Polarisation Observables in Proton Antiproton to Lepton Antilepton Reactions

Elise Jennings

Trinity College Dublin
October 2, 2006

Introduction

- Electromagnetic form factors in the time like region are largely unknown.
- Relative phases have never been measured in the proton case.
- Proton form factor G_{M} measured up to $31 \mathrm{GeV}^{2}$ in space like region.
- In time like region from $\bar{p} p$ or $e^{+} e^{-}$annihilation up to $q^{2}=5.6 \mathrm{GeV}^{2}$.
- They show G_{M} follows approximately a dipole form:

$$
G_{E}\left(q^{2}\right)=\frac{G_{M}\left(q^{2}\right)}{\mu_{p}}=G_{D}=\frac{1}{\left[1+q^{2} / 0.71\left(\mathrm{GeV}^{2}\right)\right]^{2}}
$$

Proton G_{E} / G_{M} ratio

- CERN measurements (red) consistent with scaling $G_{M}\left(Q^{2}\right) \cong \mu_{p} G_{E}\left(Q^{2}\right)$
- Jlab measured the space like form factors using polarisation transfer. The ratio $G_{E}\left(Q^{2}\right) / G_{M}\left(Q^{2}\right)$ decreases at large Q^{2} (blue).
- Coefficient $-q^{2} / 4 M^{2}$ of $G_{M}{ }^{2}$ inhibits contribution of $G_{E}{ }^{2}$ to $d \sigma / d \Omega$
- Uncertain radiative corrections - Rosenbluth method unreliable?

Form Factors in the Time Like Region

- Fermilab E835: G_{M} in time like twice as large as in space like region.
- Space like form factors of a stable hadron are real, on the real axis.
- Time like form factors have a phase above threshold, in general.
- Enhancement of G_{M} due to final state interaction of outgoing hadrons?
- QCD predicts asymptotic behaviour for G_{M} of the form

$$
G_{M}\left(Q^{2}\right)=\frac{c}{s^{2}}\left(\ln \frac{s}{\Lambda^{2}}\right)^{-2}
$$

Antiprotons

- Fermilab - polarised $(\sim 45 \%) \bar{p}$ beams produced in weak decay of $\bar{\Lambda}$
- Need greater luminosity of \bar{p} to probe antiquark structure.
- Future antiproton facility, FAIR at GSI, Darmstadt.
- PAX Collaboration seeks moduli and relative phases of G_{E} and G_{M}.
- Measurement of phases may explain q^{2} dependence of G_{E} / G_{M}.

$$
\mathbb{P} \boldsymbol{A} \boldsymbol{X}
$$

www.fz-juelich.de/ikp/pax/

Proton Form Factors

- G_{E} and G_{M} relate to Fourier transforms of nuclear charge and magnetisation density distributions.
- Dispersion relations connect the space (negative s) and time like regimes.
- Phases measured via single spin asymmetry in $\bar{p} p \rightarrow e^{+} e^{-}$.
- Understanding the onset of pQCD asymptotics
- Fundamental tests of dispersion theory and analyticity.
- Double spin asymmetry: limit relative phase ambiguity independent $G_{E}-G_{M}$ separation

Internal Structure of the Proton

Lorentz and gauge invariance provide the general on-shell proton current

$$
J_{\mu}=e \bar{u}(P)\left(F_{1}(s) \gamma_{\mu}+i F_{2}(s) \frac{\sigma_{\mu \nu} q^{\nu}}{2 M}\right) v\left(P^{\prime}\right)
$$

where $q_{\nu}=P_{\nu}+P_{\nu}^{\prime}$ for s channel $\bar{p} p$ process. Dirac and Pauli form factors are normalised $F_{1}(0)=1$ and $F_{2}(0)=\mu_{p}-1$, the anomalous magnetic moment and Sachs EM form factors are (with $\tau=s / 4 M^{2}$)

$$
G_{E}=F_{1}+\tau F_{2}, \quad G_{M}=F_{1}+F_{2}
$$

At threshold $G_{E}\left(4 M^{2}\right)=G_{M}\left(4 M^{2}\right)$ where M is the mass of the proton.

Spin Averaged Cross Section

The unpolarised differential cross section for schannel annihilation of spin half particles in the centre of mass system is

$$
\frac{d \sigma}{d \Omega}=\frac{\beta}{64 \pi^{2} s} \frac{1}{4} \sum_{\text {spin }}|\mathcal{M}|^{2}
$$

where \mathcal{M} is the invariant amplitude for the process and β is a flux factor. In an annihilation reaction of two spinor particles of mass m_{i} producing a pair of mass m_{f} the flux factor β is given by

$$
\beta=\sqrt{\left(s-4 m_{f}^{2}\right) /\left(s-4 m_{i}^{2}\right)}
$$

Spin Averaged Cross Section

The spin averaged differential cross section for $l^{+}+l^{-} \rightarrow p+\bar{p}$ scattering in terms of Mandelstam variables s and t is:

$$
\begin{aligned}
\frac{d \sigma}{d \Omega}=\alpha^{2} \beta & \frac{1}{s^{3}\left(s-4 M^{2}\right)}\left\{\frac{s^{2}}{2}\left(s-4 M^{2}\right)\left|G_{M}\right|^{2}\right. \\
& -4 s m^{2} M^{2}\left(\left|G_{M}\right|^{2}-\left|G_{E}\right|^{2}\right) \\
& \left.+\left[\left(t-m^{2}-M^{2}\right)^{2}+s t\right]\left(s\left|G_{M}\right|^{2}-4 M^{2}\left|G_{E}\right|^{2}\right)\right\}
\end{aligned}
$$

where m is the mass of the lepton and M is the mass of the proton. The flux factor $\beta=\sqrt{s-4 M^{2}} / \sqrt{s-4 m^{2}}$ and $t=(P-K)^{2}$.

This and the following results has been verified using Mathematica and all would be required for studies of $\bar{p} p \rightarrow \mu^{+} \mu^{-}$or $\tau^{+} \tau^{-}$.

Spin Averaged Cross Section

We can simplify the previous expression by neglecting the mass of the lepton.

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4} \frac{\beta}{s}\left\{\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right\}
$$

- Absolute values of the form factors can be determined by a Rosenbluth separation technique.
- Space like: measurements made at a number of angles θ, fixed q^{2}
- Time like: required to change only one kinematic variable, $\cos \theta$

Asymmetries with lepton mass

It is convenient to define a scaled unpolarised cross section given below in terms of s, t.

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4} \frac{\beta}{s} D
$$

where D is given by:

$$
\begin{gathered}
D=\frac{16 M^{2}}{s^{2}\left(s-4 M^{2}\right)}\left\{\left[\left(t-m^{2}-M^{2}\right)^{2}+s t\right]\left(\frac{s}{4 M^{2}}\left|G_{M}\right|^{2}-\left|G_{E}\right|^{2}\right)\right. \\
\left.+\frac{s^{2}}{8 M^{2}}\left(s-4 M^{2}\right)\left|G_{M}\right|^{2}-s m^{2}\left(\left|G_{M}\right|^{2}-\left|G_{E}\right|^{2}\right)\right\}
\end{gathered}
$$

Single Spin Asymmetry

When the antiproton in $l^{+} l^{-} \rightarrow p \bar{p}$ is polarised and if the initial leptons are unpolarised we obtain one non zero single spin asymmetry using the polarisation vector $S_{N}=(0,0,1,0)$.

The asymmetry parameter A_{N} is defined as a measure of the left-right asymmetry by

$$
A_{N}=\frac{(d \sigma / d \Omega)_{\uparrow}-(d \sigma / d \Omega)_{\downarrow}}{(d \sigma / d \Omega)_{\uparrow}+(d \sigma / d \Omega)_{\downarrow}}
$$

We then obtain the general $(m \neq 0)$ single spin asymmetry for either a polarised proton or antiproton.

$$
A_{N}=\left(1-\frac{4 m^{2}}{s}\right) \frac{2 M \sin 2 \theta}{\sqrt{s} D} \operatorname{lm} G_{E}^{*} G_{M}
$$

Single Spin Asymmetry

This is an example of how T-odd observables can be non zero if final state interactions give interfering amplitudes.

The other single spin observables A_{S} and A_{L} are non zero only when the initial lepton is polarised.

We can simplify A_{N} by neglecting the lepton mass to obtain the following expression.

$$
A_{N}=\frac{\sin 2 \theta \operatorname{lm} G_{E}^{*} G_{M}}{\left\{\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}\right\} \sqrt{\tau}}
$$

This result is in agreement with A. Z. Dubnickova et al., Nuovo Cim. A106: 1253, (1993) and G. I. Gakh et al., DAPNIA-05-293, Nov (2005).

Double Spin Asymmetry

The double spin observables involving normal (N), transverse (S) and longitudinal (L) spin directions are

$$
\begin{aligned}
A_{\mathrm{SS}}= & N\left\{\left[\left(t-m^{2}-M^{2}\right)^{2}+s t\right]\left(s\left|G_{M}\right|^{2}-4 M^{2}\left|G_{E}\right|^{2}\right)\right. \\
& +\frac{1}{2} s\left(s-4 M^{2}\right)\left(s-4 m^{2}\right) \sin ^{2} \theta\left|G_{M}\right|^{2} \\
& \left.-4 s m^{2} M^{2}\left(\left|G_{M}\right|^{2}-\left|G_{E}\right|^{2}\right)\right\}
\end{aligned}
$$

Double Spin Asymmetry

$$
\begin{aligned}
A_{\mathrm{NN}}= & N\left\{\left[\left(t-m^{2}-M^{2}\right)^{2}+s t\right]\left(s\left|G_{M}\right|^{2}-4 M^{2}\left|G_{E}\right|^{2}\right)\right. \\
& \left.-4 s m^{2} M^{2}\left(\left|G_{M}\right|^{2}-\left|G_{E}\right|^{2}\right)\right\} \\
A_{\mathrm{LL}}= & N\left\{\left[\left(t-m^{2}-M^{2}\right)^{2}+s t\right]\left(s\left|G_{M}\right|^{2}+4 M^{2}\left|G_{E}\right|^{2}\right)\right. \\
& \left.+\frac{1}{2} s^{2}\left(s-4 M^{2}\right)\left|G_{M}\right|^{2}+4 s m^{2} M^{2}\left(\left|G_{M}\right|^{2}-\left|G_{E}\right|^{2}\right)\right\}
\end{aligned}
$$

where the coefficient N is given by

$$
\begin{aligned}
& \text { V is given by } \\
& =\frac{4}{s^{2}\left(s-4 M^{2}\right) D}
\end{aligned}
$$

Double Spin Asymmetry

The last two double spin observables, $A_{S L}$ and $A_{L N}$, in terms of the centre of mass scattering angle are

$$
\begin{aligned}
A_{\mathrm{SL}} & =\frac{2 M}{\sqrt{s} D}\left(1-\frac{4 m^{2}}{s}\right) \sin 2 \theta \operatorname{Re} G_{E}^{*} G_{M} \\
A_{\mathrm{LN}} & =\frac{2 M}{\sqrt{s} D}\left(1-\frac{4 m^{2}}{s}\right) \sin 2 \theta \operatorname{Im} G_{E}^{*} G_{M}
\end{aligned}
$$

Polarisation observables can be used to pin down the relative phases of the time like form factors.

All of the double spin observables depend on the moduli squared of the form factors apart from $A_{S L}$ and $A_{L N}$ which contain the real and imaginary parts, respectively.

All of the above formulae reduce to previously published expressions when we let the lepton mass $m \rightarrow 0$. In the equations that follow $\tau=s / 4 M^{2}$.

$$
\begin{aligned}
A_{S N} & =0 \\
A_{S L} & =\frac{\tau^{-1 / 2} \sin 2 \theta \operatorname{Re} G_{E} G_{M}^{*}}{\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}} \\
A_{L N} & =\frac{-\tau^{-1 / 2} \sin 2 \theta \operatorname{Im} G_{E} G_{M}^{*}}{\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}} \\
A_{S S} & =\frac{\sin ^{2} \theta\left(\tau^{-1}\left|G_{E}\right|^{2}+\left|G_{M}\right|^{2}\right)}{\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}} \\
A_{N N} & =\frac{\sin ^{2} \theta\left(\tau^{-1}\left|G_{E}\right|^{2}-\left|G_{M}\right|^{2}\right)}{\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}} \\
A_{L L} & =\frac{\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}-\tau^{-1} \sin ^{2} \theta\left|G_{E}\right|^{2}}{\left(1+\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{1}{\tau} \sin ^{2} \theta\left|G_{E}\right|^{2}}
\end{aligned}
$$

Helicity Amplitudes

We use the following spin four vectors:

$$
\begin{array}{ll}
S_{1}=\frac{\epsilon_{1}}{M}(p, 0,0, E) & S_{3}=\frac{\epsilon_{3}}{m}(k, E \sin \theta, 0, E \cos \theta) \\
S_{2}=\frac{\epsilon_{2}}{M}(p, 0,0,-E) & S_{4}=\frac{\epsilon_{4}}{m}(k,-E \sin \theta, 0,-E \cos \theta)
\end{array}
$$

Polarisation dependent cross sections

P, T and C invariance indicate that there are five independent cross sections

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}(++++)=\frac{d \sigma}{d \Omega}(++--)=\frac{d \sigma}{d \Omega}(----)=\frac{d \sigma}{d \Omega}(--++) \\
& \frac{d \sigma}{d \Omega}(+++-)=\frac{d \sigma}{d \Omega}(++-+)=\frac{d \sigma}{d \Omega}(---+)=\frac{d \sigma}{d \Omega}(--+-) \\
& \frac{d \sigma}{d \Omega}(+---)=\frac{d \sigma}{d \Omega}(+-++)=\frac{d \sigma}{d \Omega}(-+--)=\frac{d \sigma}{d \Omega}(-+++) \\
& \frac{d \sigma}{d \Omega}(+-+-)=\frac{d \sigma}{d \Omega}(-+-+) \\
& \frac{d \sigma}{d \Omega}(+--+)=\frac{d \sigma}{d \Omega}(-++-)
\end{aligned}
$$

Helicity Amplitudes

For $\bar{p} p \rightarrow l^{-} l^{+}$we have

$$
\begin{aligned}
\frac{s}{\beta} \mathcal{M}(++++) & =2 \frac{m M}{s} \alpha \cos \theta\left|G_{E}\right| \\
\frac{s}{\beta} \mathcal{M}(+++-) & =\frac{M}{\sqrt{s}} \alpha \sin \theta\left|G_{E}\right| \\
\frac{s}{\beta} \mathcal{M}(+-+-) & =\frac{\alpha}{2}(1+\cos \theta)\left|G_{M}\right| \\
\frac{s}{\beta} \mathcal{M}(+--+) & =\frac{\alpha}{2}(1-\cos \theta)\left|G_{M}\right| \\
\frac{s}{\beta} \mathcal{M}(+---) & =\frac{m}{\sqrt{s}} \alpha \sin \theta\left|G_{M}\right|
\end{aligned}
$$

Helicity Amplitudes

The spin averaged differential cross section given earlier can be written as

$$
\begin{aligned}
\frac{4 s}{\alpha^{2} \beta} \frac{d \sigma}{d \Omega}=(1+ & \left.\cos ^{2} \theta\right)\left|G_{M}\right|^{2}+\frac{4 m^{2}}{s} \sin ^{2} \theta\left|G_{M}\right|^{2} \\
& +\frac{16 m^{2} M^{2}}{s^{2}} \cos ^{2} \theta\left|G_{E}\right|^{2}+\frac{4 M^{2}}{s} \sin ^{2} \theta\left|G_{E}\right|^{2}
\end{aligned}
$$

This is the following sum of the five independent helicity amplitudes listed above:

$$
\begin{gathered}
\frac{d \sigma}{d \Omega}=|\mathcal{M}(++++)|^{2}+|\mathcal{M}(+++-)|^{2}+|\mathcal{M}(+---)|^{2}+ \\
\frac{1}{2}|\mathcal{M}(+-+-)|^{2}+\frac{1}{2}|\mathcal{M}(+--+)|^{2}
\end{gathered}
$$

Summary

- For $\bar{p} p \rightarrow l^{-} l^{+}$general expressions, including the lepton mass, for the spin averaged cross section, single and double spin asymmetries have been given.
- In spin averaged cross sections G_{E} and G_{M} contribute separately in the form of moduli in the time like region.
- The single spin asymmetry, A_{N}, is substantial and strongly discriminates between the analytic forms which fit the proton G_{E} / G_{M} data.
- Polarised antiprotons can explore the unexpected Q^{2} dependence of the ratio of electric and magnetic form factors by studying their phases.
- In the case of $m u$ and tau final state pairs it will be necessary to retain the lepton mass in the formulae for both the spin averaged differential cross section and the polarisation observables.

Acknowledgements

embarkinitiative
 Investing in People and Ideas

I would like to thank the Irish Research Council for Science, Engineering and Technology (IRCSET) for a postgraduate research studentship and Trinity College Dublin for the award of a Scholarship.

I am also grateful to the Spin 2006 organisers for the opportunity to speak today.

