Polarized ³He targets at MAMI

Jochen Krimmer for the A1 and A2 collaboration

Institut für Kernphysik Johannes Gutenberg-Universität Mainz

SPIN 2006 The 17th International Spin Physics Symposium Kyoto Japan October 2-7 '06

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Polarized ³He

Effective polarized neutron target

- Demands for the target
 - Polarization 70-75 %
 - Gas pressure 5 bar
- Metastability Exchange Optical Pumping (MEOP)
 - Metastable 1st excited state via gas discharge
 - Circularly polarized laser light for optical pumping (2*15 W fibre lasers, 1083 nm)
 - Transfer of polarization to the nucleus via hyperfine coupling

▶ Optical pumping at 1 mb, required pressure 5 bar
 ⇒ Compression without loss of polarization.

The Polarizer

The Polarizer

Performance of the Polarizer

Ph.D. thesis J. Schmiedeskamp, Mainz, 2005

Transport of polarized ³He

- Filling of the target cells at the polarizer
- Transport to the experiment in special transport boxes
 - μ -metal to shield external fields
 - Permanent magnets to provide homogeneous holding field

Relaxation mechanisms

$\frac{1}{T_1^{total}} = \frac{1}{T_1^{grad}} + \frac{1}{T_1^{dipole}} + \frac{1}{T_1^{$	$\frac{1}{T_1^{beam}} + \frac{1}{T_1^{wall}}$
 Field gradients 	
T ₁ ^{grad} $\sim \left(\frac{B_0}{dB/dr} ight)^2 \cdot p > 1000 ext{ h}$	
 (p = 5 bar and gradient < 5 · 10⁻⁴ cm⁻¹) ▶ Dipole-dipole interaction 	
$T_1^{dipole} pprox rac{817 h \cdot bar}{p[bar]} = rac{163 h}{163 h}$ (p = 5 bar)	
electron beam	photon beam
Production of ³ He ⁺ ions	Target + holding field
$T_1^{beam} = rac{E_{ion} \cdot V_T}{rac{dE}{dE} \cdot z_T} \cdot rac{e}{l} \cdot rac{1}{P_T}$	inside Crystal Ball
z_T = Target length, <i>I</i> = electron current	Ph.D. thesis of
\Rightarrow T_1^{beam} \approx 150h at 10 μ A	P. Aguar Bartolome

Target design: Entry Windows

- Demands:
 - Stand pressure of 5 bar
 - Low atomic number to reduce background
 - Minimal effect on wall relaxation
- Tests with an uncoated aluminosilicate cell

window material	T ₁ ^{wall}
Diamond (30 μ m)	70 h
Titanium (25 μ m)	70 h
Beryllium (50 μ m)	20 h
Beryllium (50 μ m) + Ti (25 μ m)	70 h
Copper (25 μ m)	50 h
Beryllium (50 μ m) + Al (10 μ m)	50 h

- ► T_1^{total} in the beam: $\frac{1}{T_1^{total}} = \frac{1}{1000 \text{ h}} + \frac{1}{163 \text{ h}} + \frac{1}{150 \text{ h}} + \frac{1}{T_1^{wall}}$
- $T_1^{total} > 40 \text{ h} \Rightarrow T_1^{wall} > 85 \text{ h}$
- Cs coated quartz cells

Target cell

- Quartz glass with cesium coating
- Greaseless valve, can stand pressures up to 8 bar
- ▶ Windows: Aluminum (0.4 μ m) + Beryllium (50 μ m)
- $T_1^{wall} = 80 \text{ h}$

Holding field

- Relative gradient $\left|\frac{dB/dr}{B_0}\right| < 5 \cdot 10^{-4} \text{ cm}^{-1}$
- Shield and compensate for fields in A1-hall
- ► Rotate ³He-spin in scattering plane

Holding field

Correction coils to optimize the fields

Field measurements

 Z-field, influence of correction coils

Relative Gradient
 5 · 10⁻⁴ cm⁻¹

▲ロト▲聞と▲臣と▲臣と 臣 めんぐ

- MAMI-C: Maximum electron energy 1.5 GeV
- ► Beam for experiments: Beginning of 2007

Upcoming experiments: Virtual photons

G_{en} from polarization experiments

Approved proposal to measure G_{en} with polarized ³He at Q² = 1.5 (GeV/c)²

・ロト ・ 同ト ・ ヨト ・ ヨト

Upcoming experiments: Real photons, GDH

・ コット (雪) (小田) (コット 日)

- Neutron: Significant contribution in the 3rd resonance region
 - Modification of the helicity amplitudes ?
 - Double pion contribution ?
 - ► ⇒ Crystal Ball detector at MAMI-C

Summary

- Polarizer
 - Polarization 70-75 %
 - Flux: 2 bar·l/h
- Target cells
 - Test of different window materials
 - T₁^{wall} = 80 h with Cs-coated quartz cells

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Holding field
 - Relative gradient < 5 · 10⁻⁴ cm⁻¹
- $T_1^{total} \approx 40$ h (in beam)
- Exchange of target cells twice per day
- Mean target polarization 60-65 %

Polarization principle (MEOP)

T₁ measurement

Additional static field B1 for flipping the magnetization
 induced voltage in pickup coils

- 20

- Flipping angle < 2°</p>
- ▶ Polarization loss per measurement $\approx 0.02\%$

T₁ measurement

Induced voltage in pickup coils Amplitude ~ polarization

Exponential decay of the signal \Rightarrow Relaxation time T_1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Understanding Wall Relaxation

"Historical" model:

Dipolar coupling to paramagnetic impurities, e.g. iron

Experimental observation:

"Iron-free" and normal Supremax cells have similar T_1 times

 New model: Including Fermi-contact interaction with dangling bonds.
 0,1
 0,01
 1E-3

Wall relaxation

 ► Ferromagnetic impurities
 ⇒ proper demagnetization

Adsorption

⇒ coating e.g. with Cs to reduce sticking time

Dissolution

- ⇒ use of dense glasses (aluminosilicates)
- \Rightarrow pores closed by Cs coating

Demagnetization device

