T M D distributions in hadronic collisions: $p^{\uparrow}p ightarrow D + X$ and $p^{\uparrow}p ightarrow \gamma + X$

Umberto D'Alesio Physics Department and INFN University of Cagliari, Italy

SPIN2006 17th International Spin Physics Symposium October 2-7, 2006 Kyoto, Japan

[*U.D.*, *S. Melis*, *F. Murgia in progress*; and coll. with M. Anselmino, M. Boglione, E. Leader]

1

Outline

1. $A^{\uparrow}B \to C + X$

TMD's + helicity formalism in SSA \Rightarrow

many effects at work: role of phases and kinematics;

- 2. $p^{\uparrow}p \rightarrow D + X$ high vs. moderate \sqrt{s} RHIC: gluon Sivers function J-PARC and PAX $(p^{\uparrow}\bar{p})$: quark Sivers function
- 3. $p^{\uparrow}p \rightarrow \gamma + X$ high vs. moderate \sqrt{s} RHIC: gluon Sivers function J-PARC and PAX $(p^{\uparrow}\bar{p})$: quark Sivers function, transversity

Conclusions and outlook

Polarized cross sections: Helicity formalism with k_{\perp}

For the inclusive process $A(S_A) B \to C + X$ in a generalized factorization scheme with inclusion of k_{\perp} :

$$d\sigma^{A,S_{A}+B\to C+X} = \sum_{a,b,c,d,\{\lambda\}} \rho_{\lambda_{a},\lambda_{a}'}^{a/A,S_{A}} \hat{f}_{a/A,S_{A}}(x_{a},\boldsymbol{k}_{\perp a}) \otimes \rho_{\lambda_{b},\lambda_{b}'}^{b/B} \hat{f}_{b/B}(x_{b},\boldsymbol{k}_{\perp b})$$
$$\otimes \quad \hat{M}_{\lambda_{c},\lambda_{d}};\lambda_{a},\lambda_{b}} \quad \hat{M}^{*}_{\lambda_{c}',\lambda_{d}};\lambda_{a}',\lambda_{b}'} \otimes \hat{D}^{\lambda_{C},\lambda_{C}}_{\lambda_{c},\lambda_{c}'}(z,\boldsymbol{k}_{\perp C})$$

• $\rho_{\lambda_a,\lambda'_a}^{a/A,S_A}$: helicity density matrix of parton a inside hadron A with spin S_A • $\frac{d\hat{\sigma}^{ab \to cd}}{d\hat{t}} \simeq \sum_{\lambda_a,\lambda_b,\lambda_c,\lambda_d} |\hat{M}_{\lambda_c,\lambda_d;\lambda_a,\lambda_b}|^2$ (scattering amplitudes) • $\hat{D}_{\lambda_c,\lambda'_c}^{\lambda_C,\lambda'_C}$ generalized ff $\Rightarrow D_{C/c}(z, \mathbf{k}_{\perp C}) = 1/2 \sum_{\lambda_C,\lambda_c} \hat{D}_{\lambda_c,\lambda_c}^{\lambda_C,\lambda_C}$ - $\rho_{\lambda_a,\lambda'_a}^{a/A,S_A} \hat{f}_{a/A,S_A}(x_a, \mathbf{k}_{\perp a})$ gives the 8 twist-2 spin and TMD distributions. By summing over $\{\lambda\}$: many effects (from the soft parts) appear together: Sivers, Collins($\otimes h_1$), Boer-Mulders($\otimes h_1$), linear gluon polarizations... Hard (if not impossible) extraction !... But

Whereas the hadronic process $(A, S_A) + B \rightarrow C + X$ takes place in the (XZ) plane, the partonic sub-processes (soft and hard) are not planar any more $(\mathbf{k}_{\perp a}, \mathbf{k}_{\perp b}, \mathbf{k}_{\perp C})$ \Rightarrow partonic azimuthal phases - Each mechanism (or combination of mechanisms) appear with a specific azimuthal dependence and must be integrated over the partonic phase space and over some specific experimental region.

It has been shown that in $p^{\uparrow}p \to \pi X$ (A_N at large x_F):

- Sivers effect alone allows a good description of E704 (and STAR) data;

- Collins effect is suppressed and not able alone to describe E704 data (preventing also the access to the transversity distribution);

- all other effects are negligible.

UD, Murgia '04, Anselmino, Boglione, UD, Leader, Melis, Murgia '05, '06.

Strategy to access different mechanisms in pp collisions:

- choice of the final state (selection of partonic channels)
- choice of kinematics to control the role of the azimuthal phases

Exercise:

study of maximized A_N by using (trivial positivity bounds): $\Delta^N f(x, k_\perp) = (2)f(x, k_\perp)$ $\Delta^N D(z, k_\perp) = (2)D(z, k_\perp)$

Two examples: heavy meson and direct photon production.

$p^\uparrow p o DX$

RHIC: $\sqrt{s} = 200 \text{ GeV}$

- unpolarized cross-sections:

 $q\bar{q} \rightarrow c\bar{c}$ (\hat{s} -channel) + $gg \rightarrow c\bar{c}$ (dominant: up to 10 times)

 A_N contains various spin-TMD contributions:

- $M_{++;+-} \neq 0$: heavy quark mass!
- NO $h_1 \otimes f_{b/p} \otimes \Delta \hat{D}_{D/c^{\uparrow}}$ ($h_{1g} = 0$ and no \perp spin transfer in \hat{s} channel);
- proper phases: integration washes out all terms other than the Sivers effect

Anselmino, Boglione, UD, Leader, Murgia '04.

Maximized $A_N(D)$ at RHIC, $\sqrt{s} = 200$ GeV for various pseudo-rapidities. Sivers effect, saturated: g (thick lines), q (thin lines).

Access to the gluon Sivers function.

What happens at lower energies?

- in
$$p^{\uparrow}p \rightarrow DX$$
 at J-PARC ($\sqrt{s} = 10 \text{ GeV}$)
- in $p^{\uparrow}\bar{p} \rightarrow DX$ at PAX ($\sqrt{s} = 14 \text{ GeV}$)

In both cases we probe larger x values (at $x_F > 0$). In the second case (\bar{p}) we enhance the $q\bar{q} \rightarrow c\bar{c}$ subprocess.

Low energies implies enhanced threshold effects, resummation... expected (likely true) to be less important in A_N (ratio of cross-sections).

$p^{\uparrow}p o \gamma X$: high vs. moderate energies, $p^{\uparrow}p$ vs. $p^{\uparrow}ar{p}$

- 2 elementary processes: $qg \rightarrow \gamma q$ and $q\bar{q} \rightarrow \gamma g$

- only Sivers effect in qg (no transverse spin transfer);

 $\Delta \hat{f}_{q/A^{\uparrow}}\otimes \hat{f}_{g/B} \qquad \Delta \hat{f}_{g/A^{\uparrow}}\otimes \hat{f}_{q/B}$

- Sivers effect and transversity \otimes Boer-Mulders in $q\bar{q}$: $\Delta \hat{f}_{q/A^{\uparrow}} \otimes \hat{f}_{\bar{q}/B} \qquad \Delta \hat{f}_{q^{\uparrow}/A^{\uparrow}} \otimes \Delta \hat{f}_{\bar{q}^{\uparrow}/B}$

- coupling to $\gamma \Rightarrow \sum_{q} e_q^2 ... : u$ flavour dominance

Which mechanisms are really active and where?

Conclusions

- 1. Generalized k_{\perp} factorization scheme within the helicity formalism for one-particle inclusive pp collisions;
- 2. role and relevance of the azimuthal phases: suppression of the Collins effect in $p^{\uparrow}p \rightarrow \pi X$;
- 3. $p^{\uparrow}p \rightarrow CX$: choice of *C* to select partonic channels
 - high vs. moderate energies
 - kinematics (forward/backward rapidities)
 - crucial interplay of the azimuthal phases
- 4. $p^{\uparrow}p \rightarrow D + X$: access to quark (low \sqrt{s}) / gluon (high \sqrt{s}) Sivers TMD; $p^{\uparrow}p \rightarrow \gamma + X$: access to quark (low \sqrt{s}) / gluon (high \sqrt{s}) Sivers TMD; $p^{\uparrow}\bar{p} \rightarrow \gamma + X$: (low \sqrt{s}) access to the transversity distribution.

• • •