"Transverse Quark Spin Effects in Azimuthal Asymmetries-SIDIS and Drell Yan"

Leonard Gamberg* Penn State Berks

 $17^{\rm th}$ International SPIN Physics Symposium

- Remarks Transverse Spin effects in TSSAs and AAs in QCD
- ★ Reaction Mechanisms: Colinear-limit ETQS-Twist Three, Beyond Co-lineararity BHS-ISI/FSI Twist Two
- ★ Unintegrated PDF "T-odd" TMDs Distribution and Fragmentation Functions Correlations by two intrinsic k_{\perp} , transverse spin S_T
- $\star~T\text{-odd}~\cos 2\phi$ asymmetry in SIDIS & DRELL-YAN
- Conclusions

 $^{^{*}}$ G. R. Goldstein (Tufts), Andreas Metz, Marc Schlegel (Bochum) SPIN 06-Kyoto , October $2^{
m nd}$ 2006

Transverse SSA (TSSA) and AZIMUTHAL ASYMMETRIES (AA)

 \star Co-linear approximation of QCD PREDICTS vanishingly small TSSA at large scales and leading order α_s

• Generically, $|\perp/\top > = \frac{1}{\sqrt{2}}(|+>\pm i|->)$

$$\Rightarrow A_N = \frac{d\hat{\sigma}^{\perp} - d\hat{\sigma}^{\top}}{d\hat{\sigma}^{\perp} + d\hat{\sigma}^{\top}} \sim \frac{2\,Im\,f^{*\,+}f^{-}}{|f^+|^2 + |f^-|^2}$$

- * Requires *helicity flip* as well as relative phase btwn helicity amps
- Massless QCD conserves helicity & Born amplitudes are real!
- \star Incorporating Interference btwn loops-tree level $A_N \sim m_q lpha_s/P_T$ Kane, Repko, PRL:1978

Inclusive Λ Production Coliner QCD $(pp o \Lambda^{\uparrow} X)$ Dharmartna & Goldstein PRD 1990

• Need strange quark to polarize a Λ

$$P_{\Lambda} = \frac{d\sigma^{pp \to \Lambda^{\uparrow} X} - d\sigma^{pp \to \Lambda^{\downarrow} X}}{d\sigma^{pp \to \Lambda^{\uparrow} X} + d\sigma^{pp \to \Lambda^{\downarrow} X}}$$

Phases generated through interference of loops and tree level

- Polarization $P_{\Lambda} \sim m_{\rm s} \alpha_s / P_T$ twist 3 & small $\approx 5\%$ as generically stated
- Experiment glaringly at odd with this result $P_{\Lambda} \text{ in } p - p \text{ scattering-Fermi Lab}$ $P_{\Lambda} = 0.2$ $P_{\Lambda} = 0.2$ $P_{\Lambda} = 0.3$ -0.4-0.5-0.5-0.4-0.5-0.5-0.4-0.5-0.5-0.4-0.5

XF

Heller,...,Bunce PRL:1983 Up-down asymmetry depicted for Λ production in p-p COM-frame SPIN 06-Kyoto , October 2nd 2006

HERMES SIDIS $e \ p^{\uparrow} \to \pi \ X$

Azimuthal Asymmetry in Unpolarized DRELL YAN $\cos 2\phi$

QCD-Parton Model doesn't account for large "AA"

$$\lambda,\ \mu,\
u$$
 depend on $s,x,m^2_{\mu\mu},p_T$

$$\nu \operatorname{depend on} s, x, m_{\mu\mu}, p_T$$

$$\frac{dN}{d\Omega} = \left(\frac{d\sigma}{d^4q}\right)^{-1} \frac{d\sigma}{d^4q d\Omega} = \frac{3}{4\pi} \frac{1}{\lambda+3} \left(1 + \lambda \cos^2\theta + \mu \sin^2\theta \cos\phi + \frac{\nu}{2} \sin^2\theta \cos 2\phi\right)$$

NNLO QCD predict Lam-Tung relation, $1 - \lambda - 2\nu = 0$ (Mirkes Ohnemus, PRD 1995)

As well, unexpected large $\cos 2\phi \ \nu \sim 10 - 30\%$ AA

ETQS-Twist Three Mechanism @ Lg $P_T > \Lambda_{qcd}$ Can describe TSSAs $p \, p^\perp \to \pi X$

 A_N twist three yet phases generated in co-linear QCD from gluonic and fermionic poles in propagator of hard parton subprocess Efremov & Teryaev :PLB 1982 Get helicity flips and phases, $m_q \rightarrow \sim M_H$ and $\alpha_s \rightarrow \sqrt{\alpha_s}$

$$\frac{1}{x+s\pm i\epsilon} = P\frac{1}{x-s} \mp i\pi\delta(x-s)$$

 Factorized co-linear QCD Qiu & Sterman :PLB 1991, 1999, Koike & Kanazawa:PLB 2000, (talks by Vogelsang and Yuan on new work on ETQS Ji,Qiu,Vogelsang,Yuan:PR2006

$p_T \sim k_{\perp} \sim \Lambda_{ m qcd}$ "Naive-*T*-Odd" Correlations thru TMDs

- Sensitivity to k_{\perp} intrinsic quark momenta, associated TMD Soper, PRL:1979: $\int d\mathbf{k}_{\perp} \mathcal{P}(\mathbf{k}_{\perp}, x) = f(x)$
- TSSA indicative "*T*-odd" correlation of *transverse* spin and momenta Sivers PRD: 1990, Anselmino & Murgia PLB: 1995 Correlation accounts for left-right TSSA in $P P^{\perp} \rightarrow \pi X$

• SIDIS w/ transverse polarized nucleon target $e \ p^{\perp} \rightarrow \pi X$ $iS_T \cdot (P \times k_{\perp}) \rightarrow f_{1T}^{\perp}(x, k_{\perp})$ Brodsky, Hwang, Schmidt PLB: 2002 FSI produce necessary phase for TSSAs-*Leading Twist* Ji, Yuan PLB: 2002, Boer, Piljman, Mulders: NPB 2003 -Sivers fnct. FSI emerge from Color Gauge-links

• <u>Collins NPB 1993</u> "*T*-odd" correlation of transversely polarized fragmenting quark: TSSA in lepto-production $is_T \cdot (p \times P_{h\perp}) \rightarrow H_1^{\perp}(z, p_{\perp})$ s_T spin of fragmenting quark, p quark momentum and $P_{h\perp}$ transverse momentum produced pion

SPIN 06-Kyoto , October 2^{nd} 2006

(!) Also "*T*-odd" Correlation of Transversely polarized quark in an unpolarized Nucleon -Boer Mulders Effect

Boer and Mulders PRD: 1998 "T-odd" correlation of transversely polarized quark spin with it's intrinsic $\mathbf{k}_{\perp} i\mathbf{s}_T \cdot (\mathbf{k} \times \mathbf{P}) \rightarrow h_1^{\perp}(x, \mathbf{k}_{\perp})$ Boer PRD: 1999-cos 2 ϕ -AA in unpolarized lepto-production $e P \rightarrow e' \pi X$ and "DY" $\pi^- + p \rightarrow \mu^+ + \mu^- + X$ or $\bar{p} + p \rightarrow \mu^- \mu^+ + X$ (latter is cleaner, no Fragmentation)

Factorization Demonstrated For TMD- PDF and FF and Hard and Soft Parts

Ji, Ma, Yuan: PLB, PRD 2004, 2005 building on work of Collins-Soper NPB: 81, extended factorization theorems to 1-loop and beyond

Universality & Factorization "Maximally" Correlated Collins and Metz: PRL 2005

T-Odd Effects Naturally Incorp. Color Gauge Invariant Factorized QCD at leading twist thru-Wilson Line

 Gauge Invariant Distribution and Fragmentation Functions Boer, Mulder: NPB 2000, Ji, Yuan & Belitsky PLB: 2002, NPB 2003, Boer, Mulder, Pijlman NPB 2003

Sub-class of loops in eikonal limit (soft gluons) sum up to yield color gauge invariant hadronic tensor factorized into the distribution Φ and fragmentation Δ operators

$$\begin{split} \Phi(p,P) &= \int \frac{d^3\xi}{2(2\pi)^3} e^{ip\cdot\xi} \langle P|\overline{\psi}(\xi^-,\xi_\perp) \mathcal{G}_{[\xi^-,\infty]}^{\dagger} |X\rangle \langle X|\mathcal{G}_{[0,\infty]}\psi(0)|P\rangle|_{\xi^+} = 0\\ \Delta(k,P_h) &= \int \frac{d^3\xi}{4z(2\pi)^3} e^{ik\cdot\xi} \langle 0|\mathcal{G}_{[\xi^+,-\infty]}\psi(\xi)|X;P_h\rangle \langle X;P_h|\overline{\psi}(0)\mathcal{G}_{[0,-\infty]}^{\dagger}|0\rangle|_{\xi^-} = 0\\ \mathcal{G}_{[\xi,\infty]} &= \mathcal{G}_{[\xi_T,\infty]}\mathcal{G}_{[\xi^-,\infty]}, \quad \text{where} \quad \mathcal{G}_{[\xi^-,\infty]} = \mathcal{P}exp(-ig\int_{\xi^-}^{\infty} d\xi^-A^+) \end{split}$$

Provide source of T-Odd Contributions to TSSA and AA

• "T-odd" distribution-fragmentation functions enter transverse momentum dependent correlators at *leading twist* Boer, Mulder: PRD 1998

$$\begin{split} \Delta(z, \boldsymbol{k}_{\perp}) &= \frac{1}{4} \{ D_{1}(z, \boldsymbol{k}_{\perp}) \not h_{-} + H_{1}^{\perp}(z, \boldsymbol{k}_{\perp}) \frac{\sigma^{\alpha\beta} k_{\perp\alpha} n_{-\beta}}{M_{h}} + D_{1T}^{\perp}(z, \boldsymbol{k}_{\perp}) \frac{\epsilon_{\mu\nu\rho\sigma}\gamma^{\mu} n_{\perp}^{\nu} k_{\perp}^{\rho} S_{hT}^{\sigma}}{M_{h}} + \cdots \} \\ \Phi(x, \boldsymbol{p}_{\perp}) &= \frac{1}{2} \{ f_{1}(x, \boldsymbol{p}_{\perp}) \not h_{+} + h_{1}^{\perp}(x, \boldsymbol{p}_{\perp}) \frac{\sigma^{\alpha\beta} p_{T\alpha} n_{+\beta}}{M} + f_{1T}^{\perp}(x, \boldsymbol{p}_{\perp}) \frac{\epsilon^{\mu\nu\rho\sigma}\gamma^{\mu} n_{\perp}^{\nu} p_{\perp}^{\rho} S_{T}^{\sigma}}{M} \cdots \} \\ \frac{SIDIS \ cross \ section}{d\sigma_{\{\lambda,\Lambda\}}^{\ell N \to \ell \pi X}} \propto f_{1} \otimes d\hat{\sigma}^{\ell q \to \ell q} \otimes D_{1} + \frac{k_{\perp}}{Q} f_{1} \otimes d\hat{\sigma}^{\ell q \to \ell q} \otimes D_{1} \cdot \cos \phi \\ &+ \left[\frac{k_{\perp}^{2}}{Q^{2}} f_{1} \otimes d\hat{\sigma}^{\ell q \to \ell q} \otimes D_{1} + h_{1}^{\perp} \otimes d\hat{\sigma}^{\ell q \to \ell q} \otimes H_{1}^{\perp} \right] \cdot \cos 2\phi \\ &+ |S_{T}| \cdot h_{1} \otimes d\hat{\sigma}^{\ell q \to \ell q} \otimes H_{1}^{\perp} \cdot \sin(\phi + \phi_{S}) \quad \text{Collins} \\ &+ |S_{T}| \cdot f_{1T}^{\perp} \otimes d\hat{\sigma}^{\ell q \to \ell q} \otimes D_{1} \cdot \sin(\phi - \phi_{S}) \quad \text{Sivers} \\ &+ \cdots \end{split}$$

$\cos 2\phi$ Asymmetry Generated by ISI & FSI thru Gauge link

G. Goldstein, L.G.-ICHEP-2002 hep-ph/0209085, L.G,G.G., Oganessyan PRD:2003, Como-PROC. 2006

Leading Twist Contribution from T-Odd D. Boer, P. Mulders, PRD: 1998

Estimates of T-odd Contribution in SIDIS (HERMES, JLAB 6& 12 GeV program)

$\cos 2\phi$ Asymmetry in SIDIS:Boer Mulders Effect

Spectator framework in BHS and Ji-Yuan point-like nucleon-quark-diquark vertex, logarithmically divergent asymmetries, Goldstein, L.G., ICHEP 2002; hep-ph/0209085, L.G., Goldstein, Oganessyan PRD 2003; Boer, Brodsky, Hwang, PRD: 2003(Drell-Yan)

$$h_1^{\perp(s)}(x,k_{\perp}) = f_{1T}^{\perp(s)}(x,k_{\perp})$$
$$= \alpha_s \mathcal{N}_s \frac{M(m+xM)(1-x)}{k_{\perp}^2 \Lambda(k_{\perp}^2)} \ln \frac{\Lambda(k_{\perp}^2)}{\Lambda(0)}$$

- Asymmetry-weighted function $h_1^{(1)\perp}(x) \equiv \int d^2k_{\perp} \frac{k_{\perp}^2}{2M^2} h_1^{\perp}(x,k_{\perp}^2)$ diverges
- Gaussian Distribution in k_{\perp} L.G., Goldstein, Oganessyan, PRD 67 (2003)

$$h_1^{\perp}(x,k_{\perp}) = \alpha_s \mathcal{N}_s \frac{M(m+xM)(1-x)}{k_{\perp}^2 \Lambda(k_{\perp}^2)} \mathcal{R}(k_{\perp}^2,x)$$

with

$$\mathcal{R}(k_{\perp}^2, x) = \exp^{-2b(k_{\perp}^2 - \Lambda(0))} \left(\Gamma(0, 2b\Lambda(0)) - \Gamma(0, 2b\Lambda(k_{\perp}^2)) \right)$$

Sign of Boer Mulders Function GPDs and correlations transverse-spin & intrinsic k_{\perp}

• Connection Sivers effect/function with anomolus magnetic moment of quark-q $\kappa^q \leftrightarrow f_{1T}^{\perp(q)}$ $d_y^q = \int dx \int d^2 \mathbf{b}_{\perp} q_X(x, \mathbf{b}_{\perp}) b_y = \kappa^q / 2M$

- ★ Serves to fix sign of Sivers function
- As well $\kappa_T^q \leftrightarrow h_1^{\perp q}$ $d_y^q = \int dx \int d^2 \mathbf{b}_{\perp} \delta q^X(x, \mathbf{b}_{\perp}) b_y = \kappa_T^q / 2M$

 \star Serves to fix sign of Boer Mulders function

- Yeilds *transverse distortion* in impact parameter space of transversly polarized quarks in an unpolarized nucleon Burkardt PRD 2005, Diehl, Hägler EPJC 2005
- * This result implies that the up and down quark Boer Mulders function are same sign.
- Supports
 - \star Lg N_C arguments Pobylitsa hep-ph/0301236
 - ★ Bag Model calculation of Feng Yuan PLB 2003
 - $\star\,$ Implications on $\cos 2\phi$ phenomenology in SIDIS & Drell Yan
 - Lattice QCDSF/UKQCD, Hägler et al... calculations of matrix elements on the lattice

SPIN 06-Kyoto , October 2^{nd} 2006

Deformed quark densities and spin asymmetries

Spectator Framework: INPUTS: Boer-Mulders $h_1^{\perp(1/2)}$ and Unpolarized Structure Function $f_1(x)$

$$f_1(x) = \frac{g^2}{(2\pi)^2} \left(1 - x\right) \cdot \left\{ \frac{(m + xM)^2 - \Lambda(0)}{\Lambda(0)} - \left[2b \left((m + xM)^2 - \Lambda(0) \right) - 1 \right] e^{2b\Lambda(0)} \Gamma(0, 2b\Lambda(0)) \right\}$$

★ Valence Normalization, ∫₀¹ u(x) = 2, ∫₀¹ d(x) = 1
Black curve- xu(x)
Dashed curve - xu(x) GRV
Red/Blue curve xh₁^{⊥(1/2)(u,d)}
axial vector diquark coupling

Jakob, Mulders, Rodrigues
NPB:1997,
$$\alpha_{i} \left(\alpha_{i}^{\mu} + D^{\mu} / M \right)$$

$$\gamma_5(\gamma^\mu + P^\mu/M)$$

PRELIMINARY

Pion Fragmentation Function

$$D_1(z) = \mathcal{N}' \frac{(1-z)}{z^2} \Big\{ \frac{m^2 - \Lambda'(0)}{\Lambda'(0)} - \Big[2b' \left(m^2 - \Lambda'(0) \right) - 1 \Big] e^{2b' \Lambda'(0)} \Gamma(0, 2b' \Lambda'(0)) \Big\},$$

which, multiplied by z at $< k_{\perp}^2 >= (0.5)^2$ GeV 2 and $\mu = m$, estimates the distribution of Kretzer, PRD: 2000

Gauge Link-Pole Contribution to *T*-Odd Collins Function

L.G., Goldstein, Oganessyan PRD68, 2003 $\Delta^{[\sigma^{\perp}-\gamma_5]}(z,k_{\perp}) = \frac{1}{4z} \int dk^+ Tr(\gamma^-\gamma^{\perp}\gamma_5\Delta) |_{k^-=P_{\pi}^-/z}$

Motivation:color gauge .inv frag. correlator "pole contribution" Gribov-Lipatov Reciprocity 1974 Mulders et al. 1990s

$$H_1^{\perp}(z,k_{\perp}) = \mathcal{N}' \alpha_s \frac{(1-z)}{z^2} \frac{\mu - m(1-z)}{z} \frac{M\pi}{k_{\perp}^2 \Lambda'(k_{\perp}^2)} \mathcal{R}(z, \boldsymbol{k}_{\perp}^2)$$

Collins Asymmetry

L.G., Goldstein, Oganessyan PRD 2003: updated For the HERMES kinematics 1 GeV² $\leq Q^2 \leq 15$ GeV², 4.5 GeV $\leq E_{\pi} \leq 13.5$ GeV, $0.2 \leq x \leq 0.41$, $0.2 \leq z \leq 0.7$, $0.2 \leq y \leq 0.8$, $\langle P_{h\perp}^2 \rangle = 0.25$ GeV²

$$\langle \frac{P_{h\perp}}{M_{\pi}} \sin(\phi + \phi_s) \rangle_{UT} = |S_T| \frac{2(1-y) \sum_q e_q^2 h_1(x) z H_1^{\perp(1)}(z)}{(1+(1-y)^2) \sum_q e_q^2 f_1(x) D_1(z)}.$$

Data from A. Airapetian et al. PRL94,2005

SPIN 06-Kyoto , October 2^{nd} 2006

T-odd $\cos 2\phi$ asymmetry

CLAS12 PAC 30-Avakian, Meziani. . . L.G. . .

Model assumption $H_1^{\perp \ (d \to \pi^+)} = -H_1^{\perp \ (u \to \pi^+)}$

Boer-Mulders Effect in Unpolarized DRELL YAN $\cos 2\phi$

Angle-lepton pair orientation in their COM frame relative and the initial hadron's plane. Boer PRD: 1999, Boer, Brodsky, Hwang PRD: 2003

• Leading twist $\cos 2\phi$ azimuthal asymmetry depends on T-odd distribution h_1^{\perp} .

$$\nu = \frac{2\sum_{a} e_{a}^{2} \mathcal{F}\left[(2\boldsymbol{p}_{\perp} \cdot \boldsymbol{k}_{\perp} - \boldsymbol{p}_{\perp} \cdot \boldsymbol{k}_{\perp}) \frac{h_{\perp}^{\perp}(x, \boldsymbol{k}_{T}) \bar{h}_{\perp}^{\perp}(\bar{x}, \boldsymbol{p}_{T})}{M_{1} M_{2}} \right]}{\sum_{a} e_{a}^{2} \mathcal{F}[f_{1} \bar{f}_{1}]}$$
(2)

• Higher twist comes in Collins SoperPRD: 1977

$$\nu = \frac{2\sum_{a} e_{a}^{2} \mathcal{F}\left[(2\boldsymbol{p}_{\perp} \cdot \boldsymbol{k}_{\perp} - \boldsymbol{p}_{\perp} \cdot \boldsymbol{k}_{\perp}) \frac{h_{1}^{\perp}(x, \boldsymbol{k}_{T}^{2}) \bar{h}_{1}^{\perp}(\bar{x}, \boldsymbol{p}_{T})}{M_{1}M_{2}} \right] + \nu_{4}[w_{4}f_{1}\bar{f}_{1}]}{\sum_{a,\bar{a}} e_{a}^{2} \mathcal{F}[f_{1}\bar{f}_{1}]}$$

$$\nu_{4} = \frac{\frac{1}{Q^{2}} \sum_{a} e_{a}^{2} \mathcal{F}\left[w_{4}f_{1}(x, \boldsymbol{k}_{\perp}) \bar{f}_{1}(\bar{x}, \boldsymbol{p}_{\perp})\right]}{\sum_{a} e_{a}^{2} \mathcal{F}\left(f_{1}(x, \boldsymbol{k}_{\perp}) \bar{f}_{1}(\bar{x}, \boldsymbol{p}_{\perp})\right)}$$

• Perform Convolution integral L.G., Goldstein hep-ph/0506127 $s = 50 \ GeV^2$, x = [0.2 - 1.0], and $q = [3.0 - 6.0] \ GeV$, $q_T = 0 - 2.0 \ GeV$

Taking into account further kinematic q_T^2/Q^2 corrections $x_1x_2 = \frac{Q^2(1+q_T^2/Q^2)}{s}$ i.e. q_T/Q can be order 0.5

SPIN $06\mathchar`-Kyoto$, October 2^{nd} 2006

Gauge Link Contribution to Collins Function

Metz: PBL 2002, L.G., Goldstein, Oganessyan PRD: 2003: Bacchetta, Metz, Jang: PLB: 2003, Amrath, et. al: PRD 2005,

L.G., Goldstein in progress

 $\Delta^{[\sigma^{\perp} \gamma_{5}]}(z,k_{\perp}) = \frac{1}{4z} \int dk^{+} \operatorname{Tr}(\gamma^{-}\gamma^{\perp}\gamma_{5}\Delta) \Big|_{k^{-} = P_{\pi}^{-}/z} \text{ Boer, Pijlman, Muders: NPB 2003}$

On Issues of Process Dependence: Gauge Link Contribution to Fragmentation Function

L.G., Goldstein, Oganessyan PRD: 2003: Bacchetta, Metz, Jang: PLB: 2003, Amrath et. al.: PRD 2005,

L.G., G. Goldstein in progress & Como Proceedings 2006

- ★ Use Cauchy's theorem to evaluate the Color Gauge invariant Correlator $\Delta^{[\sigma^{\perp} \gamma_5]}(z, k_{\perp})$
- Analysis of pole structure in ℓ^+ indicates a singular behavior in loop integral-looks like a "lightcone divergence" at first sight: $\delta(\ell^-)\theta(\ell^-)f(\ell^-)$
- \star Regulate it keep n off light cone

$$\frac{1}{n \cdot \ell \pm i\epsilon} \quad \dots$$

 $n = (n^-, n^+, 0)$ (see Collins Soper NPB 1982 Ji, Yuan, Ma PLB: 2004, LG, Hwang, Metz, Schlegel PBL:2006)

- ★ t-channel cut non-physical
 - On Fragmenting quark and gluon \Rightarrow equivalent to cut in S-channel
 - On Eikonal and Spectator \Rightarrow equivalent to cut in t-channel
 - "T-odd" Fragemtation Function universal between e^+e^- and SIDIS

SPIN 06-Kyoto , October 2^{nd} 2006

S-Channel Cut-COMO Proceedings 2006

$$H_1^{\perp}(z, k_{\perp}) = \mathcal{N}'' \alpha_s \frac{M_{\pi}}{4z} (1-z) \frac{\mathcal{I}_1(z, P_{\perp}^2) + \mathcal{I}_2(z, P_{\perp}^2)}{\Lambda'(P_{\perp}^2) P_{\perp}^2},$$

where

$$\mathcal{I}_{1} = \pi (\mu - m(1-z)) \frac{E_{\pi} + P \cos \theta}{P + E_{\pi} \cos \theta} \left[\ln \frac{(P + E_{\pi} \cos \theta)^{2}}{\mu^{2}} - \cos \theta \ln \frac{4P^{2}}{\mu^{2}} \right]$$
$$\mathcal{I}_{2} = \pi z m \frac{P \sin^{2} \theta}{E_{\pi} - P \cos \theta} \ln \frac{4P^{2}}{\mu^{2}},$$

 $P \equiv |\mathbf{P}_h|$ and $P_{\perp}^2 = k_{\perp}^2/z^2$. As in the case of the "gluonic pole" contribution, this survives the limit that incoming quark mass $m \rightarrow 0$. Results depend the non-perturbative correlator mass μ .

Boer-Mulders Effect in Unpolarized DRELL YAN as well as TSSAs (GSI & JPARC)

SSAs& T-odd Contribution in Drell Yan (GSI & JPARC)

$$\begin{aligned} \frac{d\Delta\sigma^{\uparrow}}{d\Omega dx_1 dx_2 d\boldsymbol{q}_T} \propto \sum_a e_f^2 \left| \boldsymbol{S}_{2T} \right| \left\{ -B(y) \sin(\phi + \phi_{S_2}) F\left[\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{1T} \frac{\bar{\boldsymbol{h}}_1^{\perp a} h_1^a}{M_1} \right] \right. \\ \left. + A(y) \sin(\phi - \phi_{S_2}) F\left[\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_{2T} \frac{\bar{f}_1^a f_{1T}^{\perp a}}{M_2} \right] \dots \right\} , \end{aligned}$$

SPIN 06-Kyoto , October 2^{nd} 2006

SUMMARY

- Going beyond the collinear approximation in PQCD recent progress has been achieved characterizing transverse SSA and azimuthal asymmetries in terms of absorptive scattering.
- Central to this understanding is the role that transversity properties of quarks and hadrons assume in terms of correlations between transverse momentum and transverse spin in QCD hard scattering.
- Along chiral odd transversity *T*-even distribution function, *T*-odd distribution and fragmentation functions provide an explanation for substantial asymmetries observed in inclusive and semi-inclusive scattering reactions.
- We should consider the angular correlations in SDIS at 12 GeV for $\cos 2\phi$ from the standpoint of "rescattering" mechanism which generate T-odd, intrinsic transverse momentum, k_{\perp} , dependent *distribution and fragmentation* functions at leading twist
- Address issues of universality of Collins Function in spectator framework
- ★ Azimuthal asymmetries in Drell Yan and SSA measured at HERMES and COMPASS, JLAB, Belle, GSI-PAX, JPARC *may* reveal the extent to which these leading twist T-odd effects are generating the data