Spin Filtering Studies at COSY and AD (Target Issues)

Alexander Nass

University of Erlangen-Nürnberg

SPIN 2006

Oct 6, 2006

Introduction

- Proposal of PAX for polarized pp experiments
- Polarization of protons by spin filtering demonstrated by FILTEX (1993)
- Theoretical understanding unclear, two competing interpretations with or without an electron contribution
- Clarification needed in this point: measurements with pure electron and pure nuclear polarization at COSY (Jülich) to disentangle the effects
- Polarization of antiprotons: filtering measurements with at AD (CERN)

See also talks by F.Rathmann and N.Nikolaev

Overview

Requirements for Spin Filtering

- **#** High polarization of the target
- **\ddagger** Density up to 10¹⁵ atoms/cm²
- **T** Variability of the direction of the spin axis
- **#** Implementation into storage rings
- Ability to produce electron and nuclear polarization separately
- **#** Polarization measurement independent of the beam
- ➡ Ability to produce polarized H and D in short sequence with the same setup for filtering with D and measuring with H (no A_v for pd known)

Polarization of the Target Gas

Hydrogen states are defined as $(|a\rangle = |m_s, m_I\rangle)$:

$$|1\rangle = |\frac{1}{2}, \frac{1}{2}\rangle |2\rangle = \cos \theta |\frac{1}{2}, -\frac{1}{2}\rangle + \sin \theta |-\frac{1}{2}, \frac{1}{2}\rangle |3\rangle = |-\frac{1}{2}, -\frac{1}{2}\rangle |4\rangle = -\sin \theta |\frac{1}{2}, -\frac{1}{2}\rangle + \cos \theta |-\frac{1}{2}, \frac{1}{2}\rangle$$

with $\theta = \frac{1}{2} \arctan(B_C/B)$

Polarization:

 $P_{e} = n_{1} - n_{3} + (n_{2} - n_{4}) \cos 2\theta$ $P_{z} = n_{1} - n_{3} - (n_{2} - n_{4}) \cos 2\theta$

Setup of the Polarized Target

- Production of a polarized atomic beam by an atomic beam source (ABS)
- Increase of the target density by means of a storage cell
- Analysis of target polarization by a so-called Breit-Rabi polarimeter (BRP) and a target gas analyzer (TGA)

The Atomic Beam Source

- ABS vacuum consists of 7 turbo molecular pumps with total pumping speed of ~10000 l/s
- Atomic beam is produced when the dissociated gas expands through a cooled nozzle into the vacuum
- Sextupole magnets produce electron polarization by focussing atoms in hyperfine states |1> and |2> and defocussing |3> and |4>
- High frequency transitions (HFT's) exchange populations of hyperfine states and are used to produce nuclear polarization
- ➡ HFT's will be tuned for H and D for filtering with D and beam polarization measurement with H

Storage Cell and Holding field

- Filtering requires 10¹⁵ atoms/cm² therefore use of storage cell
- Use of Teflon foil to detect recoils and suppress depolarization and recombination
- Openable cell to allow injected uncooled AD beam to pass
- Weak holding field coils included in cell design to define spin axis

Pair of superconducting Helmholtz coils to provide a strong longitudinal holding field for separate determination of nuclear and electron effects during spin-filtering

Beam line vacuum at the target

Flow limiters to reduce gas flow into the adjacent sectionsPump with cold surfaces of the superconducting quadrupoles

Polarization analysis

TGA is used to determine atomic fraction of the target gas

- **‡** BRP measures the polarization of the target gas atoms using combinations of high frequency transitions in ABS and BRP
- Calibration for H and D to measure both in a short time interval
- Cross check of the BRP measurement using pp (pp) scattering with unpolarized COSY (AD) beam

Planned measurements

- Filtering measurements with pure electron polarized hydrogen target (states |1> and |2>) and pure nuclear polarized hydrogen (states |1> and |4>) in a strong magnetic holding field at COSY using a proton beam to determine the effect of electrons and nuclei separately
- Filtering tests at COSY with nuclear polarized hydrogen and deuterium target (state |1>) in a weak magnetic holding field to redo the FILTEX measurements with protons and test the setup for AD
- Filtering measurements at AD with nuclear polarized hydrogen and deuterium target (state |1>) in a weak magnetic holding field and an antiproton beam to show the ability of the method to produce polarized antiprotons

Summary

- Polarized gas target meets the requirements for the filtering tests
- Ability to provide highly polarized H and D in short sequence
- Storage cell will increase density to the values needed but thin teflon wall will allow to detect recoils
- Change of spin direction can be achieved by switching the weak target holding field from vertical to longitudinal
- BRP will be able to measure the target polarization with required accuracy (calibration using pp (pp) scattering)
- Target setup will be completed end of 2007, measurements starting in summer 2008 at COSY and 2009/10 at AD

The Polarized Target to use

Former HERMES-target at HERA

