2019 年度 修士論文

MAIKo TPC を用いた ¹²C(n, n')¹²C(0⁺₂) 反応の 断面積測定に向けた実験条件の検討

京都大学大学院 理学研究科 物理学・宇宙物理学専攻 物理学第二教室 原子核・ハドロン物理学研究室

土井 隆暢

概要

宇宙元素合成において、¹²C 原子核は 3 つの α 粒子から直接合成される(トリプルアルファ反応では主に 3 α 崩壊閾値近傍に位置する 3 α 共鳴状態である 0⁺₂ (7.65 MeV) 状態 (Hoyle 状態) を経由する.大半の 0⁺₂ 状態は 3 つの α 粒子に崩壊するが、稀に γ 線を放出して脱励起することで ¹²C 原子核となる.トリプルアルファ反応は ¹²C より重い元素を合成するための戸口反応であり、宇宙元素合成において最も重要な原子核反応の一つである.しかし、 $\rho = 10^6$ g/cm³ のような高密度環境下では、 γ 崩壊に加え、他の粒子との非弾性散乱による脱励起の反応率が増加しトリプルアルファ反応を劇的に促進することが指摘されている.特に中性子は電荷を持たずクーロン力の効果を受けないため、脱励起を促進する効果が大きいと考えられている.

脱励起の反応率の計算には、¹²C(0⁺₂) が中性子との散乱により ¹²C へ脱励起する反応の断面積が必要となる. 脱励起反応の断面積は逆反応の励起反応断面積から求めることができる. 特に、0⁺₂ 状態へ励起させることができる中性子エネルギーの閾値付近($E_{lab} = 8.3 \text{ MeV}$)における断面積が重要となる. しかし、 $E_{lab} = 8.3 \text{ MeV}$ 付近における基底状態 (ground state, g.s.) $\rightarrow 0^+_2$ 状態の断面積は測定されていない. そこで、我々は中性子ビームを用いて ¹²C(0⁺₂) へ励起し、¹²C(0⁺₂) 状態から崩壊した 3 つの低エネルギー α 粒子を測定することで、崩壊元の状態を特定し g.s. $\rightarrow 0^+_2$ 状態反応の断面積を決定することを計画している. このためには、3 つの α 粒子を全て測定するために大きな立体角を覆い、低エネルギー α 粒子を効率的に検出することのできる検出器が必要となる. 我々が開発した MAIKo TPC はこれらの要請を満たす検出器である.

MAIKo TPC では、検出器のガス中を通過した荷電粒子のトラックが画像として検出される.検出器中でのトラックの長さと方向から荷電粒子のエネルギーと運動量を決定するため、画像から α 粒子のトラックを正しく抽出することが必要となる. MAIKo TPC で検出されるトラックの分解能は検出ガスの種類によって大きく変化する. そこで、どのような検出ガスが測定に適しているか、その時の検出効率は十分か、0⁺2 状態を識別するのに十分な分解能が達成できるかについて、現実的な実験条件を仮定して検討する必要がある.

本研究では、MAIKo TPC で用いる検出ガスの候補を複数選出し、 α 線源を用いた性能 試験を行った.また、それらの検出ガスについてシミュレーションを行い、中性子との散 乱で ¹²C 原子核が 3 つの α 粒子に崩壊するイベントの画像を生成した.さらに、シミュ

i

レーションで生成した画像に対して解析を行い,検出効率,エネルギー分解能,角度分 解能を評価した.シミュレーションによる検討の結果,100 hPa の iso-C₄H₁₀ (10%) + H₂ (90%)の混合ガスを検出ガスに用いれば,計画中の実験を遂行するのに十分な検出効率お よび¹²C の励起エネルギー分解能を実現できることが分かった.シミュレーションによる 評価の妥当性の確認のために,14 MeV の中性子を用いた測定を予定している.

目次

第1章	はじめに	1
1.1	宇宙での元素合成...............................	1
1.2	高密度環境下でのトリプルアルファ反応.............	3
1.3	測定を行うべき中性子のエネルギー	6
1.4	測定に用いる実験装置	7
1.5	本研究の目的	13
第2章	MAIKo TPC	15
2.1	MAIKo TPC とは	15
2.2	検出ガスの選出	23
第3章	シミュレーションによるトラックの再現	31
3.1	α 線源を用いた測定	31
3.2	シミュレーションによる線源データの再現	39
3.3	トリプルアルファ反応のシミュレーション	45
第4章	トラックの解析	51
4.1	トラック情報の解析の概要........................	51
4.2	Eye-scan によるトラックの解析	52
4.3	検出ガスの決定	62
第5章	iso-C₄H ₁₀ + H₂ (1:9) の検出ガス特性	65
5.1	ドリフト速度	65
5.2	電子増幅率	66
5.3	電子の拡散効果	71

Ι

第6章	中性子ビームを用いた測定に向けて	75
6.1	14 MeV 中性子による ¹² C(n, n') 反応	75
6.2	大阪大学 14 MeV 中性子工学実験装置 (OKTAVIAN)	76
6.3	中性子ビーム	77
6.4	捕獲効率の散乱位置依存性と散乱角依存性	85
6.5	期待される収量	91
第7章	まとめと今後の展望	93
付録 A	中性子検出器	97
A.1	液体シンチレータ	97
A.2	n-γ 弁別	98
A.3	SCINFUL-CG による中性子の検出効率	102
付録 B	水蒸気の混入によるドリフト速度の変化	105
B .1	水分のドリフト速度への影響.........................	105
B.2	ガスフローによるガス中の水分の変化...............	108
付録 C	PHITS のインプットファイル	111
参考文献		117

第1章

はじめに

1.1 宇宙での元素合成

身の回りには多種多様な物質が存在しており,これらの物質は全て原子から構成されて いる.現在の地球には水素(原子番号1)からウラン(原子番号92)までの元素が天然に 存在してる.原子は原子核と電子から構成されており,原子核は陽子と中性子で構成され ている.原子核に含まれる陽子の数が元素の原子番号であり,元素の性質を決定してい る.現在までに天然と人工を合わせて118種類の元素が確認されており,水素以外のこ れらの元素は全て原子核反応によって合成される.しかし,原始の宇宙では物質は存在せ ず,エネルギーで満たされていたと考えられている.宇宙が膨張し温度が下がるにした がって,陽子と中性子が生成され,その後,原子核反応を起こすことで様々な原子核が合 成された.宇宙の初期には,水素とヘリウムと僅かな軽元素しか合成されなかったと考え られている.これは,質量数(A)が5と8の原子核に安定な原子核が存在しないことに由 来する.初期の宇宙では陽子や中性子を捕獲して原子核が大きくなっていくが,A=5,8 の原子核が生成してもすぐにA=4以下の軽い原子核に分裂してしまうのである.

宇宙に存在する元素のうち殆どが水素であるため、恒星は水素を主成分とする.重力に より収縮し中心温度が 10⁷ K を超えると、陽子(水素)同士が連鎖的に反応するようにな る (pp チェイン). pp チェインでは図 1.1 に示した 3 つの系列が重要とされる. chain 1 で は合計 6 つの陽子から 1 つの α 粒子と 2 つの陽子が生成される. chain 2, 3 では合計で 4 つの陽子と 1 つの α 粒子から 2 つの α 粒子が生成される. どの系列も最終的に 4 つの 陽子から 1 つの ⁴He 原子核(α 粒子)が生成される. pp チェインのように粒子(陽子や ³He など)が順番に一つずつ原子核に吸収される反応では、A = 8の壁を超えることはで きない. この壁を超えるためには A = 4 以下の原子核から A = 9 以上の原子核が直接生

1

図 1.1: 代表的な pp チェイン. pp チェインでは 4 つの陽子から 1 つの α 粒子が生成される.

pp チェインにより α 粒子が十分に生成された恒星では,水素よりも重い α 粒子が恒星 の中心に集まり He コアを生成する. He コアが重力により圧縮され温度が約 10⁸ K に達 するとヘリウム燃焼が始まる. He コアには十分な量の α 粒子が高い密度 (10³ g/cm³) で 存在するため,図 1.2 のように 2 つの α 粒子から 2 α クラスター状態である ⁸Be が合成さ れ,さらに、⁸Be が崩壊するより早くもう 1 つの α 粒子が融合して ¹²C の励起状態 (¹²C*) が生成される反応が起こる. このときに作られる ¹²C* の多くは Fred Hoyle が予言した 3 α 粒子の共鳴状態 (Hoyle 状態, $E_x = 7.65$ MeV, 0⁺₂) [1] となる. このあと、¹²C(0⁺₂) が γ 線を放出し脱励起すると ¹²C 原子核が生成される (図 1.2 左). この 3 つの α 粒子から ¹²C が直接合成される反応はトリプルアルファ反応と呼ばれ, A = 4 の α 粒子から A = 12の ¹²C が直接生成されるため, A = 5,8 の壁を乗り越えて、さらに重い O や Si などの合 成が促される. そのため、トリプルアルファ反応は宇宙元素合成において最も重要な原子 核反応の 1 つである.

図 1.2: トリプルアルファ反応. 左は γ 線を放出して脱励起するルート, 右は中性子との非弾性散乱により脱励起するルートを表す.

1.2 高密度環境下でのトリプルアルファ反応

通常,トリプルアルファ反応で生成された 3 α 共鳴状態は図 1.2 の左のように γ 線を放 出することによって脱励起し,¹²C の基底状態 (ground state, g.s.) になる.近年,高密度 環境下では γ 線による脱励起以外に,図 1.2 (右)のように粒子(陽子,中性子, α 粒子な ど)との非弾性散乱による脱励起の反応率が増加することが指摘されている [2].これに より 0⁺2 状態から g.s. や 2⁺1 ($E_x = 4.44$ MeV)への脱励起が増加し,トリプルアルファ反応 が劇的に促進されると考えられている.粒子の中でも中性子は電荷を持っておらず,クー ロン斥力を受けずに反応することができるため,特にトリプルアルファ反応を促進する効 果が大きい. ¹²C(0⁺₂)(n', n)¹²C 反応の体積当たりの反応率は

$$r = N_{\rm n} N_{\rm ^{12}C} \left\langle \sigma v \right\rangle \tag{1.1}$$

で与えられる.ここで、 N_n は中性子の個数密度、 $N_{^{12}C}$ は $^{12}C(0_2^+)$ の個数密度を表す. σ は中性子との散乱により始状態 (0_2^+) から g.s. または 2_1^+ 状態へ脱励起する全断面積で あり、v は中性子と ^{12}C の相対速度である.相対速度が Maxwell 分布に従うとすると、 $^{12}C(0_2^+)(n',n)^{12}C$ では、

$$\langle \sigma v \rangle_{\mathbf{n'n}} = \left(\frac{8}{\pi\mu}\right)^{1/2} \left(\frac{1}{kT}\right)^{3/2} \int_0^\infty E' \sigma_{\mathbf{n'n}}(E') \exp(-E'/kT) dE'$$
(1.2)

となる. *T* は温度, μ は換算質量, $\sigma_{n'n}$ は ${}^{12}C(0^+_2)$ の中性子非弾性散乱断面積である. ここで上記の逆過程である ${}^{12}C(n,n'){}^{12}C(0^+_2)$ を考えると,

$$\langle \sigma v \rangle_{nn'} = \left(\frac{2I'+1}{2I+1}\right) \exp(Q/kT) \langle \sigma v \rangle_{n'n}$$
 (1.3)

という関係にある.ここで,*I*および*I*'はそれぞれ始状態 (g.s. または 2_1^+)および終状態 (0_2^+ 状態)のスピンである.*Q*は -7.65 MeV (始状態が g.s. の場合)または -3.21 MeV (始 状態が 2_1^+ の場合)となる.¹²C(0_2^+)の中性子非弾性散乱による脱励起の寿命は

$$\tau_{\mathbf{n}'\mathbf{n}} \left[{}^{12}\mathbf{C}(0_2^+) \right] = \left(N_{\mathbf{n}} \left\langle \sigma v \right\rangle_{\mathbf{n}'\mathbf{n}} \right)^{-1} \tag{1.4}$$

となる.

中性子非弾性散乱による脱励起の寿命 ($\tau_{n'n}$) と γ 線による脱励起の寿命 (τ_{γ} = 1.710×10⁻¹³ s) との比を *R* とすると,式 (1.2), (1.3), (1.4) から

$$R = \frac{\tau_{\gamma}}{\tau_{\rm n'n}}$$

= 6.557 × 10⁻⁶ × \rho_{\rm n} T_9^{-1.5} C_{\rm spin} \int_0^{\infty} \sigma_{\rm nn'}(E)(E-Q) \exp(-11.605E/T_9) dE (1.5)

と表される. *E* は重心系(c.m. 系)の閾値からのエネルギー (*E* = *E*' + *Q*), ρ_n は中性子 の質量密度 (g/cm³), $\sigma_{nn'}(E)$ は断面積 (mb), *T*₉ は温度 (×10⁹ K) である. C_{spin} は反応が g.s. への直接崩壊の場合 1, 2⁺ を経由する逐次崩壊の場合 5 となる. 式 (1.5) において中 性子の部分を陽子や α 粒子に置き換えることで,他の粒子による脱励起の寿命を求めるこ とができる. Beard らによる各粒子の密度が 10⁶ g/cm³ のときにおける *R* と温度の依存 性の計算結果 [2] を図 1.3 に示す.実線は 0⁺₂ 状態から 2⁺₁ 状態への,破線は 0⁺₂ 状態から 基底状態への脱励起のときの値である.また,青色は中性子との,赤色は陽子との,緑色 は α 粒子との散乱による脱励起のときの値である. $\rho = 10^6 \text{ g/cm}^3$ という高密度下では γ 線による脱励起に対して、粒子による脱励起の寄与が大きくなることが分かる. 特に、中 性子による寄与は γ 線による寄与の 40–100 倍ととても大きい. また、温度の低い領域で 大きいことが分かる.

図 1.3: γ 線による脱励起の寿命と粒子散乱による脱励起の寿命の比 [2]. Rnn, Rpp, R $\alpha\alpha$ はそれぞれ中性子, 陽子, α 粒子と散乱した際の寿命 の比を表す. 文献 [2] の FIG. 3 より転載.

 $\rho \sim 10^6 \text{ g/cm}^3$ のような高密度環境は宇宙の何処にあるだろうか.一つの候補として超 新星爆発が考えられる. 10–30 M_{\odot} 程度の大質量星は,重力崩壊を起こしてその一生を終 える.重力崩壊の際に恒星の中心にある鉄コアの温度が急激に上昇する.極めて高い温度 では高エネルギーの光子によって鉄コアの原子核が陽子や中性子に分解される.また,密 度が非常に高いため式 (1.6)のように陽子が中性子へ変わる電子捕獲反応が起きる.

$$p + e^- \to n + \nu_e \tag{1.6}$$

すると,恒星の中心に原始中性子星が形成される.重力によって中心に降ってくる物質は 原始中性子星によって跳ね返され,超新星爆発が起きる.崩壊前の恒星が持っていた重 力エネルギーが熱エネルギーに変換されるので,原始中性子星の温度は 10¹⁰ K に達する. 跳ね返った物質が膨張することで温度が下がっていき,7×10⁹ K ほどになると 2 つの陽 子と 2 つの中性子が融合しα粒子が合成される.このとき,α粒子と中性子が高密度かつ 高温で存在する環境ができるのである.

1.3 測定を行うべき中性子のエネルギー

式 (1.5) から分かるように寿命の比 *R* を計算するためには、中性子と ¹²C の非弾性散乱 断面積 [$\sigma_{nn'}(E)$] のエネルギー分布が必要となる.特に、式 (1.5) から分かるように *R* が 0_2^+ 状態の励起エネルギーからのエネルギーに指数関数で依存しているので、 0_2^+ 状態へ励 起させることができる中性子エネルギーの閾値付近における断面積が重要となる.基底状 態からの励起を考えると、重心系のエネルギーでは、*E* = 7.65 MeV、¹²C の静止系におけ る中性子のエネルギーでは E_{lab} = 8.35 MeV である.図 1.4 [2] は ¹²C と中性子(上)ま たは陽子(下)の各実験室系エネルギーにおける非弾性散乱断面積のエネルギー分布を示 す.点で示される値は測定値、実線で示される値は TALYS による理論計算値を表す.図 1.4 (上) から分かるように、 E_{lab} = 8.35–15 MeV の領域における g.s. → Hoyle 状態の中性 子の測定値がない.そのため、このエネルギー領域での ¹²C(n, n')¹²C(0_2^+)の断面積の測定 が必要となる.

図 1.4: ¹²C と中性子 (上段) および陽子 (下段) との非弾性散乱断面 積 [2]. 実線は TALYS [3] を用いた理論計算,点は測定値を表す.文 献 [2] の FIG. 2 より転載.

1.4 測定に用いる実験装置

中性子によって励起された ¹²C(0_2^+)の崩壊によって放出された 3 つの α 粒子を測定す ることで、断面積を決定する.過去には 14 MeV の中性子と ¹²C との非弾性散乱の微分 断面積が測定されている (図 1.5).我々が研究の対象とする入射中性子のエネルギーは $E_n = 8.35 - 15$ MeV であるので、入射中性子のエネルギーによらず図 1.5 の微分断面積で散 乱し、励起した ¹²C(0_2^+)から α 粒子が等方的に崩壊すると仮定すると、¹²C(0_2^+)から放出 される α 粒子は図 1.6 に示すエネルギー分布を持つ.横軸は入射中性子のエネルギー、縦 軸は崩壊後の α 粒子のエネルギーである.図 1.6 から中性子のエネルギーに関わらず α 粒子のエネルギーは約 0.1 MeV が最頻値となっていることが分かる. 1 MeV より大きい 領域は重心運動と同じ方向に放出された α 粒子がブーストされ実験室系における運動エ ネルギーが増大したものと考えられる. 一方,重心運動と異なる方向に放出された α 粒子 は,あまりブーストされずに典型的には励起エネルギーと 3 α 崩壊閾値の差分を 3 等分し たエネルギー (0.38 MeV÷3 ~ 0.1 MeV)を持つ.図 1.5 から分かるように ¹²C(n,n')¹²C(0⁺₂) 反応では前方散乱の断面積が大きく,¹²C(0⁺₂)は重心運動方向と異なる方向に散乱される 確率が高い.そのため, α 粒子はあまり重心運動によってブーストされる効果を受けず に,中性子のエネルギーに関わらず 0.1 MeV 付近で最大となる.中性子のエネルギーが 8.5 MeV のときの分布を図 1.7 に,14 MeV のときの分布を図 1.8 に示す.図の塗りつぶ し部分は最大値を中心に全体の 8 割となる領域を示している.図 1.7 では15–505 keV,図 1.8 では 0–600 keV である.このような低エネルギーの α 粒子を効率よく検出することは 技術的に容易ではない.例えば、500 keV の α 粒子はおよそ 350 µg/cm² の炭素箔標的中 で停止してしまい,外部の検出器で検出できない.更に低いエネルギーの α 粒子も検出 しようとすると,更に標的を薄くする必要がある.このような低エネルギー粒子の測定に は、検出器そのものが標的となるアクティブ標的が有効である.

図 1.5: 14 MeV の中性子における ¹²C(n, n')¹²C(0⁺₂) の微分断面積の角度 分布 [4].

図 1.9 は *α* 粒子の実験室系での角度分布である.横軸は入射中性子のエネルギー,縦軸は *α* 粒子の入射中性子の運動方向に対する角度を表す. *α* 粒子のエネルギー分布と同

様に入射中性子のエネルギーにあまり依存していない.入射中性子が 8.5 MeV のときの 角度分布を図 1.10 に,14 MeV のときの角度分布を図 1.11 に示す.図の塗りつぶしは最 瀕値を中心に全体の 8 割となる領域を示している.図 1.10 では 5.5–57.5°,図 1.11 では 7.5–75.1° である.このような広い角度に放出される 3 つの α 粒子すべてを効率的に検出 するためには大立体角を覆う検出器が必要となる.

このような要求を満たす検出器として検出ガスを散乱標的として用いる time projection chamber (TPC) が有効である. TPC は荷電粒子のトラックを検出することができるガス 検出器であり, ALICE 実験 [5] や LEPS2 [6] などで広く用いられている. アクティブ標的 TPC を用いることで,低エネルギー荷電粒子を大立体角で検出することが可能となる. 近 年,不安定核実験のために MAYA [7] や CAT [8], AT-TPC [9] など様々なアクティブ標的 TPC が世界中で開発されている [10]. 我々が開発した MAIKo (μ -PIC based active target for inverse kinematics 。) TPC [11, 12] は,その中の一つである. 近年, RCNP で MAIKo TPC を用いて低エネルギー α 粒子を測定する実験 [13] が行われた. MAIKo TPC を用 いることで低エネルギーの α 粒子を測定する実験 [13] が行われた. MAIKo TPC を用 いることで低エネルギーの α 粒子を力立体角で検出することが可能となる. 本研究では MAIKo TPC を用いて ¹²C(n, n')¹²C(0⁺₂) 反応を測定することを目指す.

図 1.6: ${}^{12}C(0_2^+)$ から放出された α 粒子のエネルギー分布. 横軸は入射 中性子のエネルギー,縦軸は崩壊後の α 粒子のエネルギーである. 赤い 実線は $E_{\alpha} = 0.1$ MeV を表す.

図 1.7: $E_n = 8.5 \text{ MeV}$ のときの, ${}^{12}C(0^+_2)$ から放出された α 粒子のエネ ルギー分布. ${}^{12}C$ から放出される 3 つの α 粒子すべての分布を表してい る. 塗りつぶし部分は最瀕値を中心に全体の 8 割となる領域を表してい る.

図 1.8: $E_n = 14 \text{ MeV}$ のときの, ${}^{12}C(0^+_2)$ から放出された α 粒子のエネ ルギー分布. ${}^{12}C$ から放出される 3 つの α 粒子すべての分布を表してい る. 塗りつぶし部分は最瀕値を中心に全体の 8 割となる領域を表してい る.

図 1.9: ¹²C(0⁺₂) から放出された α 粒子の角度分布.

図 1.10: $E_n = 8.5 \text{ MeV}$ のときの、 ${}^{12}C(0_2^+)$ から放出された α 粒子の角度 分布. ${}^{12}C$ から放出される 3 つの α 粒子すべての分布を表している、塗 りつぶし部分は最瀕値を中心に全体の 8 割となる領域を表している.

図 1.11: $E_n = 14 \text{ MeV}$ のときの、 ${}^{12}C(0_2^+)$ から放出された α 粒子の角度 分布. ${}^{12}C$ から放出される 3 つの α 粒子すべての分布を表している.塗 りつぶし部分は最瀕値を中心に全体の 8 割となる領域を表している.

1.5 本研究の目的

¹²C(n,n')¹²C(0⁺₂)反応の断面積測定は,低エネルギーの α 粒子を検出する必要がある. 1.4 節で述べたように,MAIKo TPC を用いれば効率的に 3 つの低エネルギー α 粒子を検 出することが可能となる.しかし,崩壊してできた α 粒子が持つ運動エネルギーは広が りを持ち,数十倍違うこともある.そのため,より効率的に全ての粒子を測定するための 条件を詳細に検討する必要がある.MAIKo TPC では使用する検出ガスの種類,圧力,電 圧等の多くのパラメータを調整することができる.本研究では効率的に α 粒子を検出す ることができる検出ガスの候補を複数選出し,α線源を用いて性能試験を行う.それらの ガスについて中性子との散乱で¹²C 原子核が 3 つの α 粒子に崩壊するイベントをシミュ レートし,MAIKo TPC から得られるであろう画像を生成する.シミュレーションで生成 した画像に対して解析を行い,検出効率,エネルギー分解能,角度分解能を評価する.評 価結果から実験で用いる検出ガスを決定する.また,正しく解析を行える割合やこの測定 方法で期待される収量の評価を行い,実験の実現可能性を検討する.

第2章

MAIKo TPC

2.1 MAIKo TPC とは

我々のグループでは低エネルギー荷電粒子を大立体角で検出するために、アクティブ 標的 TPC である MAIKo TPC [11] を開発してきた. MAIKo TPC は検出ガスを封入する 密封容器 (MAIKo チェンバー) とドリフト電場を形成するケージ(ドリフトケージ)か らなる. 図 2.1 および図 2.2 にドリフトケージの模式図と写真を示す. ドリフトケージは MAIKo チェンバー内に設置して用いる. 図 2.1 では、検出ガスに含まれる ¹²C が右から 入射した中性子と散乱し、3 つの α 粒子に崩壊した様子を模している. 図 2.3 に MAIKo TPC 中で入射中性子と ¹²C の散乱によって、¹²C(0⁺₂) から放出された 3 つの α 粒子と取得 されるトラック画像との対応を示す. MAIKo TPC では荷電粒子のトラックを *zy* 平面と *xy* 平面の 2 つの 2 次元平面に射影した画像 (anode image と cathode image) として得られ る. また、電荷を持たない中性子のトラックは検出されない. MAIKo TPC は検出ガスを 標的ガスとして用いるアクティブ標的であるため、 α 粒子を大立体角で検出することがで きる.

TPC は荷電粒子のトラックを検出するために広く用いられているガス検出器である. 図 2.4 に TPC でトラックを検出するイメージを示す.荷電粒子が TPC の検出ガス中を通 過するとき,トラックの周囲の粒子をイオン化させる.イオン化で発生した電子をドリフ ト電場 (図 2.4 中で上向き)により読み出し面にドリフトさせる.読み出し面に電子が到達 した時間を記録し,記録された時間差からドリフト方向の距離を測定する.さらに,2次 元平面でドリフトしてきた電子の位置を測定することで,3次元的にトラックを検出でき る. MAIKo TPC では3次元のトラックを2つの平面に射影した画像として取得する.

図 2.1: ドリフトケージの概観図. 検出ガスに含まれる ¹²C が右から入 射した中性子(青色)と散乱し3つの *α* 粒子に崩壊したときを模してい る.

図 2.2: ドリフトケージの概観.ケージの上側に読み出し面が取り付け られている.図 2.1 および図 2.3 とは上下が反転している.

図 2.3: MAIKo TPC で取得される画像と実際の荷電粒子のトラックと の対応. 図では TPC の中の ¹²C が右から入射した中性子 (青) と散乱 し, 3 つの α 粒子 (赤) に崩壊した事象を表す. anode image (zy 平面) と cathode image (xy 平面) の 2 平面に荷電粒子のトラックが射影され る (茶色の線). 中性子は電荷を持たないため anode, cathode image に トラックとして検出されない.

図 2.4: TPC でトラックを検出するときのイメージ.赤い実線は荷電粒 子のトラック,青い点はイオン化で生成された電子,黒く太い実線は検 出されたトラックを表す.トラックは電子が読み出し面に到達した時間 として記録される.

図 2.5 にドリフトケージの構造を示す. ドリフトケージは plate, wire, grid, gas electron multiplier (GEM), μ -PIC [12] からなる. plate, grid, GEM, μ -PIC に高圧電源 (HV) が 接続されている. plate, wire, gird の間は 10 MΩ の抵抗で繋がれている. GEM と HV は 1 MΩ と 20 MΩ の抵抗で繋がれている. plate から grid の間の領域(ドリフト領域)で発生した電子が grid に向かってドリフトし, grid から μ -PIC の間の領域(増幅領域)にある GEM と μ -PIC によって増幅され, μ -PIC (読み出し領域) によって増幅された電子の 2 次元位置を読み出す. ドリフト領域は y 軸方向に 140 mm であり,読み出し面の大きさが 102.4 ×

図 2.5: ドリフトケージの構造.

2.1.1 ドリフト領域

plate と grid にそれぞれ高電圧を印加することでドリフト電場を形成し, grid から plate の方向 (図 2.5 では上向き) にドリフト電場を形成することで入射した荷電粒子の周囲に 発生した電子を増幅領域へドリフトさせる. ドリフト電場の一様性が高いほど, トラック の周囲に発生した電子雲の形状を保ったまま, 電子をドリフトさせることができる. 均等 にドリフトしない場合,正しくトラックを検出することができなくなってしまう.ドリフト電場を一様に形成するために 10 MΩ の抵抗で接続された直径 125 µm の Be-Cu wire が 5 mm 間隔で二重で巻かれている [14].

2.1.2 増幅領域

MAIKo TPC では GEM と μ -PIC を用いて電子の増幅を行う. GEM は,図 2.6 のよう にポリマーのフィルムの表面を銅で被覆し,直径 70 µm の穴を 140 µm 間隔で 1 mm² あた り 100 個の密度で開けたものである.銅の 2 つの層はポリマーによって絶縁されている. 銅の両面に電圧を印加することによって,穴の中に高電場が形成されドリフトしてきた電 子が穴を通過する際に増幅される. MAIKo TPC では厚さ 100 µm の約 100 × 100 mm² の GEM を用いている.

図 2.6: COMPASS 実験で用いられた GEM の拡大図 [15].

 μ -PIC [12] は京都大学宇宙線研究室で開発された Micro Pattern Gas Detector の一種で ある. μ -PIC は図 2.7 のように anode strip と cathode strip が直交するように配置されてい る. anode strip, cathode strip ともに 400 µm 間隔でそれぞれ 256 ch 分割されている. 直 径 50 µm の円柱状の anode 電極に高電圧を印加し, cathode 電極を接地することで anode 電極付近に強い電場を形成することができ, GEM で増幅された電子が μ -PIC によって更 に増幅される.

図 2.7: μ-PIC の概観図 [12]. 図中の横方向に anode strip, 奥行き方向 に cathode strip が配置されている.

2.1.3 読み出し領域

図 2.3 と図 2.7 中では anode strip が x 軸, cathode strip が z 軸と平行になるように μ -PIC が配置されている. GEM と μ -PIC により増幅された電子とイオンを anode strip と cathode strip により読み出すことで, z座標, x座標を検出することができる. また, anode strip と cathode strip で検出される信号の時間分布により y座標を決定することが できる.

MAIKo TPC からは図 2.3 のようにトラックが anode strip に垂直な面 (zy 平面) に射影 された anode image と cathode strip に垂直な面 (xy 平面) に射影された cathode image の 2 つの画像が取得される. MAIKo TPC から得られる画像の 1 例を図 2.8 に示す. anode strip と cathode strip はそれぞれ 256 ch で構成され,各ストリップの信号は 100 MHz で 1,024 samples 測定し,信号波形が設定した閾値よりも高い場合に 1,低い場合に 0 として 記録される.よって,出力されるデータは解像度が 256 × 1,024 pixels の白黒画像となる. また, anode strip, cathode strip ともに 32 ch ごとにまとめた信号の波形を 25 MHz のサン プリング率を持つ FADC で取得している.FADC で取得した信号の一例を図 2.9 に示す.

図 2.8: MAIKo TPC から得られる画像データの一例. このイベントは 3 章で述べる線源を用いて測定したデータである.

図 2.9: FADC で取得された *µ*-PIC の波形の一例. この波形は図 2.8 の anode 側の信号である.

2.2 検出ガスの選出

標的に¹²C を用いるため,分子中に炭素を含むガスを検出ガスに用いる必要がある. ¹²C 以外の原子核が含まれると背景事象となるが,陽子または⁴He と 14 MeV の中性子の 散乱では複数の荷電粒子に崩壊しないため,トラックの本数から背景事象を取り除くこと ができる.そこで,水素と炭素以外の原子が含まれない炭化水素を検出ガスに用いる.代 表的な炭化水素に,メタン (CH₄) やエタン (C₂H₆),イソブタン (iso-C₄H₁₀) がある.ま た,水素ガスやヘリウムガスと炭化水素の混合ガスも用いることができる.検出ガスとし て求められる性能には以下のようなものがある.

- 放電しにくい.(安定な TPC の運用)
- α 粒子のエネルギー損失 (dE/dx) が適切である. (トラックを正しく抽出)
- 適切なドリフト速度を達成できる. (有感領域を効率的に使用)
- 電子の拡散効果が小さい. (複数のトラックを正しく抽出)
- 測定を行うのに十分な量の¹²Cを含む.(散乱標的の量)

これらの項目を基準に検出ガスの種類と圧力を決定する.

2.2.1 *α* 粒子のエネルギー損失

MAIKo TPC では荷電粒子のトラックの長さと方向からエネルギーと運動量を決定する ため、取得した画像からトラックを正しく抽出することが必要となる.荷電粒子のエネル ギー損失 (*dE/dx*)が大きくなりすぎると検出ガス中での飛行距離が短くなり、トラックと して識別することが難しくなる.また、*dE/dx*が小さくなりすぎると荷電粒子が有感領域 で停止せず、トラックの長さを決定することができなくなる.そこで、検出する対象であ る *α* 粒子の *dE/dx* が適切な大きさとなるガスの種類と圧力の候補を決定する必要がある.

まず,代表的な炭化水素である CH₄ を考える. ¹²C(0⁺₂) からの崩壊 α 粒子が,ガス中で 10 mm 以上飛行し, MAIKo TPC の有感領域中で停止するとき,その α 粒子を検出可能な α 粒子とする. ¹²C(0⁺₂) の全崩壊イベント数に対する,3 つの α 粒子が全て検出可能であ るイベント数の割合を検出効率とする.図 1.5 に示した微分断面積の角度分布を仮定した ときの検出効率の圧力依存性を図 2.10 に示す. α 粒子の飛程の計算には SRIM [16] を用 いた.SRIM は,荷電粒子がが物質中を通過する際の,イオンの飛程や dE/dx 等を算出 するシミュレーションソフトウェアである.また,ビーム軸が有感領域の中央を通り,散 乱点がビーム軸上に一様に分布していると仮定した. 図 2.10 から分かるように,50 hPa で検出効率が最大となっている. 50 hPa のときの CH₄ の *dE/dx* と同程度となる,他の検 出ガスを考え,表 2.1 に示した 6 つを検出ガスの候補とした. 括弧内はガスの混合の割合 を示す. これらの 6 種類の候補から検出ガスを選ぶ.

図 2.10: CH₄ の圧力による検出効率の分布. *α* 粒子は図 1.5 に示した微分断面積の角度分布を仮定した.

表 2.1: ガスの混合パターン, 圧力, dE/dx. 括弧内はガスの混合の割合 を示す. エネルギー損失は E_{α} が 0.5 MeV の α 粒子が 10 mm で落とす エネルギーを表す. 電場は Magboltz [17] による計算でドリフト速度が 0.014 mm/ns となる値である.

gas	pressure (hPa)	density (g/cm ³)	dE/dx (MeV)	電場 (V/mm)
CH_4	50	3.29×10^{-5}	0.107	0.418
$CH_4 + H_2 (3:7)$	100	2.55×10^{-5}	0.107	4.31
$CH_4 + He (4:6)$	100	3.62×10^{-5}	0.109	1.89
iso-C ₄ H ₁₀	15	3.58×10^{-5}	0.102	0.644
$iso-C_4H_{10} + H_2 (1:9)$	100	3.13×10^{-5}	0.122	6.80
$iso-C_4H_{10} + He (1:9)$	100	3.86×10^{-5}	0.102	3.26

2.2.2 ドリフト速度

MAIKo TPC では 100 MHz で 1,024 samples データを取得するため,ドリフト方向 には 10.24 µs のタイムウィンドウが開いている.ドリフトケージの大きさ (140 mm) を 可能な限りタイムウィンドウに収めるためには,ドリフト速度を 140 mm/10.24 µs ~ 0.014 mm/ns に調整する必要がある. Magboltz [17] によって求めたドリフト電場とドリ フト速度の関係を図 2.11 に示す.ドリフト速度が 0.014 mm/ns となるドリフト電場の値 を表 2.1 に示す.図 2.11 の横方向の点線は 0.014 mm/ns を表す.以降,これらのドリフ ト電場で評価を行う.

図 2.11: ドリフト電場とドリフト速度の関係. CH₄ は 50 hPa, iso-C₄H₁₀ は 15 hPa, その他は 100 hPa である. 横方向の破線は 0.014 mm/ns を 示す.

2.2.3 電子の拡散の効果

ドリフト電場によって電子が移動する間に検出ガスとの散乱と電子の熱運動により,図 2.12 のように電子は拡散しつつドリフトする. この効果が大きくなると,図 2.12 の左の ように荷電粒子によって同じ場所に生成された電子が読み出し面に到達するまでに拡散す る,トラックが太く検出される.トラックが太くなると,¹²C(0⁺₂)から崩壊した3つの*α* 粒子のトラックを分離することが難しくなる.そのため,図 2.12 の右のように拡散の効 果が小さいことが望まれる.

high diffusion low diffusion

図 2.12: 電子が拡散するイメージ. 同じ位置で生成された電子でもドリ フトする間に位置が拡散する.

文献 [18] によるとドリフト電場がない場合の電子の拡散は以下のように理解できる. 電子は熱運動により発生点から拡散する.熱運動の平均速度 v は Maxwell 分布より

$$v = \sqrt{\frac{8k_BT}{\pi m_{\rm e}}} \tag{2.1}$$

と表せる. ここで k_B はボルツマン定数, T は温度, m_e は電子の質量である. 電子が発生した時刻から Δt 後では,

$$\frac{N_0}{\sqrt{4\pi D\Delta t}} \exp\left(-\frac{x^2}{4D\Delta t}\right)$$
(2.2)

のガウス分布で電子が広がる.ここで N_0 は全粒子数, x は発生した点からの距離, D は 拡散係数を表す.拡散係数 D は電子の平均自由行程 λ を用いて

$$D = \frac{1}{3}v\lambda \tag{2.3}$$

と表せる.これは電子の速度が遅いほど、ガスとの散乱が少ないほど遠くまで移動できる ため、拡散の効果が大きくなることを表す.理想気体において平均自由工程 λ は、ガスと の散乱の全断面積 σ_0 、圧力 p のもとで

$$\lambda = \frac{1}{\sqrt{2}} \frac{k_B T}{\sigma_0 p} \tag{2.4}$$

と表される.式 2.1, 2.3, 2.4 により,

$$D = \frac{2}{3\sqrt{\pi}} \frac{1}{p\sigma_0} \sqrt{\frac{(k_B T)^3}{m_e}}$$
(2.5)

となる.式 2.5 より,同じガスでは圧力が高いほど,温度が低いほど拡散係数が小さいことが分かる.

ドリフト電場がある場合,発生点からの距離をL,ドリフト速度をvdrift とすると,

$$\Delta t = \frac{L}{v_{\text{drift}}} \tag{2.6}$$

となる.距離 L における分散 $\sigma(L)$ は

$$\sigma(L) = \sqrt{2D\Delta t} \tag{2.7}$$

$$=\sqrt{\frac{2D}{v_{\rm drift}}} \times \sqrt{L}$$
(2.8)

$$= D_{\text{Magboltz}} \times \sqrt{L} \tag{2.9}$$

となる.計算コード Magboltz [17] によって得られた拡散係数 ($D_{Magboltz}$)を表 2.2 に示す. 表 2.2 中の D_t はドリフト電場に対して垂直な方向への拡散, D_l は平行な方向への拡散の 係数を表す. CH_4 および iso- C_4H_{10} の単体では拡散係数が大きく,同じドリフト速度のと き,ドリフト電場が大きいほど拡散係数が小さいことが分かる. iso- C_4H_{10} + H_2 (1:9) の 拡散係数が最も小さく,検出ガスの最有力候補である.次章ではシミュレーションにより 生成した ¹²C(n, n')¹²C(0⁺₂) イベントを解析し,その解析効率により検出ガスを決定する.

表 2.2: Magboltz で計算した拡散係数. 拡散の大きさはドリフト電場に 依存するため、ここではドリフト速度が 0.014 mm/ns になるドリフト 電場での値を示す. D_t , D_l はそれぞれ運動方向に垂直、平行方向の拡 散係数.

gas	圧力 (hPa)	$D_t (\sqrt{\mathrm{mm}})$	$D_l (\sqrt{\text{mm}})$	ドリフト電場 (V/mm)
CH_4	50	0.433	0.547	0.418
$CH_4 + H_2 (3:7)$	100	0.214	0.171	4.31
$CH_4 + He (4:6)$	100	0.270	0.248	1.89
iso-C ₄ H ₁₀	15	0.357	0.414	0.644
iso- $C_4H_{10} + H_2$ (1:9)	100	0.196	0.145	6.80
iso- C_4H_{10} + He (1:9)	100	0.246	0.197	3.26
第3章

シミュレーションによるトラックの 再現

3.1 *α*線源を用いた測定

2.2 節で考えた各検出ガスについて,実際に α 線源から放出される α 粒子のトラックを 測定した.また,それらのデータから各ガスにおけるドリフト速度,ガスの電子増幅率, トラックの幅を決定した.測定には ²⁴¹Am の α 線源を用いた.図 3.1 に α 線源のトラッ クの一例を示す.図 3.1 では検出ガスに 100 hPa の iso-C₄H₁₀ + H₂ (1:9) を用いた.2.2 節 では 6 種類の候補を考えたが,ここからは単体の iso-C₄H₁₀ を除いた 5 種類について考え ていく.これは単体の iso-C₄H₁₀ を検出ガスに用いた場合に,拡散係数が大きくトラック が太くなると予測されることと,圧力が 15 hPa と低く安定した TPC の動作が難しいと予 測されるためである.

図 3.1: α 粒子を測定したトラックの一例. 検出ガスには iso-C₄H₁₀ + H₂ (1:9) を用いた.

3.1.1 ドリフト速度の測定

電子のドリフト速度を線源によって得られるトラックから実測する.測定には図 3.2 の ような線源コリメータを用いる.このコリメータはアクリルで作られており、1 つの 0° と 4 つの 30° の穴が設けられている.このコリメータを用いることで *α* 線の放出方向を 0° と 30° の方向に限定することができる.30° 方向の *α* 線は図 3.3 の右のようにドリフト 方向に Δ*y* mm,それと垂直な方向に Δ*z* mm 移動するとき、

$$\Delta y = \tan(30^\circ) \times \Delta z \tag{3.1}$$

となる. MAIKo TPC で取得したトラックの横方向の変分を $\Delta strip$, 縦方向の変分を Δt ns, ドリフト速度を v_{drift} mm/ns とすると,

$$\frac{\Delta z}{0.4\,\mathrm{mm}} = \Delta strip \tag{3.2}$$

$$\frac{\Delta y}{v_{\text{drift}}} = \Delta t \tag{3.3}$$

という関係にある. 式 (3.1), (3.2), (3.3) より

$$v_{\rm drift} = \frac{\tan(30^\circ) \times \Delta strip \times 0.4\,\rm{mm}}{\Delta t} \tag{3.4}$$

とドリフト速度が決定される.

(a) 側面.

(b) 正面.

図 3.2: 線源コリメータ.中央に 0°,上下左右に 30°の穴が設けられている.0°の穴と1つの 30°の穴を除いてカプトン膜で封じることにより,α線の放出方向を限定している.

図 3.3: 30° に方向を限定した *α* 線 (左) と取得される画像データ (右) の イメージ.

α線源を用いて測定したドリフト速度と Magboltz で計算した値を表 3.1 に示す. コリ メータの穴は直径 0.5 mm であるため, コリメートした α線の角度も広がりを持つ. 本測 定では放出された α線の角度が読み出し面に対して 30° であることを仮定してドリフト速 度を求めているため, 角度の広がりによって測定したドリフト速度の分布も広がってしま う. ここでは, ドリフト速度の分布に対してガウス分布でフィットした結果の標準偏差を 誤差とした. α線源を用いて測定したドリフト速度と Magboltz を用いて計算したドリフ ト速度が概ね一致していることが分かる. ここで, Magboltz の計算値が 0.014 mm/ns と なっていないのは, MAIKo TPC の実際の運用を簡単にするために設定電圧を切りの良い 値にしたためである. CH4 は実測と Magboltz による計算値に不一致が見られるが, CH4 のみ 50hPa とその他のガスと比較して圧力が半分であるため, 不純物, 特に水分の影響 を強く受けていると考えられる. 水分のドリフト速度へ与える影響は付録 B で述べる.

gas	ドリフト電場 (V/mm)	実測値 (mm/ns)	計算值 (mm/ns)
CH ₄	0.429	0.0126 ± 0.000825	0.0145
$CH_4 + H_2 (3:7)$	4.32	0.0140 ± 0.000809	0.0140
$CH_4 + He (4:6)$	1.89	0.0135 ± 0.000832	0.0140
iso- $C_4H_{10} + H_2$ (1:9)	6.82	0.0137 ± 0.000823	0.0140
$iso-C_4H_{10} + He (1:9)$	3.29	0.0139 ± 0.000842	0.0141

表 3.1: 実測したドリフト速度と Magboltz を用いて計算したドリフト速度の比較.

3.1.2 電子増幅率

GEM および μ -PIC による電子の増幅率を測定した.増幅率は荷電粒子が検出ガス中を 通過した際に発生させた電子数 (N_e)と増幅後に μ -PIC によって収集された電子数 (N'_e)か ら求めることができる. N_e は検出ガス中での荷電粒子のエネルギー損失と検出ガスの W 値 (1 つの電子イオン対の生成に必要なエネルギー)から求める. N'_e は μ -PIC で収集し た電荷から求める.検出ガス中で荷電粒子がエネルギーを損失すると、W 値あたり平均 1 個の電子を電離する.そのため、荷電粒子のエネルギー損失を W 値で除することで N_e が求まる.各検出ガスにおけるエネルギー損失と W 値 [19, 20] を表 3.2 に示す.本研究 ではでは ²⁴¹ Am からの α 線を用いて測定を行った.²⁴¹ Am からは 5.48 MeV の α 線が放 出される.今回の測定に用いた α 線源は線量を大きくするために、多くの ²⁴¹ Am を含ん でいる.そのため、物質厚が大きくなっており、 α 線が放出される前に線源中でエネル ギーを損失してしまう.この線源から出ている α 粒子の持つエネルギーが平均 4.2 MeV であることを過去の測定により確認している [21].今回の測定では 0° 方向に放出され た α 線を用いて測定した.エネルギー損失は 4.2 MeV の α 粒子が μ -PIC 32 strip 分の距 離 (12.8 mm)で落とすエネルギーを示している.この距離で発生した電子が μ -PIC の 32 strips で収集される.

gas	W 值 (eV)	エネルギー損失 (keV)	$N_{ m e}$
CH ₄	29.1	56.5	1.94×10^{3}
$CH_4 + H_2 (3:7)$	34.2	53.4	1.56×10^{3}
$CH_4 + He (4:6)$	39.2	59.3	1.51×10^{3}
iso- $C_4H_{10} + H_2$ (1:9)	35.4	62.0	1.75×10^{3}
$iso-C_4H_{10} + He (1:9)$	44.0	58.0	1.32×10^{3}

表 3.2: 検出ガスの W 値 [19, 20] とエネルギー損失と *N*_e. エネルギー 損失は 4.2 MeV の *α* 粒子がガス中を 12.8 mm 進んだ時の値である.

32 strips まとめた μ -PIC からの信号波形は図 2.9 のような FADC 情報として取得して いる. この信号波形を時間で積分することによって 32 strips で収集した電荷量を計算す ることができる. μ -PIC で取得した電気信号は読み出し回路内部で 800 倍に増幅され, FADC の入力インピーダンス 50 Ω で電流値を電圧値に変換して取得している. よって, 式 (3.5) で µ-PIC で収集した電荷量を得ることができる. e は電気素量である.

$$N'_{\rm e} = \frac{\int V(t)dt}{50 \times 800 \times e} \tag{3.5}$$

各検出ガスの増幅率と電子の収集効率を畳み込んだ値を表 3.3 に示す. ここでは, GEM と μ-PIC の両方による増幅率となっている. 増幅率の分布に対するガウス分布のフィッ ティング誤差を増幅率の誤差とした. また, 測定時の GEM や μ-PIC に印加した電圧を表 3.4 に示す.

表 3.3: 各検出ガスの電子増幅率.

増幅率 (倍)
700 ± 4.97
354 ± 1.65
322 ± 2.29
272 ± 1.67
392 ± 0.994

表 3.4: 電子増幅率を測定した際の電圧設定. GEM のうち grid 側を GEMt, μ-PIC 側を GEMb とする.

gas	plate (V)	grid (V)	GEMt (V)	GEMb (V)	μ -PIC (V)
CH ₄	-1370	-1290	-560	-150	175
$CH_4 + H_2 (3:7)$	-2105	-1500	-620	-250	420
$CH_4 + He (4:6)$	-1465	-1200	-600	-250	400
iso- $C_4H_{10} + H_2$ (1:9)	-2255	-1300	-600	-250	400
$iso-C_4H_{10} + He (1:9)$	-1430	-970	-600	-250	300

3.1.3 トラックの幅

本実験の目的である 3α に崩壊するイベントでは観測されるトラックが太いと複数のト ラックの区別が難しくなり、トラックを正しく抽出できなくなる.そこで、α 粒子による トラックの幅を測定した. 図 3.4 に示すように,ドリフト方向のトラックの幅には 0°方 向に放出された α 粒子のトラックの anode image の 128 strip 目の clock 方向の幅を,垂 直方向の幅には 30°方向に放出された α 粒子のトラックの cathode image の 200 clock 目 の strip 方向の幅を用いる. このようにして決定したトラックの幅と Magboltz を用いて 計算した拡散係数を図 3.5 に示す. 図 3.5 から分かるようにトラックの幅と拡散係数には 正の相関がある. 拡散係数,トラックの幅ともに iso-C₄H₁₀ + H₂ (1:9) が最も小さいこと が分かる.

図 3.4: トラックの幅の決定方法のイメージ.ドリフト方向の幅には 0° 方向に放出された α 粒子の anode image の 128 strip 目 (左), 垂直方向 の幅には 30°方向に放出された α 粒子の cathode image の 200 clock 目 の幅を用いる.

図 3.5: Magboltz で計算した拡散係数と実測によるトラックの幅.

3.2 シミュレーションによる線源データの再現

MAIKo TPC から得られるトラックを Garfield++ [22] と Magboltz [17], SRIM [16] を 用いたシミュレーションにより MAIKo TPC で測定されるトラックの再現を試みた.シ ミュレーションでは、ドリフト電場、W 値、電子増幅率、検出ガスの密度を固定した上 で、最もよく測定結果を再現する信号の閾値を探索した.電子増幅率はα線源を用いた測 定値を用いた.シミュレーションは以下の手順で行った.

- トラックを生成する荷電粒子のエネルギー,運動量を決定し,Garfield++のSrim-Track に登録する.
- 2. SrimTrack によりトラックの周囲に電子を生成する.
- 3. 電子を Magboltz で求めたドリフト速度と拡散係数に基づき読み出し領域へドリフトさせる.
- 電子のドリフト時間を信号処理回路の応答関数で畳み込む.すなわち,読み出し領域に到達した電子1つにつき図 3.6 に示すような電気信号を各 strip の信号波形に加算する.
- 5. 設定した信号波形の閾値に基づき,信号波形を白黒画像に変換し anode image と cathode image を生成する.

 α 線源を用いた場合のシミュレーションと測定の比較を以下に示す. 図 3.7 は 50 hPa の CH₄ におけるトラック, 図 3.8 は 100 hPa の CH₄ + H₂ (3:7) におけるトラック, 図 3.9 は 100 hPa の CH₄ + He (4:6) におけるトラック, 図 3.10 は 100 hPa の iso-C₄H₁₀ + H₂ (1:9) におけるトラック, 図 3.11 は 100 hPa の iso-C₄H₁₀ + He (1:9) におけるトラックである. これらの α 線は図 3.3 のように有感領域を貫通している. 信号の閾値を 0.1 mV とする と, それぞれの検出ガスでの α 線源によるトラックを, シミュレーションで再現できる.

図 3.7: α 粒子のトラック (CH₄ の場合).

図 3.8: α 粒子のトラック [CH₄ + H₂ (3:7)の場合].

図 3.9: a 粒子のトラック [CH₄ + He (4:6) の場合].

図 3.10: α 粒子のトラック [iso-C₄H₁₀ + H₂ (1:9) の場合].

図 3.11: a 粒子のトラック [iso-C₄H₁₀ + He (1:9) の場合].

 α 線源から放出される α 粒子のエネルギーは平均 4.2 MeV である.一方で、本研究 で検出を目指している 0⁺ 状態からの崩壊 α 粒子のエネルギーは数百 keV である.そこ で、 α 線源の前に 15 µm のカプトン膜を設置することで α 粒子のエネルギーを減衰さ せ、低エネルギー α 粒子での測定を行った. α 粒子のエネルギーは有感領域と線源の間 にある検出ガスによってさらに低下し TPC の有感領域では約 1 MeV となる.低エネル ギー α 粒子のトラックを図 3.12 [CH₄ (50 hPa)]、3.13 [CH₄ + H₂ (3:7) (100 hPa)]、3.14 [CH₄ + He (4:6) (100 hPa)]、3.15 [iso-C₄H₁₀ + H₂ (1:9) (100 hPa)]、3.16 [iso-C₄H₁₀ + He (1:9) (100 hPa)] に示す.コリメータによって α 線の方向を 30° に制限したため、斜めの トラックとなっている.シミュレーションでは有感領域の横から 500 keV の a 粒子を入 射させた.これらの a 粒子は MAIKo TPC の有感領域中で停止している. a 線源から放 出されるエネルギーに広がりがあるため,エネルギー即ち飛跡の長さは完全には一致して いないが,トラックの太さの傾向は再現できている.

図 3.12: 低エネルギー a 粒子のトラック (CH4 の場合).

図 3.13: 低エネルギー a 粒子のトラック [CH₄ + H₂ (3:7)の場合].

図 3.14: 低エネルギー a 粒子のトラック [CH₄ + He (4:6) の場合].

図 3.15: 低エネルギー a 粒子のトラック [iso-C₄H₁₀ + H₂ (1:9) の場合].

図 3.16: 低エネルギー a 粒子のトラック [iso-C₄H₁₀ + He (1:9) の場合].

3.3 トリプルアルファ反応のシミュレーション

 α 線源から放出される α 粒子のトラックを再現することができたので、同じ設定で ¹²C(n, n')3 α 反応をシミュレーションによって生成した.このシミュレーションでは以下 のように 3 つの α 粒子を生成した.

- 1. ¹²C を 14 MeV の中性子との非弾性散乱により 0⁺₂ 状態に励起させる. この際, 重 心系で一様な散乱角で散乱させる.
- 2. ${}^{12}C(0^+_{2})$ を α 粒子と ${}^{8}Be$ に位相空間で一様に崩壊させる.
- 3. 崩壊してできた ⁸Be を 2 つの α 粒子へ位相空間で一様に崩壊させる.

このようにして得た α 粒子のトラックを生成する.トラックの生成方法は前節で述べた 通りである.生成したトラックの例を図 3.17 [CH₄ (50 hPa)], 3.18 [CH₄ (100 hPa)], 3.19 [CH₄ (100 hPa)], 3.20 [iso-C₄H₁₀ + H₂ (1:9) (100 hPa)], 3.21 [iso-C₄H₁₀ + He (1:9) (100 hPa)] に示す.ここでは、3 つのトラックを確認できたイベントを示した.生成されたイベント の中には α 粒子のエネルギーと放出角度によっては、3 本のトラックを個別に確認でき ないイベントも含まれている.図 3.22 [CH₄ (50 hPa)], 3.23 [CH₄ + H₂ (3:7) (100 hPa)], 3.24 [CH₄ + He (4:6) (100 hPa)], 3.25 [iso-C₄H₁₀ + H₂ (1:9) (100 hPa)], 3.26 [iso-C₄H₁₀ + He (1:9) (100 hPa)] に 2 本しかトラックを確認できないイベントの例を示す.

図 3.18: 3 α のシミュレーション画像 [CH₄ + H₂ (3:7) の場合].

図 3.19: 3a のシミュレーション画像 [CH₄ + He (4:6) の場合].

図 3.20: 3α のシミュレーション画像 [iso-C₄H₁₀ + H₂ (1:9) の場合].

図 3.21: 3a のシミュレーション画像 [iso-C₄H₁₀ + He (1:9) の場合].

図 3.22: 2 本しかトラックを確認できないイベントの画像 (CH₄ の場合).

図 3.23: 2 本しかトラックを確認できないイベントの画像 [CH₄ + H₂ (3:7) の場合].

図 3.24: 2 本しかトラックを確認できないイベントの画像 [CH₄ + He (4:6) の場合].

図 3.25: 2 本しかトラックを確認できないイベントの画像 [iso-C₄H₁₀ + H₂ (1:9) の場合].

図 3.26: 2 本しかトラックを確認できないイベントの画像 [iso-C₄H₁₀ + He (1:9) の場合].

第4章

トラックの解析

4.1 トラック情報の解析の概要

MAIKo TCP の解析では背景事象の除去とトラック情報の抽出の 2 つが必要となる. 検 出ガスには ¹²C だけでなく,陽子や ⁴He が含まれる. そのため,中性子と陽子,⁴He との 散乱事象を取り除く必要がある. 陽子や ⁴He との散乱では複数の荷電粒子が生成されな いので,トラックの本数が 3 本以外のときは背景事象と判断すれば良い. その後,中性子 と ¹²C との散乱事象に対してトラックの情報を抽出する.トラックの情報は中性子と ¹²C とが散乱した位置の座標,それぞれの α 粒子が停止した位置の座標である. 図 2.3 に示す ように, anode image から *z*, *y* 座標を, cathode image から *x*, *y* 座標を決定することができ る. *x*, *z* 座標は μ -PIC の信号を検出した strip のチャンネル番号に 400 µm を乗じること で求めることができる. TPC では, *y* 座標を荷電粒子が通過した位置から読み出し面に到 達するまでの時間として測定する.そのため, anode image, cathode image の clock にド リフト速度を乗じることで *y* 座標を求めることができる.このようにして決定した anode image, cathode image の座標を合わせることで, 3 次元の座標を求めることができる.

散乱点と停止点の座標から粒子が飛行した方向ベクトルと距離が決定される. 粒子の種類が分かれば,飛程から運動エネルギーが決まる. 図 4.1 に 50 hPa の CH₄ 中での荷電粒子の飛程と運動エネルギーの対応を示す. 飛程と運動エネルギーの関係は SRIM [16] を用いて求めた. 粒子の運動エネルギーを*T*,質量を*m*,単位方向ベクトルを(*dx*, *dy*, *dz*)と

すると、粒子の4元運動量は

$$p = \begin{pmatrix} E \\ p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} T+m \\ \sqrt{(T+m)^2 + m^2} dx \\ \sqrt{(T+m)^2 + m^2} dy \\ \sqrt{(T+m)^2 + m^2} dz \end{pmatrix}$$
(4.1)

となる.決定した3つの α 粒子の4元運動量を足し合わせることで、¹²Cの4元運動量 を再構成できる.このようにして求めた¹²Cの4元運動量から、運動エネルギー、散乱角 度、励起エネルギーを求めることができる.

図 4.1: CH₄ (50 hPa) 中での荷電粒子 (p, α, ¹²C) の飛程と運動エネル ギー. この飛程とエネルギーの関係は SRIM を用いて求めた.

4.2 Eye-scan によるトラックの解析

本研究ではトラックの本数の識別と散乱点,停止点の抽出を人間の目 (eye-scan) で行った. ここではトラックが 3 本確認できるイベントを ¹²C(n, n')3α イベントとした.本研究では ¹²C(n, n')3α イベントに対して解析を行った.実際の測定に使用する検出ガスの決定のために, 3.3 節のシミュレーションで生成したデータのうち,有感領域中で 3 つの α 粒子が停止したイベントに対して解析を行った.

4.2.1 解析効率

正しくトラックを識別できない場合として,

- α 粒子が有感領域内で停止しないため、エネルギーと運動量を決定できない場合
- α 粒子のトラックが短いまたは他のトラック重なり区別ができない場合

の2つの場合がある.前者を捕獲効率,後者を解析効率とし,これらの積が測定時の検出 効率となる.ここでは,eye-scanによって正しくトラックが3本と認識できる割合によっ て解析効率を評価する.Eye-scanは各検出ガスについて100 events ずつ行った.Eye-scan によって決定したトラックの本数の割合を表 4.1 に示す.表 4.1 の3本の割合が解析効率 となる.ここでは,eye-scanによって決定したトラックの本数が多項分布に従うと仮定し て誤差を評価した. CH_4 単体と CH_4 + He (4:6)以外は約 90%の解析効率となっている. CH_4 単体と CH_4 + He (4:6)は α 線源での測定において,トラックの幅が大きい検出ガス であり,複数のトラックを区別することができず解析効率が下がる傾向にある.

gas	3本(%)	2本(%)	1本(%)
CH ₄	55 ± 5.0	37 ± 4.8	8 ± 2.7
$CH_4 + H_2 (3:7)$	91 ± 4.1	9 ± 2.9	0
$CH_4 + He (4:6)$	78 ± 4.1	22 ± 4.1	0
$iso-C_4H_{10} + H_2$ (1:9)	87 ± 3.4	11 ± 3.1	2 ± 1.4
$iso-C_4H_{10} + He (1:9)$	90 ± 3.0	10 ± 3.0	0

表 4.1: Eye-scan によって決定したトラックの本数の割合.

4.2.2 エネルギー分解能

Eye-scan により決定した中性子と ¹²C が散乱した点と各 α 粒子が停止した点からそれ ぞれの α 粒子の飛程を求める. α 粒子の飛程の分解能により,エネルギー分解能が決ま る.シミュレーションで粒子を生成した時に決定した α 粒子の運動エネルギー (E_{ideal}) と eye-scan によって決定した α 粒子の運動エネルギー ($E_{eye-scan}$)の相関を図 4.2, 4.3, 4.4, 4.5, 4.6 に示す. 縦軸がシミュレーションで決定した運動エネルギー, 横軸が eye-scan で 決定した運動エネルギーである. この相関に対して 1 次関数 ($E_{ideal} = p_0 \times E_{eye-scan} + p_1$) でフィットした結果(図中の赤線)を表 4.2 にまとめる. どの検出ガスについても, ほぼ $E_{ideal} = E_{eye-scan}$ となっている. $E_{ideal} = E_{eye-scan}$ の直線から大きく外れているものは, anode image と cathode image で正しい組み合わせで端点を抽出できなかったためと考えられる.

表 4.2: シミュレーションで決定したエネルギーと eye-scan で決定した エネルギーの相関係数.

gas	p_0	p_1
CH ₄	0.985	1.79×10^{-2}
$CH_4 + H_2 (3:7)$	0.991	2.60×10^{-3}
$CH_4 + He (4:6)$	0.972	1.57×10^{-2}
$iso-C_4H_{10} + H_2$ (1:9)	0.929	3.09×10^{-2}
$iso-C_4H_{10} + He (1:9)$	0.962	1.66×10^{-2}

 $E_{eye-scan}$ をフィットした1次関数 [f(x)] で補正したエネルギーと E_{ideal} と差分を dE [= $E_{ideal} - f(E_{eye-scan})$]とする.各検出ガスでのdEの分布を図 4.7, 4.8, 4.9, 4.10, 4.11 に、ガウス分布でフィットした平均と標準偏差を表 4.3 に示す.エネルギー分解能は、 $CH_4 + H_2$ (3:7)の場合(図 4.8) に最も良いことが分かる.

H₂ (1:9) の場合の dE.

gas	dE (keV)	σ_{dE} (keV)
CH ₄	11.0	33.0
$CH_4 + H_2 (3:7)$	1.25	20.0
$CH_4 + He (4:6)$	9.30	23.7
iso- $C_4H_{10} + H_2$ (1:9)	4.56	23.6
$iso-C_4H_{10} + He (1:9)$	5.00	22.3

表 4.3: エネルギーの差分の平均と標準偏差.

4.2.3 角度分解能

極角分解能

シミュレーションで決定した α 粒子の極角と eye-scan での極角の差分を dθ とする. 各 検出ガスでの dθ の分布を図 4.12, 4.13, 4.14, 4.15, 4.16 に, ガウス分布でフィットした平 均と標準偏差を表 4.4 に示す. 極角分解能は, CH₄ + H₂ (3:7) の場合(図 4.13) に最も良 いことが分かる.

方位角分解能

シミュレーションで決定した α 粒子の方位角と eye-scan での方位角の差分を dφ とす る. 各検出ガスでの dφ の分布を図 4.17, 4.18, 4.19, 4.20, 4.21 に, ガウス分布でフィッ トした平均と標準偏差を表 4.4 に示す. 検出ガスに CH₄ + H₂ (3:7) を用いたとき(図 4.18) に最も良いことが分かる.

表 4.4: 角度の差分の平均と標準偏差.

gas	$d\theta$ (degree)	$\sigma_{d\theta}$ (degree)	$d\varphi$ (degree)	$\sigma_{d\varphi}$ (degree)
CH ₄	2.66	4.47	-1.19	5.92
$CH_4 + H_2 (3:7)$	0.121	1.41	-0.0475	1.41
CH ₄ + He (4:6)	0.191	1.62	-0.255	1.95
iso- $C_4H_{10} + H_2$ (1:9)	-0.0729	1.71	-0.220	1.70
$iso-C_4H_{10} + He (1:9)$	0.175	1.80	-0.195	1.65

4.2.4 励起エネルギー分解能

¹²C の励起エネルギー (E_x)の分解能が悪ければ各励起状態を特定することができない. シミュレーションでは 0[±] 状態経由での崩壊を考えているので, ¹²C(0[±])の励起エネルギー は 7.65 MeV となる. Eye-scan で決定した ¹²C* の不変質量から基底状態の ¹²C の質量を 減じることで励起エネルギーを求め, 7.65 MeV を再構築できるか評価する. 各検出ガス で再構成した励起エネルギーを図 4.22, 4.23, 4.24, 4.25, 4.26, 表 4.5 に示す. どの検出ガ スにおいても 7.65 MeV 付近にピークが認められ, 0[±] 状態を再構成できていることが分か る. 0[±] 状態に隣接する ¹²C の励起状態は 3⁻ の 9.64 MeV であるので, 分解能も隣接する 励起状態と分けるのに十分良いことも分かる.

表 4.5: 各ガスで求めた励起エネルギーの平均と標準偏差.

gas	E_x (MeV)	σ_{Ex} (keV)
CH ₄	7.63	49.1
$CH_4 + H_2 (3:7)$	7.67	16.6
$CH_4 + He (4:6)$	7.67	20.5
$iso-C_4H_{10} + H_2$ (1:9)	7.67	17.5
$iso-C_4H_{10} + He (1:9)$	7.67	19.0

4.3 検出ガスの決定

表 4.6 に各検出ガスの優劣をまとめた. ○ が優, △ が可, × が不可を表す. 表の各項目 から考えると, CH₄ + H₂ (3:7) または iso-C₄H₁₀ + H₂ (1:9) が適すると判断できる. 両者 の検出ガスに含まれる ¹²C の量を比較すると, iso-C₄H₁₀ + H₂ (1:9) の方が 4/3 倍多い. よって, 検出ガスには 100 hPa の iso-C₄H₁₀ + H₂ (1:9) が最適であると判断した.

gas	解析効率	拡散効果	E_x 分解能	標的の量
CH ₄ @ 50 hPa	×	×	Δ	1
CH ₄ + H ₂ (3:7) @ 100 hPa	\bigcirc	\bigcirc	\bigcirc	0.6
CH ₄ + He (4:6) @ 100 hPa	\triangle	Δ	\bigcirc	0.8
iso- $C_4H_{10} + H_2$ (1:9) @ 100 hPa	\bigcirc	\bigcirc	\bigcirc	0.8
iso- C_4H_{10} + He (1:9) @ 100 hPa	\bigcirc	Δ	\bigcirc	0.8

表 4.6: 各検討項目に対する検出ガスの優劣. 標的の量は CH₄ に含まれ る量を 1 とした.

第5章

iso-C₄H₁₀ + H₂ (1:9) の検出ガス 特性

5.1 ドリフト速度

前章で検出ガスに最適であると判断した 100 hPa の iso-C₄H₁₀ + H₂ (1:9) について,ド リフト速度のドリフト電場依存性を調べた. Magboltz を用いた計算によるとドリフト 速度が 0.014 mm/ns となるドリフト電場は 6.80 V/mm である. ドリフト領域の長さは 140 mm であるので,plate と grid の電位差は 952 V となる. 調整の行いやすさを考え 955 V を中心に 100 V 間隔で 455–1455 V の範囲で変化させて計 10 点測定した. 線源を 用いて測定したドリフト速度と Magboltz を用いて計算したドリフト速度を図 5.1 に示す. 線源を用いて測定したドリフト速度と Magboltz を用いて計算したドリフト速度が概ね一 致していることが分かる.ただ,全体的に測定値のドリフト速度の方が小さくなってい る. これは測定で用いた検出ガスに水分などの不純物が含まれていることが原因と考えら れる.この測定において検出ガスに含まれた水分濃度は約 2.6 ppm であった.水分による ドリフト速度の変化は付録 B で述べる.

図 5.1: ドリフト速度の電場依存性. 黒い四角は測定したドリフト速度, 実線は Magboltz を用いて計算したドリフト速度を示す.

5.2 電子増幅率

電子の増幅率は GEM, μ -PIC の電圧によって変化する.また, grid や GEM を通過する際に電子の一部が増幅されずに吸収されてしまう.そこで,電子増幅率の電位差依存性を調べる.grid と GEM との電位差を $\Delta V_{\text{grid-GEM}}$, GEM の両面間の電位差を ΔV_{GEM} , GEM の μ -PIC 側と μ -PIC との電位差を $\Delta V_{\text{GEM-}\mu}$ -PIC, μ -PIC の anode 電極の電圧を V_{μ} -PIC とする. μ -PIC の cathode 電極は接地されている.表 5.1 にあるような電位差を基準として,他の項目の電位差は固定したうえで,各項目の電位差依存性を調べた.表 5.1 に示す電圧値は3章でドリフト速度を測定したときの構成である.増幅率の測定方法は3章で述べた通りである.本測定では GEM, μ -PIC の増幅率や電子の収集効率を独立に求めることができないので,合計の増幅率として求める.
項目	電位差 (V)
$\Delta V_{\rm grid-GEM}$	700
$\Delta V_{\rm GEM}$	350
$\Delta V_{\text{GEM-}\mu\text{-PIC}}$	650
$V_{\mu ext{-PIC}}$	400

表 5.1: 基準となる電圧構成.

5.2.1 grid と GEM 間の電位差による電子の増幅率

grid と GEM の間の電位差によって電子がドリフト領域から増幅領域へ移動する効率が 変化することがわかっている. $\Delta V_{grid-GEM}$ を 20 V 間隔で 600–780 V の範囲で変化させて 計 10 点測定した. 電子の増幅率の $\Delta V_{grid-GEM}$ による変化を図 5.2 に示す. 増幅率の変化 は *gain* = 0.00704 × $\Delta V_{grid-GEM}^2$ – 7.92 × $\Delta V_{grid-GEM}$ + 2330 と表すことができる. ドリフ ト電場に対して増幅領域の電場を強くすることで,電子をより強く増幅領域へ吸い出すこ とができるため,増幅率が増加したと考えられる. $\Delta V_{grid-GEM}$ =700 V のとき, 140 V/mm であり,ドリフト電場の約 20 倍となっている.

図 5.2: 電子増幅率の ΔV_{grid-GEM} 依存性. 実線は 2 次関数でのフィット 結果を示す.

5.2.2 GEM による電子増幅率

GEM は絶縁体のフィルムの両面を銅で被覆し、微細な穴を加工したものである. GEM の各面に電圧を印加することで高電場を形成し、電子が穴を通過する際にア バランシェ増幅を起こす. ΔV_{GEM} を 10V 間隔で 300–390V の範囲で変化させて計 10 点測定した.電子の増幅率の ΔV_{GEM} による変化を図 5.3 に示す.増幅率の変化は gain = 0.0188 × ΔV_{GEM}^2 – 0.67 × ΔV_{GEM} + 1340 と表すことができる. ΔV_{GEM} を大きくし て、GEM の穴の中に生成される電場を強くすることでより強く増幅されることが確認さ れた.

図 5.3: 電子増幅率の ΔV_{GEM} 依存性. 実線は 2 次関数でのフィット結果 を示す.

5.2.3 GEM と µ-PIC 間の電位差による電子の増幅率

 $\Delta V_{\text{GEM-}\mu\text{-PIC}}$ によって GEM で増幅された電子の μ -PIC による収集率が変化する. $\Delta V_{\text{GEM-}\mu\text{-PIC}}$ を 50 V 間隔で 550–750 V の範囲で変化させて計 5 点測定した.電子の増幅 率の $\Delta V_{\text{GEM-}\mu\text{-PIC}}$ による変化を図 5.4 に示す.増幅率の変化は gain = 0.767× $\Delta V_{\text{GEM-}\mu\text{-PIC}}$ = 253 と表すことができる.GEM で増幅された電子をより強い電場で μ -PIC 近傍へ吸い出 すことで,効率よく μ -PIC に電子が輸送されたと考えられる.

図 5.4: 電子増幅率の ΔV_{GEM-μ-PIC} 依存性. 実線は 1 次関数でのフィット結果を示す.

5.2.4 µ-PIC による電子増幅率

電子は μ -PIC で読み出される直前に, μ -PIC によって作られた高電場によって増幅される. V_{μ -PIC を 10 V 間隔で 350–440 V の範囲で変化させて計 10 点測定した. 電子の増幅率の V_{μ} -PIC による変化を図 5.5 に示す. 増幅率の変化は gain = 2.06 × V_{μ} -PIC – 587 と表すことができる. μ -PIC の anode 電極の周りにより強い電場が形成されることで,より強く電子が増幅されることが確認された.

図 5.5: 電子増幅率の V_{µ-PIC} 依存性. 実線は 1 次関数でのフィット結果 を示す.

5.3 電子の拡散効果

ドリフト速度が一定である場合は、電子の拡散は式 (2.3) より \sqrt{L} (*L* は電子のドリフト 距離)に比例する.線源は線源導入機によって、MAIKo チェンバーの気密性を保持した まま電子のドリフト方向に移動可能である.線源導入機は 2016 年度の森本修論 [23] で開 発された.図 5.6 は線源導入機の先に線源を取り付けたときの様子である.図 5.6 中の矢 印の方向に線源を移動させることができる.線源導入機によって線源の位置を変化させる ことで、拡散効果の *L* 依存性を調べることができる.拡散効果とトラックの太さが比例 していると仮定すると、track width $\propto \sqrt{L}$ と期待される.トラックの太さと線源の位置と の依存性を図 5.7 に示す.図 5.7 の *L* は線源コリメータの 0° 穴と grid とのドリフト方向 の距離である.この測定では表 5.2 に示す電圧で測定を行った.

	電位差 (V)
V _{drift}	955
$V_{\text{grid-GEM}}$	700
$V_{\rm GEM}$	350
$V_{\text{GEM-}\mu\text{-}\text{PIC}}$	650
V_{μ} -PIC	400

表 5.2: 拡散効果の距離依存性を測定したときの電圧設定.

測定結果に対して $f(L) = p_0 \sqrt{L - p_1} + p_2$ でフィットを行うと, track width = 1.27 × $\sqrt{L - 19.2} + 23.1$ となり, \sqrt{L} に比例していることが確認された. トラックの幅の \sqrt{L} に対する係数 D_{width} は (12.7 ± 0.3) ns/ $\sqrt{\text{mm}}$ である.

図 5.6: 線源導入機に取り付けた線源. 矢印の方向に移動させることが できる.

図 5.7: トラックの太さの位置依存性. 実線は $f(L) = p_0 \sqrt{L - p_1} + p_2$ でのフィット結果を示す.

TPC から得られるトラックの y 軸は, 10 ns 単位の時間として (y_{clk}) として取得される. y_{clk} を mm 単位 (y_{length}) へ変換するには式 (5.1) のように,ドリフト速度 v_{drift} (mm/ns) を 掛ければ良い.

$$y_{\text{length}} = y_{\text{clk}} \times 10 \times v_{\text{drift}} \tag{5.1}$$

同様に測定より得られた係数 (D_{width}) にドリフト速度を掛けることで, Magboltz を 用いた計算から得られる拡散係数の次元 (D_{exp}) に変換できる. ドリフト速度 v_{drift} は 1.37×10^{-2} mm/ns なので, $D_{exp} = (0.174 \pm 0.004) \sqrt{mm}$ となる. Magboltz を用いた計算 から得られた拡散係数は 0.144 \sqrt{mm} である. 測定で得られた拡散係数の方が大きくなっ ている. Magboltz で係数を求めた際には, 一様な電場を仮定しているが実際には GEM や μ -PIC の周囲では一様電場ではない. また, 電子によって誘起される信号も有限の幅を 持つ. これらの効果を考慮しきれていないため, 計算値より実測値のほうが大きくなって いると考えられる.

第6章

中性子ビームを用いた測定に向けて

6.1 14 MeV 中性子による¹²C(n, n') 反応

式 (6.1) に示すデューテリウムとトリチウムの反応 (DT 反応) では 14 MeV の中性子 ビームを生成することができる.この反応は2体反応であるため,放出角度により中性子 のエネルギーが一意に決まる.

$$d + t \rightarrow \alpha (3.5 \,\text{MeV}) + n (14 \,\text{MeV}) \tag{6.1}$$

単色エネルギーの中性子を用いることで、中性子のエネルギー測定を行う必要が無くなる. ITER [24] などの核融合炉ではこの DT 反応を用いて質量エネルギーを取り出す. 核融合炉の中で生成される 14 MeV の中性子は構造材の原子核と反応し損傷させるため、構造材の中に多く含まれる炭素との反応が詳しく調べられている [25, 4]. ¹²C(n, n' + 3α) 反応の全断面積は 209 mb,分岐比は表 6.1 の通りである. 14 MeV の中性子ビームを用いて測定を行えば、前章までのシミュレーションとの比較しシミュレーションによる測定方法の検討の妥当性を評価することができる.

Reaction channel	Branching ratio (%)
${}^{12}C(n, n'){}^{12}C^*(7.65 \text{ MeV})$	4
$^{12}C(n, n')^{12}C^{*}(9.64 \text{ MeV})$	33
${}^{12}C(n, n'){}^{12}C^*(10.3 \text{ MeV})$	16
${}^{12}C(n, n'){}^{12}C^*(10.84 \text{ MeV})$	6
${}^{12}C(n, n'){}^{12}C^*(11.83 \text{ MeV})$	4
${}^{12}C(n, \alpha)^9 Be^*(1.68-3.05 MeV)$	24
${}^{12}C(n, \alpha)^9 Be^*(4.7 \text{ MeV})$	13

表 6.1: ${}^{12}C(n, n' + 3\alpha)$ 反応のチャンネルとその分岐比 [4]. ${}^{12}C$ の励起 状態から 3α に、 ${}^{9}Be$ の励起状態から 2α に崩壊する.

6.2 大阪大学 14 MeV 中性子工学実験装置 (OKTAVIAN)

大阪大学工学研究科の OKTAVIAN [26] では DT 反応により 14 MeV の中性子を発生さ せることができる.図 6.1 に OKTAVIAN の施設図を示す.OKTAVIAN は 1981 年から 運転を開始し,核融合中性子工学研究に用いられてきた.コッククロフト・ワルトン型加 速器を用いて加速したデューテリウムをトリチウムターゲットに照射することで,DT 反 応により 14 MeV の中性子を生成する.OKTAVIAN にはパルスビームラインと DC ビー ムラインの 2 つのビームラインがある.パルスビームラインは大実験室に設置されたト リチウムターゲットを用いて,DC ビームラインは重照射室に設置されたトリチウムター ゲットを用いて中性子を生成する.

DC ビームラインで生成された中性子はトリチウムターゲットを中心に放射状に重照射 室へ放出される.図 6.2 に示すように、この中性子を大実験室側へ取り出すために、半径 約 55 mm の取り出し穴が重照射室と大実験室を隔てる壁に設けられている.図 6.2 は重 照射室と大実験室を隔てる壁を大実験室から撮影した写真である.この取り出し穴から中 性子を取り出すことで、半径約 55 mm にコリメートされた DC 中性子ビームを得ること ができる.ただし、DC ビームであるため中性子が入射した時間情報を得ることはできな い.一方で、パルスビームラインでは図 6.3 のように大実験室中にトリチウム標的が設置 されているため、中性子をコリメートすることができない.また、大実験室に測定装置を 置いた場合、壁などから反跳した中性子がバックグラウンドとなってしまう.その反面、 パルス状に中性子が発生するので、中性子の時間情報を得ることができる.本測定では、 バックグラウンドイベントを低減することや、中性子の入射領域を制限できることから、 DC ビームラインを用いて測定を行う予定である.また、取り出し穴に任意の形状のコリ メータを入れることで、ビームの形状を制御することができる.

図 6.1: OKTAVIAN の施設図 [26]. パルスビームラインと DC ビーム ラインがそれぞれ大実験室と重照射室に伸びている.

6.3 中性子ビーム

6.3.1 ビームサイズを制限する必要性

中性子ビームは可能な限り空間的な広がりが小さいことが望ましい.例えば,半径 50 mm の広がりを持つ中性子ビームを用いると,散乱点が y 軸方向に 100 mm の広がりを 持つ.しかし,MAIKo TPC はトラックの周囲に発生した電子が読み出し面に到達する時 間差を用いて y 座標を検出しているため,絶対値を決定できない.すると,図 6.4 のよう に,ビーム入射範囲のどこで散乱が起きたのか判別できない.図 6.4 の例では,取得され たデータが同じであっても上の場合はトラックが有感領域から出てしまっている.トラッ クの長さと方向から α 粒子のエネルギーと運動量を決定するには,トラックが有感領域中 で停止しなければならない.どちらの場合でも確実に有感領域中で停止したと保証するた

図 6.2: 大実験室側から DC 中性子の取り出し穴のある壁を見たときの 様子.

めには,有感領域の y 軸方向の長さからビームの y 軸方向の広がりを除いた領域しか用 いることができない. 半径 50 mm のビームを用いると,散乱点から y 軸方向に ±20 mm を実質の有感領域としなければならない.実質の有感領域が小さいと領域外に出ていく *α* 粒子の数が増えてしまい,解析に使えるイベントの割合(捕獲効率)が減少してしまう. そのため,中性子ビームの y 軸方向のサイズは可能な限り小さいことが望ましい. その反 面,ビームを細くすると中性子のビーム量が低下してしまう.

図 6.3: 大実験室およびパルスビームライン. 写真中央にパルスビーム ラインのトリチウムターゲットが設置されている. 写真左手前から加速 されたデューテリウムが照射される.

図 6.4: ビームサイズが大きいときの散乱事象. 右上のように領域外に トラックが出ているのか, 右下のように領域内で停止したのか区別でき ない.

6.3.2 立体角と捕獲効率によるビームサイズの決定

重照射室内のトリチウムターゲットから中性子が 4 π に等方的に放出していると仮定す ると、中性子の収量はコリメータの立体角で決定される.重照射室の模式図を図 6.5 に示 す.トリチウムターゲットから重照射室の大実験室側の壁までの距離は 1.46×10³ mm, 壁の厚さは 1.00×10³ mm である.この壁に半径 55 mm の穴が設けられており、そこか ら大実験室側へ中性子を取り出す.この壁の穴にコリメータを設置することで任意の形に 中性子ビームの形状を設定できる.ここでは、円柱の中央に半径 r mm の穴が開いたコリ メータを考える.このとき、立体角は $\pi \times r^2/(2.46 \times 10^3)^2$ となる.

図 6.5: 重照射室の模式図. トリチウムターゲットから大実験室まで 2.46mである.

図 1.8 のエネルギー分布, ビームの通る円柱内で一様な散乱点を仮定して, *a* 粒子の捕獲効率を求めた. 半径 1–50 mm でのコリメータの立体角の割合と捕獲効率を表 6.2 に示す. 捕獲効率は 10 mm 以下ではほとんど変化がない. 1, 5, 10 mm を比較すると,立体角は 10 mm が最も大きい. 大きな捕獲効率を持ちつつ,立体角が大きい 10 mm のコリメータを用いる.

コリメータの半径 (mm)	立体角 (sr)	捕獲効率 (%)
1	5.19×10^{-7}	48.9
5	1.30×10^{-5}	48.7
10	5.19×10^{-5}	48.2
20	2.08×10^{-4}	46.6
30	4.67×10^{-4}	39.2
40	8.31×10^{-4}	26.3
50	1.30×10^{-3}	10.3

表 6.2: コリメータの半径とコリメータの立体角、捕獲効率.

6.3.3 コリメータの材質

中性子を遮蔽する物質として,陽子を多く含むポリエチレンや吸収断面積が大きいホ ウ素が広く用いられている.ポリエチレンとホウ素入りポリエチレンでの中性子の遮蔽 度合いを PHITS (Particle and Heavy Ion Transport code System) ver. 3.14 [27] を用いて計 算した. PHITS は日本原子力研究開発機構が中心となって開発を行っている物質中での 放射線の挙動をシミュレートするモンテカルロ計算コードである.今回の計算に用いた PHITS の入力ファイルを付録 C に示す.図 6.6 は中性子がコリメータを通過したときの 位置分布である.図 6.7 はコリメータを通過した後の中性子のエネルギー分布である.青 色のヒストグラムはコリメータの中心から 0–10 mm の範囲の中性子,赤色のヒストグラ ムはコリメータの中心から 10–55 mm の範囲の中性子のエネルギー分布である.ポリエチ レン,ホウ素入りポリエチレンともにコリメータの穴の部分に対して遮蔽されている部分 は中性子の量が 2 桁以上少なく,十分に遮蔽できていることが分かる.また,通過してき た中性子のエネルギーはほとんど 14 MeV であり,エネルギーの単色性が損なわれていな いことが分かる.

⁽b) ホウ素入りポリエチレンの場合.

図 6.6: コリメータ通過後の中性子の位置分布. 2 つの円はコリメータの 穴と外縁を表す.

(b) ホウ素入りポリエチレンコリメータの場合.

ポリエチレンとホウ素入りポリエチレンでは同程度にコリメートできているので、本実

図 6.7: 中性子のエネルギー分布. 0–10 mm はコリメータの穴の部分, 10–55 mm はコリメータの部分である.

験ではコストの面からポリエチレンを用いたコリメータを採用した.実際に作成したコリ メータを図 6.8 に示す. このコリメータは半径 53 mm,高さ 100 mm の円柱の中心に半径 10 mm の穴を開けた構造になっている.壁の厚さが 1000 mm であるため,このコリメー タ 10 個を中性子の取り出し穴に挿入する.

図 6.8: ポリエチレンで作成したコリメータ. 半径 53 mm, 長さ 100 mm の円柱の中央に, 半径 10 mm の穴が開いている.

6.3.4 中性子の収量

PHITS による計算ではトリチウム標的で生成された中性子のうち、0–10 mm の範囲 で 13.9–14.1 MeV の中性子が通過してくる割合は 8.14 × 10⁻⁴ % となる. OKTAVIAN の DC ビームラインで生成される中性子が 5×10^9 /s であるとすると、コリメータを通過し てくる 14 MeV 中性子の量は 4.07 × 10⁴/s となる.

6.4 捕獲効率の散乱位置依存性と散乱角依存性

6.4.1 14 MeV 中性子を用いたとき

10 mm のコリメータを用いたときの捕獲効率は 48.2% であった. 捕獲効率は散乱点, 散乱角度に依存していると予想される. 捕獲効率の散乱点の z 座標依存性を図 6.9 に,重 心系での散乱角 ($\theta_{c.m.}$) 依存性を図 6.10 に示す. 図 6.9 から分かるように,z 座標が小さい または大きい場所で反応が起きた場合に,崩壊してできた α 粒子が有感領域から出る確率 が大きくなるため捕獲効率が低下している. また,図 6.10 から分かるように, $\theta_{c.m.}$ が大 きいところで捕獲効率が低下している. これは, $\theta_{c.m.}$ が大きいところでは後方散乱となり 中性子から多くのエネルギーを受け取り,崩壊した α 粒子が全体的に z 軸正の方向にブー ストされることで有感領域から出ていきやすくなるためである.

図 6.9: 捕獲効率の散乱点の z 座標依存性.

6.4.2 8.5 MeV 中性子を用いたとき

 12 Cを 0^+_2 状態に励起させることができる中性子エネルギーの閾値近傍の断面積が重要 となる. そこで, 8.5 MeV の中性子を用いた測定を考える. テスト実験と同様に 50 hPa の iso-C₄H₁₀ + H₂ (1:9) を用いた MAIKo TPC の運用を仮定する. また,同じ中性子コ リメータを用いるとする. すると, 捕獲効率は 51.6% となる. 微分断面積の角度分布は 14 MeV の中性子と¹²C の散乱と同じであると仮定した. 捕獲効率の散乱点の z 座標依存 性を図 6.11 に,重心系での散乱角 (θ_{c.m.}) 依存性を図 6.12 に示す.図 6.9 と比較して図 6.11 は、50 mm よりも大きいところで捕獲効率が小さく、小さいところでは捕獲効率が 大きくなっていることが分かる. これは, 前方散乱では 14 MeV 中性子のほうが 8.5 MeV 中性子よりエネルギーの移行が小さいためである. 図 6.13 に ¹²C(0⁺₂) の重心系での散乱 角とエネルギーの関係を示す.実線は 14 MeV の中性子と散乱したとき,点線は 8.5 MeV の中性子と散乱したときを表す. $\theta_{c.m.} = 0^\circ$ のときのエネルギーは 8.5 MeV の中性子と の散乱の方が大きいことが分かる.すると、8.5 MeVの中性子と散乱した時は、3 つの a 粒子が実験室系の前方へのブーストの効果が 14 MeV の中性子と散乱したよりも大きく なるため、有感領域の下流側で散乱すると捕獲効率が低下すると考えられる. 14 MeV の 中性子と散乱した場合と比較して、8.5 MeV の中性子と散乱した場合は ${}^{12}C(0_2^+)$ の持つ エネルギーの広がりが小さいことが分かる.図 6.14 は実験室系での¹²C(0⁺₂)の散乱角と エネルギーの関係である.8.5 MeV の中性子と散乱した場合は散乱角は,14 MeV と散乱 した場合と比較して前方角度へ集中することが分かる. そのため, 横方向に大きく散乱 されることがなくなり、有感領域の上流側で散乱が起きた場合には捕獲効率が高くなる. z < 20 mm において捕獲効率がほぼ 100 % となっているが, 崩壊 α 粒子のうち実験室系 でほとんど静止するものもあり,解析効率が低下することが予想される.また,散乱角度 によらずに¹²C(0⁺₂)のエネルギーが変わらないので,図 6.12 のように捕獲効率は散乱角 度にあまり依存しない.

図 6.11: 8.5 MeV の中性子を用いたときの捕獲効率の散乱点の *z* 軸依存性.

図 6.12: 8.5 MeV の中性子を用いたときの捕獲効率の散乱角依存性.

図 6.13: ¹²C(n, n')¹²C(0⁺₂) 反応における ¹²C の散乱角とエネルギーの関係(重心系).

図 6.14: ¹²C(n, n')¹²C(0⁺₂) 反応における ¹²C の散乱角とエネルギーの関係(実験室系).

8.5 MeV の中性子を用いたときのシミュレーションから解析効率も評価した. 図 6.15 にシミュレーションで得られた 3α イベントの一例を示す. 14 MeV のときと同様に 100 events を eye-scan によって解析を行った. eye-scan で決定したトラックの本数を表 6.3 に示す. 14 MeV のときと同様に $93 \pm 2.6\%$ と高い割合で 3 つのトラックを識別でき ていることが分かる. 図 6.16 に eye-scan で決定した ¹²C の励起エネルギーを示す. 励起 エネルギー分布の平均は 7.68 MeV,標準偏差は 17.0 keV であり,励起エネルギーも精度 良く再構成されていることが分かる.本研究で考えている実験条件では、中性子のエネル ギーに関わらず測定を行うことができることが分かる.

図 6.15: 8.5 MeV の中性子を用いたときのシミュレーショントラックの 一例.

表 6.3: eye-scan によって決定したトラックの本数.

トラックの本数	イベント数
3	93
2	7
1	0

図 6.16: eye-scan によって再構成した励起エネルギー.

6.5 期待される収量

文献 [25, 4] によると 14 MeV の中性子による ${}^{12}C(n, n'){}^{12}C(0_2^+)$ 反応の全断面積 (σ) は 8.36 mb である. OKTAVIAN で現在得られる中性子ビーム強度は最大で 4 π に 5 × 10⁹/s である. この時,半径 10 mm のコリメータからは, $N_b = 1.95 \times 10^4$ /s の中性子が得られ る. 捕獲効率 ($\varepsilon_{det.}$) が 48.2 %,解析効率 ($\varepsilon_{ana.}$) が 87 % である. 100 hPa の iso-C₄H₁₀ + H₂ (1:9) における有感領域中の ${}^{12}C$ の面密度 (N_t) は 1.01 × 10¹⁷/mm² である. この時, ${}^{12}C(n, n'){}^{12}C(0_2^+)$ 反応の収量は

$$Y = N_{t} \times N_{b} \times \sigma \times \varepsilon_{det} \times \varepsilon_{ana}$$

= 1.01 × 10¹⁷/mm² × 1.95 × 10⁴/s × 8.36 mb × 48.2 % × 87 %
= 6.90 × 10⁻⁴/s (6.2)

となる. 24 時間の測定で収量が 59.6 events となり, シミュレーションとの比較を十分行 えると期待される.

第7章

まとめと今後の展望

本研究では ¹²C(n, n')¹²C(0⁺₂) 反応の断面積測定のための実験条件を検討した. ¹²C(n, n')¹²C(0⁺₂) 反応において,崩壊してできる α 粒子の持つエネルギーが数百 keV と 小さいことが分かった.また,広い角度に放出されることも分かった.そこで,¹²C(0⁺₂) から放出される 3 つの低エネルギー α 粒子をすべて検出するために,低エネルギーの 荷電粒子を大立体角で検出できる MAIKo TPC を用いて測定行うことを決定した.約 8.35–15 MeV の範囲で断面積の中性子エネルギー依存性を測定するが,まずは検証実験 として単色エネルギーで生成可能な 14 MeV の中性子を用いた測定を行う.そのため, 14 MeV の中性子と ¹²C との反応に主眼をおいて検討を進めた.

MAIKo TPC では α 粒子のエネルギーを取得したトラックの長さから決定するため, α 粒子が MAIKo TPC の有感領域で停止することが必要となる. しかし,トラックが短くな るとトラックを正しく識別できなくなるため, 適切な物質量であることが必要となる. 要 求を満たすガスとして, CH₄ (50 hPa), CH₄ + H₂ (3:7) (100 hPa), CH₄ + He (4:6) (100 hPa), iso-C₄H₁₀ + H₂ (1:9) (100 hPa), iso-C₄H₁₀ + He (1:9) (100 hPa) の 5 種類を候補とした. 検出ガスの種類によっては電子の拡散効果が大きく,荷電粒子のトラックが太く検出され る. 太いトラックでは 3 つの α 粒子のトラックを正しく識別できないため,拡散の効果が 小さいことが求められる. 拡散の効果において, CH₄ + H₂ (3:7) と iso-C₄H₁₀ + H₂ (1:9) が有力であることが分かった. また,実際の測定で取得されるであろうトラックをシミュ レーションにより生成し,実際に解析を行うことで検出ガスの評価を行った. 評価の結 果, CH₄ + H₂ (3:7) と iso-C₄H₁₀ + H₂ (1:9) では大きな優劣の差は見られなかった. そこ で,体積当たりの ¹²C の含有量の多い iso-C₄H₁₀ + H₂ (1:9) を検出ガスとして決定した.

iso-C₄H₁₀ + H₂ (1:9) を検出ガスに用いることで、 12 Cの 0_2^+ 状態を識別するのに十分な 分解能を達成できることが分かった.また、検出器中で3つの α 粒子が停止する割合は 48.2%, それらのイベントから正しく α 粒子のトラックを抽出できる割合は 87% である ことが分かった. これらを考慮して, ${}^{12}C(n, n'){}^{12}C(0_2^+)$ 反応の収量を見積もると, 24 時間 で 59.6 events であると期待される.

2020 年 2/25–28 の 4 日間で OKTAVIAN で測定を行う予定である.本研究で決定した 検出ガスを用いて測定を行い,シミュレーション計算との詳細な比較を行う.

謝辞

本研究は多くの方のご助力により成立しています.指導教官である川畑貴裕教授には, 研究の進め方,文章の書き方,発表方法などの多くのことをご指導いただきました.ま た,実験の合間にキャッチボールやソフトボールに連れ出していただくことで,測定およ び修士論文の執筆の時期に心身ともに健康な生活を送ることができました.大阪と京都の 二重生活でお忙しいにも関わらず,多くの時間を私への指導に当てていただき大変感謝し ております.

大阪大学環境・エネルギー工学専攻の村田勲教授と玉置真悟特任助教には, OKTAVIAN のことや実験に向けた多くのご助言を頂き,大変感謝しております.

RCNP の古野達也さんと村田求基さんには, RCNP で MAIKo TPC のテストをしている 際に, MAIKo TPC の先輩として測定方法やシミュレーションの方法など多くのアドバイ スとご助力をいただきました. 稲葉健斗さんには, 京都にいる MAIKo TPC のエキスパー トとして多くの相談に乗っていただきました. 特にガスや MAIKo TPC の取扱について, 慣れない私に丁寧にご指導いただきました. ありがとうございました. 岡本慎太郎くんに は, MAIKo TPC のテストや息抜きの卓球を一緒に行い, 多くの時間をともに過ごしまし た. 一人では大変な作業を手伝って頂き, 大変助かりました. 藤川祐輝さん, 大阪大学の 坂梨公亮くんには, OKTAVIAN での測量など人手が必要な作業をお手伝いいただき, 大 変助かりました. 土方佑斗くん, 延與紫世さんには, 解析の手伝いをして頂き大変感謝し ています.

同期の関屋涼平くん,原田健志くん,藤井涼平くん,古田悠稀くんとは食事の際にお互いの研究について,気軽に意見を言い合うことができ大変楽しい時間を過ごしました.研究室の永江知文教授,成木恵准教授,銭廣十三准教授,村上哲也講師,後神利志助教,先 輩方は常に研究の進捗を気にかけてくださいました.

最後に,今まで私を支えて頂いた家族や友人に対して深く感謝の意を申し上げます.

付録 A

中性子検出器

A.1 液体シンチレータ

¹²C(n,n')¹²C(0⁺₂)反応の断面積の測定には MAIKo TPC に入射した中性子の数を測定す る必要がある.中性子は電荷を持たず検出器中で電磁気相互作用によってエネルギーを落 とさないため,直接検出することができない.そのため,中性子と散乱した検出器中の 陽子を検出することによって間接的に中性子を検出する.より効率的に中性子と陽子が 散乱するように,中性子検出器には水素が多く含まれる有機シンチレータが用いられる. OKTAVIAN での測定では NE213/BC501 液体シンチレータを用いる.図 A.1 に中性子検 出器の模式図を示す.液体シンチレータの有感体積は,直径 200 mm,厚さ 50 mm の円柱 である.容器はアルミニウム製で,シンチレーション光の収集効率を高めるために容器の 内側を酸化マグネシウムでコーティングしている.シンチレーション光は光電子増倍管で 電気信号に変換されて読み出される.

図 A.1: 中性子検出器の模式図.

A.2 n-γ 弁別

液体シンチレータを用いた測定では中性子だけでなく背景 γ 線も検出される.そのた め、中性子と γ 線の識別が必要となる.中性子と γ 線では液体シンチレータの発光の波 形が異なることが知られている.図 A.2 に中性子と γ 線の波形の違いを模式的に示す. 中性子の方がテールを長く引いた波形となる.図 A.2 に示すように、波形全体を覆う区間 (region 1) とテール部分を覆う区間 (region 2) の 2 つの積分区間を用いて波形を積分する ことで、中性子と γ 線とを区別する.

図 A.2: 液体シンチレータから得られる中性子および γ 線の波形の違い と 2 つの積分区間. 全体を覆う区間 (region 1) とテール部分を覆う区間 (region 2) の 2 つの区間で積分することで波形を識別する.

中性子検出器から得られる信号は CAEN V1742 を用いて取得した. CAEN V1742 は 入力信号の波形をそのまま取得することができるモジュールである. 信号の取得周波数 は 5 GHz から 750 MHz である. CAEN V1742 で取得した波形の 1 例を図 A.3 に示す. 図 A.3 は ²⁴¹ Am-⁹ Be 中性子線源を用いて測定をしたときのものである. 取得周波数は 5 GHz である.

図 A.3: V1742 で取得した波形の1例.

V1742 によって取得した波形のピーク位置に対して -15-45 ns (region 1) と 10-45 ns (region 2) の 2 つの区間で波形を積分した. ²⁴¹Am-⁹Be 中性子線源で取得した region 1 と region 2 の相関を図 A.4 に示す. 図 A.4 中の 2 つの島のうち,上が中性子,下が γ 線で ある.中性子の中心となる位置を直線近似し (図 A.4 中の赤線), region 2 との差分を取っ たものが図 A.5 である.図 A.5 において,中性子側のピーク (0 付近のピーク) をガウス 分布でフィットすることで中性子の検出数を決定する.

図 A.4: region 1 と region 2 と 2 つの区間での積分値の相関.²⁴¹Am-⁹Be 中性子線源を用いて測定した.1 MeVee 以下は解析から除外した.

図 A.5: region 2 と中性子の近似直線との差分.

A.3 SCINFUL-CG による中性子の検出効率

検出器中に入射した中性子が陽子と反応しない場合は検出されない.また,検出器中で 中性子が失うエネルギーは散乱角度によって連続的に分布する.そのため、検出器に入射 した中性子の絶対数を求めるためには検出効率をけったいする必要がある.液体シンチ レータの検出効率は SCINFUL-CG [28] を用いて計算する.SCINFUL-CG は任意形状の シンチレータの中性子に対する応答関数を計算するコードである.中性子の検出効率は発 光量の閾値により変化する.図A.6 に発光量のの閾値が0.5,1.0,1.5 MeVee のときの検 出効率を示す.ここでは単色中性子が入射しているとして計算した.図A.6 から分かる ように発光量の閾値を高くすると検出効率が低下する.また,高エネルギーの中性子ほど 検出効率が低下する.

図 A.6: SCINFUL-CG で求めた中性子の検出効率.発光量の閾値が高 いほど,中性子のエネルギーが大きいほど検出効率は小さくなる.

中性子検出器で測定した中性子数 (N_{detect}) を SCINFUL-CG で求めた検出効率 (ε) で式 (A.1) のように補正することで、実際に入射した中性子数 (N_{in}) を求めることができる.

$$N_{\rm in} = \frac{N_{\rm detect}}{\varepsilon} \tag{A.1}$$
実際の測定で用いる 14 MeV の単色中性子に対する検出効率は表 A.1 の通りとなる.

閾値 (MeVee)	検出効率 (%)
0.25	17.1
0.50	14.4
1.00	12.2
1.50	10.8

表 A.1: 14 MeV の単色中性子に対する検出効率.

付録 B

水蒸気の混入によるドリフト速度の 変化

B.1 水分のドリフト速度への影響

本研究では用いた検出ガスは低圧であるため、水分などの不純物からの影響が大きいと 予想される.そこで、チェンバー中の水分をモニターしながらドリフト速度の変化を測定 した.水分は露点計で測定した.露点温度と水分濃度と蒸気密度の対応を表 B.1 に示す. 露点温度は水が凝結を始める温度であるので、高いほどガス中に含まれる水分が多いこと を示す.測定には本文で検討した5種類の検出ガスのうち CH₄ を用いた.これは、候補 とした検出ガスのうち最も圧力が低く、体積あたりの分子数が少ないので、不純物による 影響が現れやすいと考えたためである.この測定での各部の電圧は表 B.2 の通りである. 測定時は、検出ガスにを入れる前に可能な限り検出器中の水分を取るために、半日ほど真 空ポンプで排気を行った.

露点温度 (℃)	水分濃度 (ppm)	蒸気密度 (g/m ³)
-80	0.540	0.000613
-70	2.581	0.00279
-60	10.67	0.0109
-50	38.84	0.0382
-40	126.7	0.1199
-30	375.0	0.339
-20	1019	0.884
-10	2565	2.14
0	6032	4.85

表 B.1: 露点温度と水分濃度と蒸気密度の対応. ppm は parts par million の略であり, 10,000 ppm = 1% となる.

表 B.2: 測定で用いた電圧の構成.

	電位差 (V)
$\Delta V_{\text{plate-grid}}$	80
$\Delta V_{\rm grid-GEM}$	710
$\Delta V_{\rm GEM}$	410
$\Delta V_{\text{GEM-}\mu\text{-}\text{PIC}}$	325
$V_{\mu-\mathrm{PIC}}$	175

時間経過によって, MAIKo チェンバー表面に吸着されていた水分が検出ガス中に放出 され,検出ガスの露点温度が上昇する.また,露点温度の上昇に伴ってドリフト速度が減 少する.露点温度とドリフト速度の時間経過を図 B.1 に示す.表 B.2 に示したドリフト 電場のとき, Magboltz によるドリフト速度の計算値は 0.0208 mm/ns である.また,露点 温度とドリフト速度の相関を図 B.2 に示す.

図 B.1: ドリフト速度と露点温度の時間変化.丸はドリフト速度,四角 は露点温度,横軸は日時を表す.

図 B.2: ドリフト速度の露点温度依存性.

B.2 ガスフローによるガス中の水分の変化

前節で述べたように時間経過とともにチェンバー表面から水分が放出される. 検出ガス をフローさせることで,この影響の低減を試みた. 図 B.3 に示すように,MAIKo チェン バーの inlet からガスを注入し,outlet からポンプで排気することで,ガスが長時間チェン バー中に留まらないようにした. 図 B.3 中の "MFC", "PV", "MV", "FM", "SP" はそれぞ れ,マスフローコントローラ,ピエゾバルブ,メータリングバルブ,フローメータ,スク ロールポンプを表す. ピエゾバルブとメータリングバルブで検出ガスの流量を調整するく ことで,チェンバー内の圧力を一定に保ったまま検出ガスを循環させた. 図 B.4 にドリフ ト速度と露点温度の時間経過を示す. 点線より左側では検出ガスを循環させて,右側では 循環させずに測定した. 検出ガスを循環させると露点温度,ドリフト速度ともに変化が小 さいことが分かる.

図 B.3: ガス配管の概観図.

図 B.4: ドリフト速度と露点温度の時間経過. 丸はドリフト速度,四角 は露点温度を表す.

連続した測定で検出ガスの循環の有無で露点温度とドリフト速度の変化の違いが分かっ た.このことより、チェンバー表面から多くの水分が検出ガスに放出されていることが確 認された.また、ドリフトスピードが Magboltz の計算値より小さくなる主な原因が検出 ガス中に含まれる水分であることが分かった.この影響を抑える方法として、今回行った ガスを循環させる方法が有効である.他の方法として、チェンバー中の水分を長時間に 渡ってポンプで排気することで、チェンバー表面の水分量を減らすことも有効であると考 えられる.さらに、この2つの方法のどちらも行うことで、低い露点温度で安定して測定 を行うことができると考える.

付録 C

PHITS のインプットファイル

PHITS のインプットファイルを以下に示す.ポリエチレンのコリメータの場合のシ ミュレーションである.

[Title] simulation for neutron collimator [Parameters] icntl = 0 itall = 1 maxcas = 5000000 maxbch = 50 file(6) = phits.out [Source] s-type = 1 proj = neutron dir = all r0 = 0.z0 = -146.4z1 = -146.4e0 = 14. [Material] mat[1] \$ Air N 8 0 2 mat[2] \$ Polyethylene C 2 H 4 mat[3] \$ Concrete 0 -0.52 Si -0.325 Ca -0.06

```
Na -0.015 Fe -0.04 Al -0.04
mat[4] $ Acrylic
        C 5 0 2 H 8
mat[5] $ Methane
        C 1 H 4
[Surface]
$ colimator
100
      cz
           5.5
101
      cz
           1.
102
           0.
      pz
103
           100.
      pz
$ wall
104
          -100. 100. -100. 100. 0. 100.
      rpp
$ frange
110
           5.5
      cz
           102.
 111
      pz
112
           104.
      pz
$ detector
120
      pz
           110.
$ room
      rpp -100. 100. -100. 100. -200. 300.
200
[Cell]
$ collimator
          -0.9 -100 +101 +102 -103
100
       2
$ wall
200
          -2.5
      3
                   -104 + 100
$ frange
300
          -1.18
                   -110 +111 -112
      4
$ detector
400
      5
          -0.000717 -110 +112 -120
$ room
1000 1
          -0.0012 -200 #100 #200 #300 #400
$ void
2000 -1
                   +200
[T-Cross]
             Energy distribution in r-z mesh (front)
   title =
    mesh =
             r-z
  r-type =
             1
      nr =
              3
             0. 1. 5.5 10
```

```
emin =
             0.
    emax =
             15.
    unit =
             2
    axis =
             eng
    file =
             cross_eng_f.out
  output =
             f-curr
    part =
             all neutron
   gshow =
             1
  epsout =
             1
[T-Cross]
             Energy distribution in r-z mesh (rear)
   title =
    mesh =
             r-z
  r-type =
             1
      nr =
             2
             0. 1. 5.5
  z-type =
             1
      nz =
             0
             104.
   e-type =
             1
      ne =
             3
             0. 13.5 14.5 20.
    unit =
             2
    axis =
             eng
    file =
             cross_eng_r.out
  output =
             f-curr
    part =
             all neutron
   gshow =
             1
   epsout =
             1
[T-Cross]
   title =
             Posion distribution in xyz mesh (front)
    mesh =
             xyz
  x-type =
             2
             100
      nx =
    xmin = -10.
             10.
    xmax =
  y-type =
             2
```

z-type =

e-type =

nz =

ne =

1

0 102.

2

150

```
ny =
              100
    ymin =
            -10.
    ymax =
              10.
  z-type =
              1
      nz =
              0
              102.
  e-type =
              2
      ne =
              1
    emin =
              0.
    emax =
              20.
    unit =
              1
    axis =
              ху
    file =
              cross_xy_f.out
  output =
             f-curr
    part =
              all neutron
   gshow =
              1
  epsout =
              1
[ T - C r o s s ]
   title =
             Posion distribution in xyz mesh (rear)
    mesh =
              xyz
  x-type =
              2
      nx =
             100
    xmin = -10.
            10.
    xmax =
  y-type =
              2
      ny =
             100
    ymin = -10.
    ymax =
             10.
  z-type =
              1
      nz =
              0
              104.
  e-type =
              2
      ne =
              1
    emin =
              0.
    emax =
              20.
    unit =
              1
    axis =
              ху
    file =
             cross_xy_r.out
  output =
              f-curr
    part =
              all neutron
   gshow =
              1
  epsout =
              1
```

```
[T - 3 D s h o w ]
   output =
              3
material = 4
            2 3 4 5
       x0 =
              0.
       y0 =
              0.
       z0 =
              0.
    e-the =
              40.
    e-phi =
              45.
    e-dst =
              500.
    1-the =
              150.
   1-phi =
              30.
              80.
   l-dst =
   w-wdt =
              80.
   w-hgt =
              100.
   w-dst =
              300.
  heaven =
              х
     line =
              2
   shadow =
              2
   resol =
              2
     file =
              3dshow.out
   title =
              Check geometry
   epsout =
              1
[Mat Name Color]
                        color
 mat
         name
  1
         Air
                        pastelblue
 2
         Polyethylene
                        red#yellow
```

```
3Concretecamel4Acrylicblue
```

[End]

参考文献

- [1] F. Hoyle: Astrophysical Journal Supplement 1 (1954) 121.
- [2] M. Beard, S. M. Austin, and R. Cyburt: Physical Review Letters 119 (2017) 112701.
- [3] A. Koning, S. Hilaire, and M. Duijvestijn: In O. Bersillon, F. Gunsing, E. Bauge, R. Jaccqmin, and S. Leray (eds), *International Conference on Nuclear Data for Science and Technology*, 01 2007, pp. 211–214.
- [4] K. Kondo, I. Murata, K. Ochiai, N. Kubota, H. Miyamaru, C. Konno, and T. Nishitani: Journal of Nuclear Science and Technology 45 (2008) 103.
- [5] J. Alme, Y. Andres, H. Appelshuser, S. Bablok, N. Bialas, R. Bolgen, U. Bonnes, R. Bramm, P. Braun-Munzinger, R. Campagnolo, P. Christiansen, A. Dobrin, C. Engster, D. Fehlker, Y. Foka, U. Frankenfeld, J. J. Gaardhøje, C. Garabatos, P. Glssel, C. Gonzalez Gutierrez, P. Gros, H. A. Gustafsson, H. Helstrup, M. Hoch, M. Ivanov, R. Janik, A. Junique, A. Kalweit, R. Keidel, S. Kniege, M. Kowalski, D. T. Larsen, Y. Lesenechal, P. Lenoir, N. Lindegaard, C. Lippmann, M. Mager, M. Mast, A. Matyja, M. Munkejord, L. Musa, B. S. Nielsen, V. Nikolic, H. Oeschler, E. K. Olsen, A. Oskarsson, L. Osterman, M. Pikna, A. Rehman, G. Renault, R. Renfordt, S. Rossegger, D. Rhrich, K. Røed, M. Richter, G. Rueshmann, A. Rybicki, H. Sann, H. R. Schmidt, M. Siska, B. Sitr, C. Soegaard, H. K. Soltveit, D. Soyk, J. Stachel, H. Stelzer, E. Stenlund, R. Stock, P. Strme, I. Szarka, K. Ullaland, D. Vranic, R. Veenhof, J. Westergaard, J. Wiechula, and B. Windelband: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **622** (2010) 316.
- [6] 小早川亮: 修士論文, 京都大学 (2016).
- [7] C. Demonchy, W. Mittig, H. Savajols, P. Roussel-Chomaz, M. Chartier, B. Jurado, L. Giot, D. Cortina-Gil, M. CaamaÃśo, G. Ter-Arkopian, A. Fomichev, A. Rodin, M. Golovkov, S. Stepantsov, A. Gillibert, E. Pollacco, A. Obertelli, and H. Wang:

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **573** (2007) 145. Proceedings of the 7th International Conference on Position-Sensitive Detectors.

- [8] S. Ota, H. Tokieda, C. S. Lee, and Y. N. Watanabe: Journal of Radioanalytical and Nuclear Chemistry 305 (2015) 907.
- [9] D. Suzuki, M. Ford, D. Bazin, W. Mittig, W. G. Lynch, T. Ahn, S. Aune, E. Galyaev, A. Fritsch, J. Gilbert, F. Montes, A. Shore, J. Yurkon, J. J. Kolata, J. Browne, A. Howard, A. L. Roberts, and X. D. Tang: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 691 (2012) 39.
- [10] S. Beceiro-Novo, T. Ahn, D. Bazin, and W. Mittig: Progress in Particle and Nuclear Physics 84 (2015) 124.
- [11] T. Furuno, T. Kawabata, H. J. Ong, S. Adachi, Y. Ayyad, T. Baba, Y. Fujikawa, T. Hashimoto, K. Inaba, Y. Ishii, S. Kabuki, H. Kubo, Y. Matsuda, Y. Matsuoka, T. Mizumoto, T. Morimoto, M. Murata, T. Sawano, T. Suzuki, A. Takada, J. Tanaka, I. Tanihata, T. Tanimori, D. T. Tran, M. Tsumura, and H. D. Watanabe: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **908** (2018) 215.
- [12] A. Ochi, T. Nagayoshi, S. Koishi, T. Tanimori, T. Nagae, and M. Nakamura: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 471 (2001) 264.
- [13] T. Furuno, T. Kawabata, S. Adachi, Y. Ayyad, Y. Kanada-en, Y. Fujikawa, K. Inaba, M. Murata, H. J. Ong, M. Sferrazza, Y. Takahashi, T. Takeda, I. Tanihata, D. T. Tran, and M. Tsumura: Physical Review C 100 (2019) 054322.
- [14] 古野達也: 修士論文, 京都大学 (2013).
- [15] C. Altunbas, M. Capéans, K. Dehmelt, J. Ehlers, J. Friedrich, I. Konorov, A. Gandi, S. Kappler, B. Ketzer, R. De Oliveira, S. Paul, A. Placci, L. Ropelewski, F. Sauli, F. Simon, and M. Van Stenis: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 490 (2002) 177.
- [16] J. F. Ziegler, M. D. Ziegler, and J. P. Biersack: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 268 (2010) 1818.

- [17] S. Biagi. Magboltz. https://magboltz.web.cern.ch/ (available: 2020/1/27).
- [18] W. R. Leo: *Techniques for Nuclear and Particle Physics Experiments* (Springer-Verlag Berlin Heidelberg, 1994).
- [19] W. Binks: Acta Radiologica **41** (1954) 85.
- [20] C. Patrignani et al.: Chinese Physics C 40 (2016).
- [21] 稲葉健斗:修士論文,京都大学(2017).
- [22] K. Baraka, A. Folkestad, E. Frolov, K. Heijhoff, P. M. Vila, J. Mott, D. Pfeiffer, J. Renner,
 H. Chindler, A. Sheharyar, N. Shiell, R. Veenhof, and K. Zenker. Garfield++. https:
 //garfieldpp.web.cern.ch/ (available: 2020/1/27).
- [23] 森本貴博: 修士論文, 京都大学 (2016).
- [24] ITER 計画. www.fusion.qst.go.jp/ITER/index.html (available: 2020/1/27).
- [25] A. Takahashi, E. Ichimura, Y. Sasaki, and H. Sugemoto: Journal of Nuclear Science and Technology 25 (1988) 215.
- [26] オクタビアン(OKTAVIAN)の紹介.www.see.eng.osaka-u.ac.jp/seeqr/seeqr/ facility.html (available: 2020/1/27).
- [27] T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. Ichiro Abe, T. Kai, P. E. Tsai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver, and K. Niita: Journal of Nuclear Science and Technology 55 (2018) 684.
- [28] 遠藤章, E. Kim, and 山口恭弘: JAERI-Data/Code 2001-027 (2001).