Transverse Target-spin Asymmetry Associated with Deeply Virtual Compton Scattering on the Proton and a Resulting Model-Dependent Constraint on J_u and J_d

SPIN 2006, Kyoto Japan, Oct. 2-7 2006

Wolf-Dieter Nowak, for the HERMES collaboration

DESY, D-15738 Zeuthen, Germany

Wolf-Dieter.Nowak@desy.de

- Motivation: Angular momentum structure of the nucleon
- Deeply Virtual Compton Scattering and transverse target-spin asymmetries
- \square u and d-quark total angular momentum
- Summary and outlook

The Angular Momentum Structure of the Nucleor

 Δq : well known from DIS & SIDIS ΔG : COMPASS, HERMES: $\mathcal{O}(0.1)$ L_q, L_g : unknown!

Generalized Parton Distributions $\Rightarrow J_q, J_g$

Ji's relation — Ji, PRL 78 (1997) 610

$$J_{q,g} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \cdot x \cdot [H_{q,g}(x,\xi,t) + E_{q,g}(x,\xi,t)] dx \cdot x \cdot [H_{q,g}(x,\xi,t) + E_{q,g}(x,\xi,t)] dx \cdot x \cdot [H_{q,g}(x,\xi,t)] dx \cdot x \cdot [H_{q,g}(x,\xi$$

- Same final state in DVCS and Bethe-Heitler \Rightarrow Interference! $d\sigma(eN \rightarrow eN\gamma) \propto |\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + \underbrace{\mathcal{T}_{BH}\mathcal{T}_{DVCS}^* + \mathcal{T}_{BH}^*\mathcal{T}_{DVCS}}_{FH}$
- T_{BH} is parameterized in terms of Dirac and Pauli Form Factors F_1, F_2 , and calculable in QED.
- T_{DVCS} is parameterized in terms of Compton form factors $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}$ (which are convolutions of resp. GPDs $H, E, \widetilde{H}, \widetilde{E}$)
- (Certain Parts of) interference term can be filtered out by forming certain cross section differences (or asymmetries)

 \Rightarrow GPDswolderEigerEiner \widetilde{E} indirectly accessible via interference term \mathcal{I}_{-p} .

Azimuthal Asymmetries in DVCS

Interference term \mathcal{I} induces azimuthal asymmetries in cross-sectio

- Beam-charge asymmetry $A_C(\phi)$: $d\sigma(e^+,\phi) - d\sigma(e^-,\phi) \propto \operatorname{Re}[F_1\mathcal{H}] \cdot \cos\phi$
- Beam-spin asymmetry $A_{LU}(\phi)$: $d\sigma(\vec{e},\phi) - d\sigma(\vec{e},\phi) \propto \operatorname{Im}[F_1\mathcal{H}] \cdot \sin\phi$
- Long. target-spin asymmetry $A_{UL}(\phi)$: $d\sigma(\overleftarrow{P}, \phi) - d\sigma(\overrightarrow{P}, \phi) \propto \operatorname{Im}[F_1\widetilde{\mathcal{H}}] \cdot \sin \phi$

• Transverse target-spin asymmetry $A_{UT}(\phi, \phi_s)$ [TTSA]:

 $d\sigma(\phi,\phi_S) - d\sigma(\phi,\phi_S + \pi) \propto \operatorname{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \cdot \sin(\phi - \phi_S)\cos\phi$ $+ \operatorname{Im}[F_2\mathcal{H} - F_1\xi\widetilde{\mathcal{E}}] \cdot \cos(\phi - \phi_S)\sin\phi$

 \Rightarrow TTSA is the only asymmetry where \mathcal{E} enters in leading order As models for \mathcal{E} depend on $J_q \Longrightarrow A_{UT}^{\sin(\phi-\phi_S)\cos\phi}$ is sensitive to J_q

Why TTSA Data are Expected to be Sensitive to J_u

- ANSATZ for spin-flip Generalized Parton Distribution E:
 - Factorized ansatz for spin-flip quark GPDs: $E_q(x,\xi,t) = \frac{E_q(x,\xi)}{(1-t/0.71)^2}$
 - t-indep. part via double distribution ansatz: $E_q(x,\xi) = E_q^{DD}(x,\xi) \theta(\xi |x|)D_q\left(\frac{x}{\xi}\right)$
 - double distribution: $E_q^{DD}(x,\xi) = \int_{-1}^1 d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(x-\beta-\alpha\xi) \, K_q(\beta,\alpha)$
 - with $K_q(\beta, \alpha) = h(\beta, \alpha) e_q(\beta)$ and $e_q(x) = A_q q_{val}(x) + B_q \delta(x)$ based on chiral QSM
 - where coeffi cients A, B constrained by Ji relation and $\int_{1}^{+1} dx \ e_q(x) = \kappa_q$
 - A_q, B_u, B_d are functions of $J_u, J_d \Rightarrow J_u, J_d$ are free parameters when calculating TTSA

PROJECTIONS [F. Ellinghaus et al., hep-ph/0506264, subm. to EPJC]:

- **based on 8M DIS events at** HERMES; $J_d = 0$ assumed (*u*-quark dominance)
- almost no sensitivity to GPD model parameters found !!!

$$\begin{array}{l} \bullet \quad A_{UT}(\phi - \phi_S) = \frac{d\sigma(\phi - \phi_S) - d\sigma(\phi - \phi_S + \pi)}{d\sigma(\phi - \phi_S) + d\sigma(\phi - \phi_S + \pi)} \simeq \\ A_{UT}^{\sin(\phi - \phi_S)\cos\phi} \cdot \sin(\phi - \phi_S)\cos\phi + A_{UT}^{\cos(\phi - \phi_S)\sin\phi} \cdot \cos(\phi - \phi_S)\sin\phi \\ \text{with } A_{UT}^{\sin(\phi - \phi_S)\cos\phi} \simeq \mp \frac{t}{4M^2} \cdot \frac{f(x_B, y, Q^2)}{c_{0,unp}^{BH}} Im \left[F_2 \mathcal{H} - F_1 \mathcal{E}\right] \Leftarrow \text{ sensitive to GPD } E \parallel \\ \text{and } A_{WolfDieter Nowak (DESY)}^{\cos(\phi - \phi_S)\sin\phi} \simeq \mp \frac{t}{4M^2} \cdot \frac{f(x_B, y, Q^2)}{c_{0,unp}^{BH}} Im \left[F_2 \widetilde{\mathcal{H}} - F_1 \xi \widetilde{\mathcal{E}}\right] \Leftarrow \text{ insensitive to GPD } E \\ \end{array}$$

DVCS TTSA: HERMES Data vs. Predictions

STUDY sensitivity to J_u (with $J_d = 0$) [hep-ph/0506264, based on Prog.Part.Nucl.Phys.47]:

- $A_{UT}^{\sin(\phi-\phi_S)\cos\phi}$ found sensitive to J_u , while $A_{UT}^{\cos(\phi-\phi_S)\sin\phi}$ is not
- only weak sensitivity found to other GPD model parameters (profi le parameters, Regge/factorized ansatz for t-dependence)

Model-dependent Constraint on $J_{\rm u}$ vs $J_{\rm d}$

Unbinned maximum likelihood fit to $A_{UT}^{\sin(\phi-\phi_S)\cos\phi}$ at average kinematics (fitting prel. HERMES data against VGG-model based calculations), leaving J_u and J_d as free parameters \Rightarrow model-dependent 1- σ constraint on J_u vs. J_d :

Quenched lattice calculation done with pion masses 1070, 870, and 640 MeV, and then extrapolated linearly in m_{π}^2 to the physical value

Uncertainties on VGG model parameters shown as separate uncertainty (±0.06) Wolf-Dieter Nowak (DESY)
SPIN 2006, Kyoto Japan, Oct. 2-7 2006

Summary and Outlook

- Preliminary HERMES data available on transverse target-spin asymmetries (TTSAs) in Deeply Virtual Compton Scattering
- \triangleright Signifi cantly non-zero $sin(\phi \phi_S) cos \phi$ amplitude seen
- ▷ For the first time (model-dependent) constraint on u and d-quark total angular momentum obtained (preliminary): $J_u + J_d/2.9 \approx 0.42 \pm 0.21$ (exp-tot) ± 0.06 (models)
- ▷ Final statistics expected to be a factor of 2 higher