Study of possibilities for a spin flip in high energy electron storage ring HERA

Špela Stres and Rok Pestotnik Institute Jožef Stefan, University of Ljubljana

Kyoto, 2.10.2006

SPIN 2006

- Introduction
- Motivation
\checkmark Spin tune and decoherence of particle spins
- Model
- Differential equations of spin motion
- Differential equations of orbital motion
- Implementation (Fokker-Planck : Monte Carlo?)

Model predictions: Spin/Polarization reversal - is it possible, to what extent and why?

- Summary

Particle motion in storage ring is described with Lorenz force

$$
\begin{equation*}
e \vec{E}_{e}+\frac{e}{c} \dot{\vec{r}} \times \vec{B}+\overrightarrow{\mathcal{R}}=\frac{d}{d t} \frac{E}{c^{2}} \dot{\vec{r}} \quad, \quad \dot{\vec{r}}=\frac{d \vec{r}}{d t} \tag{1}
\end{equation*}
$$

\vec{E}_{e}, \vec{B} - EM fields, E particle energy, $\overrightarrow{\mathcal{R}}$ sinchrotron radiation emission force and \vec{r} particle position in the ring.
synchronous particle - reference orbit \vec{R} : gains and looses same amount of energy in one turn particle path

Expansion around $\vec{R}: \vec{r}=\vec{R}+(s, r, z)$
\rightarrow non-linear system 6 differential equations of the first order

$\downarrow 2$ equations for longitudinal motion (synchrotron motion - bunch: σ, η)
$\uparrow 4$ equations for transverse motion (betatron motion: $r, d r / d s, z, d z / d s$)

- electron and positron spins in high energy storage rings become spontanously polarized via the emission of spin-flip synchrotron radiation (Sokolov-Ternov).

1. EXPERIMENTAL BENEFIT?
\rightarrow polarized $\vec{S} \longrightarrow$ "clean experiments"

- change direcioio during operaion . during the same run
\checkmark flipping spins \longrightarrow reduce systematic errors in spin assymetry measurements

2. Spin flip experimentally obtained

- theoretically not completely explained (2D models predict: complete depolarization!)

localized radio-frequency (RF) dipole kicker (radial disturbing magnetic field)

$$
\vec{B}_{R F}(t)=B_{R F} \vec{e}_{r}=B_{R F}^{0} \cos \left(2 \pi f_{R F} t\right) \vec{e}_{r}
$$

applied on section $l \ll$ ring length L.
\checkmark resonant spin flipping: employing a RF dipole kicker (NMR analogy)

- ramping the frequency of the disturbing magnetic field through the resonance (speed of trea.changing)
- resonance strenght $\epsilon\left(B_{R F}\right)$ and frequency ramping rate $\alpha\left(f_{R F}=f_{0}+\alpha t\right)$

ORIGIN OF SPIN PRECESSION SPREAD-DECOHERENCE

SPIN PRECESSION RATE, SPIN TUNE

\checkmark (in B_{z}) spins precess around the vert. axis

$$
\begin{aligned}
S_{z} & =\cos \Theta \approx \text { const } \\
S_{h o r z} & =S_{s}+i S_{r} \approx e^{i \nu \Psi}
\end{aligned}
$$

- spin precession rate - number of spin precessions per turn $\nu=a \gamma$
- spin tune - for a synchronous particle $\nu_{0}=a \gamma_{0}$
- NOTICE: depends on particle energy (SR, synhrotron/betatron motion) - energy spread \Rightarrow spin precession rate spread \& spin precession decoherence

IMPORTANT: $B_{R F}$ too weak to flip spins in one turn (required $\int B_{R F} d l$ too big)

\checkmark rotation for π with \sum small spin rotations after many turns - long term procedure
\checkmark for the $B_{R F}$ partial spin rotations to add cumulatively (resonance), $f_{R F}$ must match ν (or $\bar{\nu}$ - non integer part of spin tune):
$f_{R F}=f_{c} \bar{\nu}$ or $f_{R F}=f_{c}(1-\bar{\nu})$ (mirror values)
frequency of the RF dipole field
circulation freq.e

ENERGY SPREAD AND LONG TERM PROCEDURE MAKE SPIN FLIPPING DIFFICULT!

FROISSART-STORA EQUATION

- synchrotron radiation (SR)
\checkmark synchrotron/betatron (!) motion
\uparrow before crossing the resonance: initial $P_{z}^{i} \Rightarrow$ after: final P_{z}^{f} - vertical polarization $=P_{F S}$
- P_{z}^{f} as a function of
- resonance strength $\epsilon\left(B_{R F}\right)$ and
- speed of crossing the resonance α - ramping rate
to describe nonideal cases
we MUST include:
\checkmark synchrotron radiation (SR)
- synchrotron/betatron (!) motion

For each particle i :

$\leftrightarrow \overrightarrow{\Omega_{i}}=\left(\Omega_{i x}, \Omega_{i r}, \Omega_{i z}\right)$, precession vector
\downarrow unit spin vector \vec{S}_{i}, semiclassical description in spherical coordinates

we obtain

$$
\begin{aligned}
& \frac{d \Theta_{i}}{d s}=\Omega_{i r} \cos \Psi_{i}-\Omega_{i x} \sin \Psi_{i} \\
& \frac{d \Psi_{i}}{d s}=\Omega_{i r} \sin \Psi_{i} \frac{\cos \Theta_{i}}{\sin \Theta_{i}}-\Omega_{i x} \cos \Psi_{i} \frac{\cos \Theta_{i}}{\sin \Theta_{i}}+\Omega_{i z}
\end{aligned}
$$

To describe spin motion, parameters $\overrightarrow{\Omega_{i}}$ for a given storage ring must be found ...

Thomas-BMT equation (EM fields in laboratory system)

$$
\vec{\Omega}=\frac{e}{m c \gamma}\left[(1+\gamma a) \vec{B}_{\perp}+(1+a) \vec{B}_{\|}-\left(a \gamma+\frac{\gamma}{1+\gamma}\right) \vec{\beta} \times \frac{\vec{E}}{c}\right]
$$

1. smooth planar ring approximation

$$
\text { no vertical bends, } \vec{B}_{\|}=0, \vec{E}=0
$$

$$
\vec{\Omega}=\frac{e}{m c \gamma}\left[(1+\gamma a) \vec{B}_{\perp}\right]
$$

2. spin tune for a particle with relative energy offset η
```
\nu=a\gamma=a\mp@subsup{\gamma}{0}{}(1+\eta)
```

$$
\vec{\Omega}=\frac{e}{m c \gamma}\left[\left(1+a \gamma_{0}(1+\eta)\right) \vec{B}_{\perp}\right]
$$

3. with $\vec{B}_{\perp}=\left(0, B_{R F} F_{l}(s), B_{z}\right), B_{R F}=B_{R F}^{0} \cos \left(2 \pi f_{R F} s / c\right)$ - RF disturbing field \rightarrow

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\Omega}=\frac{B_{z} e}{m c \gamma}\left[1+a \gamma_{0}(1+\eta)\right] \vec{e}_{z}+\frac{B_{R F} e}{m c \gamma}\left[1+a \gamma_{0}(1+\eta)\right] F_{l}(s) \vec{e}_{r} \\
& \text { where } \quad \begin{array}{l}
F_{l}(s)=\sum_{k=0}^{\infty}[H(s-k L)-H(s-l-k L)] \\
H(s) \ldots \text { Heaviside step function on the section }[0, l], l \ll L \text { and } k \text { int }
\end{array}
\end{aligned}
$$

4. in coord.syst. $\left(\vec{e}_{s}, \vec{e}_{r}, \vec{e}_{z}\right)$ $\vec{\Omega}=\frac{B_{z} e}{m c \gamma}\left[a \gamma_{0}(1+\eta)\right] \vec{e}_{z}+\frac{B_{R F e}}{m c \gamma}\left[1+a \gamma_{0}(1+\eta)\right] F_{l}(s) \vec{e}_{r}$
5. $Q_{s} \ll \nu$ (sinchr. osc. slower than spin precession):

$$
\text { average } \vec{\Omega} \text { around the ring } \rightarrow \vec{\Omega}=D(1+\eta) \vec{e}_{z}+\Omega_{r}^{0} \vec{e}_{r}
$$

$$
\text { with parameters } D=\frac{2 \pi \nu_{0}}{L}
$$

$$
\Omega_{r}^{0}=\left(1+a \gamma_{0}\right) \frac{e}{m c \gamma_{0}} B_{R F}^{0} \cos \left(2 \pi f_{R F} s / c\right) F_{l}(s)
$$

Spin precession in horiz.plane for an equilibrium beam (SR significant) and without disturbing RF field.
Spin precession rate: $\nu=a \gamma=\nu_{0}(1+\eta)=\nu_{0}\left(1+\eta_{0} \cos \psi_{s}\right), \quad \psi_{s}=Q_{s} \theta, \quad \theta=2 \pi s / L$ $\rightarrow Q_{s}$ synchrotron tune, ψ_{s} synchrotron phase, η_{0} synchrotron osc.amplitude
Therefore spin phase:

$$
\Psi=\int_{0}^{\theta} \nu d \theta^{\prime}=\nu_{0} \theta+\nu_{0} \frac{\eta_{0}}{Q_{s}} \sin \psi_{s}
$$

and horizontal spin component - with expanding into series

$$
S_{h o r z} \sim e^{i \Psi}=e^{i \nu_{0} \theta} e^{i \nu_{0}\left(\eta_{0} / Q_{s}\right) \sin \psi_{s}}=e^{i \nu_{0} \theta} \sum_{m=-\infty}^{\infty} e^{i m \psi_{s}} J_{m}\left(\frac{\eta_{0} \nu_{0}}{Q_{s}}\right)
$$

J_{m} is a Bessel function. After uniform

- averaging over all synchrotron phases ψ_{s}, only a term $m=0$ remains:

$$
\left\langle S_{h o r z}\right\rangle \sim e^{i \nu_{0} \theta} J_{0}\left(\frac{\eta_{0} \nu_{0}}{Q_{s}}\right)
$$

- averaging over η_{0} amplitudes with Gaussian distribution

$$
\begin{aligned}
&\left\langle\left\langle S_{h o r z}\right\rangle\right\rangle \sim e^{i \nu_{0} \theta} \int_{0}^{\infty} J_{0}\left(\frac{\eta_{0} \nu_{0}}{Q_{s}}\right) e^{-\eta_{0}^{2} /\left(2 \epsilon_{s}\right)} \frac{d \eta_{0}}{\sqrt{2 \pi \epsilon_{s}}}, \epsilon_{s} \text {-emittance } \\
& \sim e^{i \nu_{0} \theta} e^{-\sigma_{s}^{2}} I_{0}\left(\sigma_{s}^{2}\right)=e^{i \nu_{0} \theta} \\
& \operatorname{spin} \operatorname{spread}\left(\sigma_{s}^{2}\right)
\end{aligned}
$$

Width of spin spread due to synchrotron osc.

$$
\sigma_{s}^{2}=\epsilon_{s} \frac{\nu_{0}^{2}}{4 Q_{s}^{2}}
$$

LET's EVALUATE - for SYNCHROTRON MOTION:

```
spin spread}(\mp@subsup{\sigma}{s}{2})=\mp@subsup{e}{}{-\mp@subsup{\sigma}{s}{2}}\mp@subsup{I}{0}{}(\mp@subsup{\sigma}{s}{2}
```

width of spin spread

$$
\sigma_{s}^{2}=\epsilon_{s} \frac{\nu_{0}^{2}}{4 Q_{s}^{2}}
$$

$$
\text { typical values for HERA } \eta_{0}=0.001, \nu_{0}=60, Q_{s}=0.06:
$$

$$
\left(\epsilon_{s}=\sigma_{\eta_{0}}^{2}\right)
$$

$$
\sigma_{s}^{2}=\epsilon_{s} \frac{\nu_{0}^{2}}{4 Q_{s}^{2}} \quad \rightarrow 1 *
$$

$$
\Rightarrow \text { synhr. motion canNOT be neglected }
$$

VALID IF:

- if synchr. motion completes many periodes during the time of spin reversal,
- if orbital damping and noise exhibit equilibrium in the beam during this same time
\checkmark if therefore time, needed for polarization reversal is much longer than synhr. periode Q_{s} and damping time
* in agreement with K. Heinemann, DESY Report 97-166, 1997

1. vertical betatron oscillations: neglected

- in a planar electron ring the vertical betatron emittance is negligible

2. horizontal betatron oscillations: cause the particles to see an additional vert.magn.field,

- betatron stability condition requires non zero field gradient
- assume a constant quadrupole field gradient g
\checkmark the quadrupole field of the shape $B_{q u a d}=g A_{r} \cos \psi_{r}, \quad \psi_{r}=Q_{r} \theta, \quad \theta=2 \pi s / L$ $\rightarrow A_{r}$ - betatron amplitude, ψ_{r} betatron phase, Q_{r} betatron tune.

The additional precession vector in the T-BMT due to betatron motion now is

$$
\omega_{z}^{\beta}=\frac{e}{m_{e} c \gamma}\left(1+a \gamma_{0}\right) g A_{r} \cos \psi_{r} \approx \frac{e}{m_{e} c \gamma} a \gamma_{0} A_{r} \cos \psi_{r}, \quad a \gamma_{0} \gg 1
$$

Analogous to the synchrotron case the spin precession rate can be written as

$$
\nu=\nu_{0}\left(1+A_{r} \cos \psi_{r}\right)
$$

We repeat corresponding calculations and after averaging over betatron phases ψ_{r} and over different betatron amplitudes A_{r} we get

$$
\left\langle\left\langle S_{h o r z}\right\rangle\right\rangle \sim e^{i \nu_{0} \theta} e^{-\sigma_{r}^{2}} I_{0}\left(\sigma_{r}^{2}\right)=e^{i \nu_{0} \theta} \quad \text { spin } \operatorname{spread}\left(\sigma_{r}^{2}\right)
$$

Width of spin spread due to betatron osc. $\sigma_{r}^{2}=\epsilon_{r} \frac{\nu_{0}}{4 Q_{r}^{2}}$

LET's EVALUATE - for BETATRON MOTION:
spin $\operatorname{spread}\left(\sigma_{r}^{2}\right)=e^{-\sigma_{r}^{2}} I_{0}\left(\sigma_{r}^{2}\right)$
width of spin spread

$$
\sigma_{r}^{2}=\epsilon_{r} \frac{\nu_{0}^{2}}{4 Q_{r}^{2}}
$$

since typical values for $\operatorname{HERA} \epsilon_{r}=10^{-8}, \nu_{0}=60, Q_{r} \approx 100$ $\sigma_{r}^{2}=\epsilon_{r} \frac{\nu_{0}^{2}}{4 Q_{r}^{2}} \approx 10^{-12}$ \square \Rightarrow betatron motion CAN be neglected

VALID IF:

- if betatron. motion completes many periodes during the time of spin reversal,
- if orbital damping and noise exhibit equilibrium in the beam during this same time
\checkmark if therefore time, needed for polarization reversal is much longer than betatr.periode Q_{r} and damping time

Thomas-BMT equation (EM fields in laboratory system)

$$
\vec{\Omega}=\frac{e}{m c \gamma}\left[(1+\gamma a) \vec{B}_{\perp}+(1+a) \vec{B}_{\|}-\left(a \gamma+\frac{\gamma}{1+\gamma}\right) \vec{\beta} \times \frac{\vec{E}}{c}\right]
$$

1. smooth planar ring approximation

$$
\text { no vertical bends, } \vec{B}_{\|}=0, \vec{E}=0
$$

$$
\vec{\Omega}=\frac{e}{m c \gamma}\left[(1+\gamma a) \vec{B}_{\perp}\right]
$$

2. spin tune for a particle with relative energy offset η
```
\nu=a\gamma=a\mp@subsup{\gamma}{0}{}(1+\eta)
```

$$
\vec{\Omega}=\frac{e}{m c \gamma}\left[\left(1+a \gamma_{0}(1+\eta)\right) \vec{B}_{\perp}\right]
$$

3. with $\vec{B}_{\perp}=\left(0, B_{R F} F_{l}(s), B_{z}\right), B_{R F}=B_{R F}^{0} \cos \left(2 \pi f_{R F} s / c\right)$ - RF disturbing field \rightarrow

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\Omega}=\frac{B_{z} e}{m c \gamma}\left[1+a \gamma_{0}(1+\eta)\right] \vec{e}_{z}+\frac{B_{R F} e}{m c \gamma}\left[1+a \gamma_{0}(1+\eta)\right] F_{l}(s) \vec{e}_{r} \\
& \text { where } \quad \begin{array}{l}
F_{l}(s)=\sum_{k=0}^{\infty}[H(s-k L)-H(s-l-k L)] \\
H(s) \ldots \text { Heaviside step function on the section }[0, l], l \ll L \text { and } k \text { int }
\end{array}
\end{aligned}
$$

4. in coord.syst. $\left(\vec{e}_{s}, \vec{e}_{r}, \vec{e}_{z}\right)$ $\vec{\Omega}=\frac{B_{z} e}{m c \gamma}\left[a \gamma_{0}(1+\eta)\right] \vec{e}_{z}+\frac{B_{R F e}}{m c \gamma}\left[1+a \gamma_{0}(1+\eta)\right] F_{l}(s) \vec{e}_{r}$
5. $Q_{s} \ll \nu$ (sinchr. osc. slower than spin precession):

$$
\text { average } \vec{\Omega} \text { around the ring } \rightarrow \vec{\Omega}=D(1+\eta) \vec{e}_{z}+\Omega_{r}^{0} \vec{e}_{r}
$$

$$
\text { with parameters } D=\frac{2 \pi \nu_{0}}{L}
$$

$$
\Omega_{r}^{0}=\left(1+a \gamma_{0}\right) \frac{e}{m c \gamma_{0}} B_{R F}^{0} \cos \left(2 \pi f_{R F} s / c\right) F_{l}(s)
$$

... we obtain precession vector of the model

$$
\begin{aligned}
& \qquad \vec{\Omega}=D(1+\eta) \vec{e}_{z}+\Omega_{r}^{0}(s) \vec{e}_{r} \\
& \text { with parameters } D=\frac{2 \pi \nu_{0}}{L} \quad \Omega_{r}^{0}=\left(1+\nu_{0}\right) \frac{e}{m c \gamma_{0}} B_{R F}^{0} \cos \left(2 \pi f_{R F} s / c\right), \\
& \eta \text { relative energy offset from the synchronous particle }
\end{aligned}
$$

we obtain

```
\frac{d\Theta}{ds}=+\mp@subsup{\Omega}{r}{0}\operatorname{cos}\Psi
```

- Contributions to spin angle change - $\mathrm{d} \Theta$:
- main contribution - resonance term $\propto \Omega_{r}^{0}(s)$
- coupling to synhrotron motion and SR through η

Since $\eta=\eta(s)$ and $\Omega_{r}^{0}=\Omega_{r}^{0}(s)$: orbital motion description is needed

Differential equation of orbital motion

Obtained starting from full set of equations of motion (6D).

- canonical transformation to decouple synchrotron and betatron part *
\checkmark averaged over one turn $L \Rightarrow$ betatron motion can be averaged out
(fast compared to spin motion)

- here σ - distance from the synchronous particle, η - relative energy offset,
$\uparrow \alpha_{c}$ compaction factor, Q_{s} synchrotron tune, α_{s} one turn damping rate, h harmonic number, Φ_{0} synchronous particle phase, κ synchrotron radiation excitation strength, $\xi(t)$ Gaussian random variable.
* D.P. Barber et al., DESY Report HERA M-94-09, 1994

Summary of used approximations

approximations:

- highly relativistic particles $v \approx c \Rightarrow s=c t$
\checkmark a constant vertical dipol magnetic field \vec{B}_{z} is applied to the ring (smooth and planar approximation)
\uparrow orbital motion averaged around the ring

neglecting:

\checkmark nonlinear orbital motion, influence of higher multipoles

- betatron motion:
- in a planar ring vertical betatron emittance is negligible, therefore vertical betatron oscillations are neglected
- we prove that the effect of horizontal betatron oscillations can be neglected

Final set of differential equations:

- orbital part:
$\frac{d \sigma}{d s}=-\alpha_{c} \eta$

$$
\frac{d \eta}{d s}=\frac{\left(2 \pi \frac{Q_{s}}{L}\right)^{2}}{\alpha_{c}} \frac{L}{2 \pi h}\left[\sin \left(h \frac{2 \pi}{L} \sigma\right) \cos \Phi_{0}\right]-2 \frac{\alpha_{s}}{L} \eta+\sum_{j=0}^{\infty} \delta\left(s-L \frac{j}{N_{e}}\right) \sqrt{\kappa_{\mathrm{MC}}} \xi(s)
$$

\checkmark spin part:

$$
\begin{aligned}
& \frac{d \Theta}{d s}=+\Omega_{r}^{0} \cos \Psi \\
& \frac{d \Psi}{d s}=-\Omega_{r}^{0} \sin \Psi \frac{\cos \Theta}{\sin \Theta}+D(1+\eta)
\end{aligned}
$$

This is a 3D spin problem - possible reduction to a planar 2D spin problem with $\Theta=\pi / 2\left(P_{\text {horz }}\right)$.
Two approaches to solving:

- Monte Carlo: tracking (one by one) particles with phase vector $\vec{Y}(s)=(\sigma, \eta, \Theta, \Psi)(s)$, distribution is obtained through many particles
- a farm of 300 Pentium III 400 MHz Monte Carlo Array Processors (MAP), University of Liverpool was used - in year 2000
- a farm of 30 Dual Core Opteron 1.9 MHz after
- Fokker - Planck: distribution $u(\vec{Y}(s))$ on a grid is tracked
- solving PDE on a parallel computer CRAY T3E, Jülich - in year 1999

Example of time development for a 2D spin problem distr. (horiz. η plane, no $B_{R F}$) with distr. $P_{\text {horz }}(s)=(\sigma, \eta, \Psi)(s)$, averag.in Ψ

Example of development * $P_{\text {horz }}(s) \rightarrow$ limit value

For a 3D spin problem with $\vec{P}(s)=P(\sigma, \eta, \Psi, \Theta)(s)$ calculation is time consuming \rightarrow Monte Carlo.

* in agreement with K. Heinemann, DESY Report 97-166, 1997

$$
\begin{aligned}
\frac{d \sigma}{d s}= & -\alpha_{c} \eta \\
\frac{d \eta}{d s}= & \frac{\left(2 \pi \frac{Q_{s}}{L}\right)^{2}}{\alpha_{c}} \frac{L}{2 \pi h}\left[\sin \left(h \frac{2 \pi}{L} \sigma\right) \cos \Phi_{0}\right]- \\
& -2 \frac{\alpha_{s}}{L} \eta+\sum_{j=0}^{\infty} \delta\left(s-L \frac{j}{N_{e}}\right) \sqrt{\kappa_{\mathrm{MC}}} \xi(s)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \Theta}{d s}=+\Omega_{r}^{0} \cos \Psi \\
& \frac{d \Psi}{d s}=-\Omega_{r}^{0} \sin \Psi \frac{\cos \Theta}{\sin \Theta}+D(1+\eta)
\end{aligned}
$$

\checkmark ensemble of N spin $\frac{1}{2}$ particles - electrones

- solve equations numerically for each spin particle i
\checkmark ramp frequency of RF field through the resonance
\checkmark FIND POLARIZ.DIRECTION AFTER RAMPING: $\vec{P}(\epsilon, \alpha)=\frac{1}{N} \sum_{i=1}^{N} \frac{\vec{S}_{i}}{\left|\vec{S}_{i}\right|}$

$$
P_{z F S}^{f}=2 e^{\frac{-\pi|\epsilon|^{2}}{2 \alpha}}-1
$$

- NOT IDEAL due to synchr. osc. and SR noise effects: DECOHERENCE
- $P_{z}^{f} \neq P_{z F S}^{f}$
- $\epsilon\left(B_{R F}\right)$,
α
influence of spin decoherence on spin flip procedure efficiency???

1	idealized case: without synhr. osc.	$(\eta=0)$	without SR	$\left(\alpha_{s}=0, \kappa=0\right)$
2	with synhr. osc.	$(\eta \neq 0)$	without SR	$\left(\alpha_{s}=0, \kappa=0\right)$
3	with synhr. osc.	$(\eta \neq 0)$	with SR with noise	$\left(\alpha_{s} \neq 0, \kappa \neq 0\right)$

PREDICTION - Is spin flip on HERA possible?

- during flipping process spins pass through the horizontal plane
- if duration is large, spins might decohere due to synchr. osc. and synchrotron radiation
\checkmark indeed 2D modes (for HERA) predict:
depolarization in horiz.plane

Buon 1987
Koutchouk 1991
Heinemann 1997
total, $\tau_{d}=1 \mathrm{~ms}$
total, $\tau_{d}=5.7 \mathrm{~min}$
diffusion \rightarrow a limiting angle, $\tau_{d-h}=6.6 \neq \mathrm{ms}$

- a trial for HERA parameters:
$B_{R F} l=1 G m, \alpha=0.9 \mathrm{~Hz} / \mathrm{s},{ }_{(1.5 \mathrm{~Hz} / \mathrm{s}}$
decoherence)
\checkmark relatively high degree of polarization: $P_{z}^{f} \approx-0.3$ after spin reversal procedure, even with synchr.osc. and SR effects
\checkmark time the system spends in the resonance: $250 \tau_{d-h} \gg 1 \mathrm{~ms}$ - Buon decoherence time

> AT LEAST partial polarization reversal is still possible also in high energy electron storage rings.
\ldots as a function of α with constant RF field strength $\int B_{R F}^{0} d l=1 \mathrm{Gm}$.

Classification with respect to time spent in resonance:
\checkmark short(high ramping rates) \approx final P_{z} close to Froissart-Stora prediction

- longer (some $1 / Q_{s}$) \approx lower polarization reversal efficiency
- final P_{z} is lower due to synch.osc.
- SR influence is not strong
- measured point agrees with model prediction for parameters of HERA, optimal for depolarizing: $\alpha \approx 1.5 \mathrm{~Hz} / \mathrm{s}, \int B_{R F}^{0} d l=1 \mathrm{Gm}$
- optimal polarization reversal:

$$
\alpha \approx 0.2 \mathrm{~Hz} / \mathrm{s} \text { (not tried at HERA) }
$$

Spin prec.rate $\nu=a \gamma=\nu_{0}(1+\eta)=\nu_{0}\left(1+\eta_{0} \cos \psi_{s}\right), \quad \psi_{s}=Q_{s} \theta+\psi_{s 0}, \quad \theta=2 \pi s / L$
Therefore spin phase $\Psi \quad \psi_{s 0}$ is constant, but canNOT be neglected

- stochastics too weak - resonance crossings too short - to establish beam equil.!!!

$$
\Psi=\int_{0}^{\theta} \nu d \theta^{\prime}=\nu_{0} \theta+\nu_{0} \frac{\eta_{0}}{Q_{s}} \sin \psi_{s} \quad-\nu_{0} \frac{\eta_{0}}{Q_{s}} \sin \psi_{s 0}
$$

and horizontal spin component - with expanding into series

$$
\begin{aligned}
S_{h o r z} \sim e^{i \Psi} & =e^{i \nu_{0} \theta} e^{i \nu_{0}\left(\eta_{0} / Q_{s}\right) \sin \psi_{s}} & \cdot e^{-i \nu_{0}\left(\eta_{0} / Q_{s}\right) \sin \psi_{s 0}} \\
& =e^{i \nu_{0} \theta} \sum_{m=-\infty}^{\infty} e^{i m \psi_{s}} J_{m}\left(\frac{\eta_{0} \nu_{0}}{Q_{s}}\right) & \cdot \sum_{m^{\prime}=-\infty}^{\infty} e^{-i m^{\prime} \psi_{s 0}} J_{m}^{\prime}\left(\frac{\eta_{0} \nu_{0}}{Q_{s}}\right)
\end{aligned}
$$

J_{m} is a Bessel function. After uniform

- averaging over all synchrotron phases ψ_{s} :

$$
\left\langle e^{i \Psi}\right\rangle=e^{i \nu_{0} \theta}\left\langle J_{0}\left(\frac{\eta_{0} \nu_{0}}{Q_{s}}\right)\right\rangle
$$

Still we can - average over initial synchrotron phases $\psi_{s_{0}}$. We obtain:

$$
\left\langle e^{i \Psi}\right\rangle=e^{i \nu_{0} \theta} \sum_{m=-\infty}^{\infty} e^{i m Q_{s} \theta} J_{m}^{2}\left(\frac{\eta_{0} \nu_{0}}{Q_{s}}\right)
$$

explicit dependence of θ, beating with frequency Q_{s}, i.e. recoherence every synhrotron periode

$$
\left(\text { when } e^{i Q_{s} \theta}=1\right)
$$

- We obtained:

$$
\left\langle e^{i \Psi}\right\rangle=e^{i \nu_{0} \theta} \sum_{m=-\infty}^{\infty} e^{i m Q_{s} \theta} J_{m}^{2}\left(\frac{\eta_{0} \nu_{0}}{Q_{s}}\right)
$$

explicit dependency on θ, beating with frequency Q_{s}, i.e. recoherence every synchrotron period.
(when $e^{i Q_{s} \theta}=1$)
\checkmark We repeat (from the model with RF field):

$$
\begin{equation*}
\frac{d \Psi}{d s}=-\Omega_{r}^{0} \sin \Psi \frac{\cos \Theta}{\sin \Theta}+D(1+\eta) \tag{2}
\end{equation*}
$$

\uparrow travelling around the ring the spins spread out in Ψ due to synhr. motion (η recoherence)

- the term due to RF field introduces additional RF decoherence
complete inverse recoherence becomes impossible
\ldots as a function of α with constant RF field strength $\int B_{R F}^{0} d l=5 \mathrm{Gm}$.

Classification with respect to time spent in resonance:
\checkmark short(high ramping rates) \approx final P_{z} close to Froissart-Stora prediction

- longer (some $1 / Q_{s}$) \approx lower polarization reversal efficiency
\checkmark even longer (many $1 / Q_{s}$, slow crossing of resonance) \approx
- complete dopolarization at very low
ramping rates α
- strong SR influence
\uparrow optimal polarization reversal and optimal ramping rates for polarization reversal
- Sokolov-Ternov effect is negligible on this time scale

Not only that reverse recoherence becomes impossible,
stohastic influences of SR noise accumulate \Rightarrow ACTIVE partial or total spin precession decoherence!

1. time in resonance region is short - non affected Froissart-Stora behaviour
2. time in resonance is of some $1 / Q_{s}, \quad\left\langle e^{i \Psi}\right\rangle=e^{i \nu_{0} \theta} \sum_{m=-\infty}^{\infty} e^{i m Q_{s} \theta} J_{m}^{2}\left(\frac{\eta_{0} \nu_{0}}{Q_{s}}\right)$

- a shift to a lower polarization reversal efficiency due to RF field decoherence (on top of sychrotron motion recoherence beating)

3. synchr. motion completes many periodes during the time of spin reversal, orbital damping and noise exhibit equilibrium in the beam during this same time

- partial or complete depolarization due to SR effects decoherence (on top of synchr.motion and RF field decoherence)
\checkmark ramping rate α and dimensionless parameter $\epsilon / \sqrt{\alpha}$ (of $\int B_{R F}^{0} d l$) optimal for polarization reversal in HERA
$\checkmark \epsilon / \sqrt{\alpha}$ is INDEPENDENT of $\int B_{R F}^{0} d l \rightarrow$ (with stronger RF field the resonance can be crossed faster with same final effect)
\checkmark for HERA optimal $\epsilon / \sqrt{\alpha}$ is 1.7 ± 0.2 and minimal final vertical component of polarization P_{z} is around -0.75
no sextupole effects, no spin rotators

MODEL

- Model describes spin motion in 3D, includes particle synchrotron oscillations, SR (synchrotron radiation) influences and RF radial disturbing magnetic field kicker.

FINDINGS

- Even for a high energy storage ring HERA with significant synchrotron radiation and synchrotron motion, polarization reversal is possible with relatively small strengths of radial RF magnetic field.
- Due to RF field and SR decoherence (on top of sychrotron motion recoherence beating), the spin angles mix up during the passage through the horizontal plane, which results in effectively lower polarization reversal efficiency:
- if synchrotron motion completes some periodes in the resonance, the influence of SR noise (on polarization reversal) is small,
- however, with slow enough crossing, effects of SR noise significantly lower the degree of polarization reversal.

Although in reality additional fields affect the spin motion, the presented model serves as
a good basis to distinguish different effects influencing
the spin motion of high energy electrons.

STUDY OF POSSIBILITIES FOR A SPIN FLIP IN HIGH energy electron storage ring Hera

Špela Stres and Rok Pestotnik

Institute Jožef Stefan, University of Ljubljana

Kyoto, 2.10.2006

SPIN 2006

- Introduction
- Motivation
\checkmark Spin tune and decoherence of particle spins
- Model
- Differential equations of spin motion
- Differential equations of orbital motion
- Implementation (Fokker-Planck : Monte Carlo?)
\uparrow Model predictions: Spin/Polarization reversal - is it possible, to what extent, conditions and why?
- Summary

