On Compensation of Beam Depolarization at Crossing of a Spin Resonance

A.M. Kondratenko (1), M.A. Kondratenko (1) and Yu. N. Filatov (2)

(1) GOO "Zaryad", Novosibirsk
(2) JINR, Dubna.

E-mail: kondratenkom@mail.ru

Spin Adiabatic Invariant (SAI)

[L.H. Thomas -1927, V. Bargmann, L. Michel, V.L. Telegdi -1959] $\frac{d\vec{S}}{d\theta} = [\vec{W} \times \vec{S}], \qquad \vec{W} (I_i, \Psi_i, \theta) = \vec{W} (I_i, \Psi_i + 2\pi, \theta + 2\pi)$

There is the exactly defining direction of precession axis [Ya.S. Derbenev, A.M. Kondratenko, 1972-1973] :

$$\vec{n}(I_i, \Psi_i, \theta) = \vec{n}(I_i, \Psi_i + 2\pi, \theta + 2\pi)$$

the direction of the quantum axis

 $\rightarrow P_i \vec{n}$

(J, Ψ) – act and phase variables of spin motion: $J = \vec{S} \cdot \vec{n}, \Psi' = v(I_i)$ $v(I_i)$ – generalized frequency of spin precession	The beam polarization degree: P Average spin vector: $\langle \vec{S} \rangle = \langle J \vec{n} (I_i, \Psi_i, \theta) \rangle = P \langle \vec{n} \rangle$	$=\langle J \rangle$
J –Spin Adiabatic Invariant (SAI) Quantum particle with spin $\frac{1}{2}$: $J = \pm \frac{\hbar}{2}$ Classical particle with spin $ S \gg \hbar$: $J \in [-S, S]$	Adiabatic spin resonance crossing.Near in resonance:Far from resonance: $ \Delta \vec{n} \sim 1 \Rightarrow \langle \vec{S} \rangle \rightarrow 0$ $ \Delta \vec{n} \rightarrow 0 \Rightarrow$ $P_{res} \neq 0$ $P_{res} = P_i$ $P_f = P_i$	conance: $\langle \vec{S} \rangle \rightarrow$

Spin motion near spin resonance

Resonance condition:

$$v_0 = v_k$$
, $v_0 = \gamma \frac{g-2}{2} = \gamma G$

In resonance coordinate system

[Ya.S. Derbenev, A.M. Kondratenko, A.N. Skrinsky, 1971]:

$$\vec{h} = \varepsilon \, \vec{e}_z + \vec{w}_k, \qquad \varepsilon = v_0 - v_k.$$

 \vec{w}_k – resonance strength (Fourier spin perturbation harmonic) ε – resonance detune

$$\nu = \sqrt{\varepsilon^2 + w^2}$$

Adiabatic condition: $|\vec{h}'| \ll h^2$ if $w = const \implies |\varepsilon'| \ll \varepsilon^2 + w^2$

Adiabatic resonance cross:

$$\left| \mathcal{E}' \right| \ll w^2$$

Before and after resonance crossing

$$\vec{n} \rightarrow \begin{cases} \vec{e}_z, & \text{if } v_0 > v_k \\ -\vec{e}_z, & \text{if } v_0 < v_k \end{cases}$$

One-time isolated resonance crossing ($\varepsilon' = const$)

M. Froissart, R. Stora , 1960 $\langle S_z^f \rangle = \left\langle S_z^i \left(\exp\left(-\frac{\pi w^2}{2}\right) - 1 \right) \right\rangle,$ $\Theta_i = -\infty, \quad \Theta_f = \infty.$

Changing
$$\vec{e}_z \to \vec{n} \quad \left(S_z^i \to -J_i, S_z^f \to J_f\right)$$
:
 $P_f = P_i \left(1 - \exp\left(-\frac{\pi w^2}{2}\right)\right)$
 $|\Theta_i|, |\Theta_f| >> 1$

Spin resonance intersection techniques

Various techniques of spin resonances intersection can be based on the following factors:

- increasing the speed of the spin-resonance crossing due to "jump" of the betatron frequency;
- increasing the speed of the spin-resonance crossing due to "jump" of the spin frequency;
- resonance strength compensation;
- a deliberate increase of the spin-resonance strength by means of specially introduced magnetic fields for adiabatic intersection of spin resonance;
- deliberate decrease of the spin-resonance crossing speed.

Preserving polarization degree condition

$$J_i$$
 - initial value of SAI, J_i - final value of SAI
 $J_f = J_i$ or $J_f = -J_i$

The example of preserving beam polarization degree $(J_f = -J_i)$ [A.M. Kondratenko, M.A. Kondratenko, Yu.N. Filatov-2004] $(\Theta \quad \text{if } |\Theta| \ge \Theta_0$ ($\Theta \quad \varepsilon(\theta) \quad \varepsilon(\theta) \quad \varepsilon_1 \quad w$

$$\omega(\Theta) = \begin{cases} 0 & \text{if } |\Theta| = 0, \\ k\Theta & \text{if } |\Theta| < \Theta_0, \end{cases} \text{ where } \omega(\Theta) = \frac{\varepsilon(O)}{\sqrt{\varepsilon'_0}}, \ k = \frac{\varepsilon_1}{\varepsilon'_0}, \ w = \frac{w}{\sqrt{\varepsilon'_0}} \end{cases}$$

Fast crossing compensation condition: $\int_{-\infty}^{\infty} \exp\left(\int_{-\infty}^{\theta} \varepsilon(\theta) d\theta\right) d\theta = 0$ The polarization compensation will occur with high accuracy as w^6

Shift resonance point at $\Delta \omega < 0.48 \Rightarrow (D < 0.01D_0)$

The example of two-time isolated resonance crossing

Dependence of normalized detuning from time (normalized azimuth):

$$\omega(\Theta) = \varepsilon(\theta) / \sqrt{\varepsilon_1'},$$

$$\omega(\Theta) = \begin{cases} \tau - k\Theta & \text{if } \Theta \ge 0\\ \Theta + \tau & \text{if } \Theta < 0 \end{cases},$$

where

$$\Theta = \theta \sqrt{\varepsilon_1'}, \quad k = -\frac{\varepsilon_2'}{\varepsilon_1'}, \quad \tau = \theta_1 \sqrt{\varepsilon_1'}$$

Normalized detuning vs normalized time

SAI vs time

SAI vs time

The example of three-time isolated resonance crossing

Dependence of normalized detuning from time (normalized azimuth):

$$\varepsilon(\theta) = \omega(\Theta) \sqrt{\varepsilon_1'},$$

$$\omega(\Theta) = \begin{cases} -k\Theta, & \text{if } |\Theta| \le \tau \\ \Theta - \operatorname{sign}(\Theta)(k+1)\tau, & \text{if } |\Theta| > \tau \end{cases}$$

where

$$\Theta = \theta \sqrt{\varepsilon_1'}, \quad k = \frac{\varepsilon_2'}{\varepsilon_1'} > 0$$

The dependence of SAI versus time

Where are no increasing resonance crossing rate

Conclusions

- •The method of preservation of beam polarization at crossing of spin resonance in cyclic accelerators is offered.
- •This method is based on control the spin precession axis and the spin rotation phase inside of the resonance region.
- •An analytical solution for an arbitrary resonance crossing speed is presented.
- •The method to operate by a vector of polarization in a ring of the accelerator giving additional opportunities to provide experiments with internal and extract beams is offered.
- The numerical examples are presented.

Basic Nuclotron Parameters

Charge to mass ratio ions	0.33 – 0.5, 1
Injection energy nuclei	5 MeV/Amu
protons	20 Mev
Maximum energy for nuclei with q/A=0.5	6 GeV/Amu
for protons	12.8 GeV
Transition energy	7.6 GeV
Circumference	251.52 m
Duration of acceleration	1 sec
Magnetic rigidity at injection	0.647 T·m
maximum	45.83 T·m
Betatron tunes V_x	6.8
V_z	6.85
Normalized emittance at injection	45π mm m mm rad

	1 H	2 H	³ H	³ He
$E_k^{\max}, \frac{\text{GeV}}{n}$	12.85	6.00	3.74	8.28
$G = \frac{g-2}{2}$	1.793	-0.143	7.92	-4.184
Number of intrinsic resonance $v = k P \pm v_z$	6	_	8	9
Number of integer resonance $v = k$	25	1	32	37

Intrinsic spin resonance in Nuclotron (p, T, He-3)

Integer spin resonance in Nuclotron (p, T, He-3)

