 - Fit
$\square 1-\sigma$

Extracted Twist-3 contribution small!

Q^{2} dependence and test of scaling

No Q^{2} dependence: strong indication for scaling behavior and handbag dominance

Twist 4+ contributions are smaller than 10\%

$$
\begin{aligned}
& \left\langle Q^{2}\right\rangle=2.3 \mathrm{GeV}^{2} \\
& \left\langle x_{B}\right\rangle=0.36
\end{aligned}
$$

$\frac{\mathrm{d}^{4} \sigma}{\mathrm{dQ}^{2} \mathrm{dx}_{\mathrm{B}} \mathrm{dtd}_{\varphi_{y y}}}\left(\mathrm{nb} / \mathrm{GeV}^{4}\right)$

Extracted Twist-3 contribution small!

E1-DVCS @ CLAS : a dedicated DVCS experiment

E1-DVCS kinematical coverage and binning

E1-DVCS exclusive DVCS selection

Remaining π^{0} contamination up to 20%, subtracted bin by bin using pO events and MC estimation of $\pi^{0}(1 \gamma)$ to $\pi^{0}(2 \gamma)$ acceptance ratio

CLAS results were very preliminary and cannot be put on the web.

Summary

Cross-section difference (Hall A):
-High statistics test of scaling: Strong support for twist-2 dominance
\square First model-independent extraction of GPD linear combination from DVCS data in the twist-3 approximation

U Upper limit set on twist-4+ effects in the cross-section difference: twist>3 contribution is smaller than 10\%

Total cross-section (Hall A):
Bethe-Heitler is not dominant everywhere

- |DVCS| ${ }^{2}$ terms might be sizeable but almost impossible to extract using only total cross-section: e^{+} / e^{-}or μ^{+} / μ^{-}beams seem necessary

Despite this, we performed a measurement of 2 different GPD integrals
BSA (CLAS):
\square Preliminary data in large kinematic range and good statistics!

