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Spin Adiabatic Invariant  (SAI)

[L.H. Thomas -1927, V. Bargmann, L. Michel, V.L. Telegdi -1959]
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There is the exactly defining direction of precession axis
[Ya.S. Derbenev, A.M. Kondratenko, 1972-1973] :

the direction of the quantum axis

,J S n= ⋅
G G ( )iIν′Ψ =

( ),J Ψ − act and phase variables of spin motion:

( )iIν −generalized frequency of spin precession

[ ],J S S∈ −

2
J = ±

=
Quantum particle with spin ½ :

Classical particle with spin :S � =

J −Spin Adiabatic Invariant  (SAI)

P J=The beam polarization degree:

Average spin vector: 

( ), ,i iS J n I P nθ= Ψ =
G G G

Adiabatic spin resonance crossing.
Near in resonance: Far from resonance:
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Spin motion near spin resonance
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Adiabatic resonance cross:
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In resonance coordinate system
[Ya.S. Derbenev, A.M. Kondratenko,  A.N. Skrinsky,  1971] :
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resonance detune
resonance strength (Fourier spin perturbation harmonic) 
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Before and after resonance crossing



One-time isolated resonance crossing
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intermediate resonance crossing
adiabatic resonance crossing
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Spin resonance intersection techniques

Various techniques of spin resonances intersection can be based on 
the following factors:

• increasing the speed of the spin-resonance crossing due to
“jump” of the  betatron frequency;

• increasing the speed of the spin-resonance crossing due to
“jump” of the  spin  frequency;

• resonance strength compensation;

• a deliberate increase of the spin-resonance strength by means of
specially introduced magnetic fields for adiabatic intersection of 
spin resonance;

• deliberate decrease of the spin-resonance crossing speed.



Preserving polarization degree condition

orf i f iJ J J J= = −
iJ − initial value of SAI , final value of SAIiJ −

[A.M. Kondratenko , M.A. Kondratenko, Yu.N. Filatov-2004]
The example of preserving beam polarization degree ( )f iJ J= −

Fast crossing compensation condition:
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The example of two-time isolated resonance crossing

Normalized detuning vs normalized time

Dependence of normalized detuning
from time (normalized azimuth):

SAI vs time SAI vs time
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The example of  three-time isolated resonance crossing

Normalized detuning

The dependence of  SAI versus time

Dependence of normalized detuning
from time (normalized azimuth):
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Spin detuning spread which is reduce 
polarization degree at 10% 

Polarization degree is preserved due to 
interference between resonances.

Where are no increasing resonance 
crossing rate 
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Conclusions

•The method of preservation of beam polarization at crossing of spin
resonance in cyclic accelerators is offered. 

•This method is based on control the spin precession axis and the
spin rotation phase inside of the resonance region. 

•An analytical solution for an arbitrary resonance crossing speed
is presented. 

•The method to operate by a vector of polarization in a ring of the 
accelerator giving additional opportunities to provide experiments with 
internal and extract beams is offered.

• The numerical examples are presented.



 1H  2 H  3H  3He  
max GeV,

nkE  12.85 6.00 3.74 8.28 

2
2

gG −
=  1.793 -0.143 7.92 4.184−  

Number of intrinsic 
resonance zk Pν ν= ±  6 −  8 9 

Number of integer  
resonance kν =  25 1 32 37 

 

Basic Nuclotron Parameters

Charge to mass ratio ions 0.33 – 0.5, 1 
Injection energy                                                   nuclei 

protons
5 MeV/Amu 

20 Mev 
Maximum energy                     for nuclei with q/A=0.5

for protons
6 GeV/Amu 

12.8 GeV 
Transition energy 7.6 GeV 
Circumference 251.52 m 
Duration of acceleration 1 sec 
Magnetic rigidity                                         at injection 

maximum
0.647 T⋅m 
45.83 T⋅m 

Betatron tunes                                                          xν   
                                                                                               zν  

6.8 
6.85 

Normalized emittance at injection 45 ×m m ×m radπ  
 



Intrinsic spin resonance in Nuclotron (p, T, He-3) 
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Above blue line  – adiabatic crossing

Under green line – fast crossing

Between lines – intermediate crossing

(beam depolarization)



Integer spin resonance in Nuclotron (p, T, He-3)


