東京大学

Nov. 24-26, 2010

J-PARC における ストレンジネス核物理

永江 知文 京都大学理学研究科物理学第二教室 nagae@scphys.kyoto-u.ac.jp

Outline - I

- Ist day
 - Historical Overview of Strengeness Nuclear Physics
 - Production of Hypernuclei
 - Hypernuclear structure and YN interaction
 - \bigcirc (π +,K+) Spectroscopy of Λ hypernuclei
- 2nd day
 - Hypernuclear gamma-ray spectroscopy
 - Σ hypernuclei
 - Weak decay of Hypernuclei

Outline -2

- ► 3rd day

 - Se Kaonic Nuclei

▶ 物理学教室コロキウム「ストレンジネスと原子核」

First day in UT

Hypernuclei

A Nucleus with Hyperons

S		Lifetimes[s]	Main Decay channels	Mass [MeV/c ²]	lsospin
0	p: uud n: udd	Stable(?) 887	pe ⁻ V _e (100%)	938.3 939.6	1/2
-1	Λ : uds	2.63x10 ⁻¹⁰	pπ⁻(64%), nπ⁰(36%)	5.7	0
-1	Σ +: uus Σ 0 : uds Σ $^{-}$: dds	0.8x10 ⁻¹⁰ 7.4x10 ⁻²⁰ 1.48x10 ⁻¹⁰	pπ ⁰ (52%), nπ ⁻ (48%) Λγ(~I00%) nπ ⁻ (99.8%)	89.4 92.6 97.4	I
-2	Ξ ⁰ : uss Ξ⁻: dss	2.9x10 ⁻¹⁰ 1.64x10 ⁻¹⁰	Λπ⁰(~Ι00%) Λπ⁻(~Ι00%)	3 5 32	I/2

Neutron Number

Normal Nuclei

- Many-Body systems composed of proton(uud)& neutron(udd)
- Quark many-body systems with u & d quarks only

Saturation Density: ρ₀=2.5x10¹⁴ g/cm³ Binding Energy: 8 MeV/nucleon ←Pauli Blocking, Repulsive core

Fermions

Brief history of Hypernuclea spectroscopy

- Discovery of Hyperfragments (1953) by M. Danysz and J. Pniewski
 - *⊙* Λ ~ p, n

ACTA PHYSICA POLONICA B 35 (2004) 901-927.

Discovery of V particles (1947) by G. Rochester and C. Butler

Early days - 1950s~1960s

- Stopped K⁻ reactions in Nuclear emulsion and He bubble chamber
 - High efficiency for Hyperfragment formation
 - Identification of Light Hyperfragments
 - ${\rm Om}~{}^{3}{}_{\Lambda}{\rm H} \sim {}^{15}{}_{\Lambda}{\rm N}$
 - Binding energies of ground states
 - Spin assignments for several ground states

Stopped K⁻ on ⁴He

	TABLE III. Branching ratios for	TABLE III. Branching ratios for K^- absorption at rest.		
A emission ~70%	Reaction	Events/(stopping K^-) (%)		
Σ emission ~30%	$K^{-}\text{He}^{4} \rightarrow \Sigma^{+}\pi^{-}\text{H}^{3}$ $\rightarrow \Sigma^{+}\pi^{-}dn$ $\rightarrow \Sigma^{+}\pi^{-}pnn$ $\rightarrow \Sigma^{+}\pi^{0}nnn$ $\rightarrow \Sigma^{+} nnn$ $Total \Sigma^{+} = (17.0)$	$9.3 \pm 2.3 \\ 1.9 \pm 0.7 \\ 1.6 \pm 0.6 \\ 3.2 \pm 1.0 \\ 1.0 \pm 0.4 \\) \pm 2.7 \%$		
Non-pionic ~17%	$K^{-}\text{He}^{4} \rightarrow \Sigma^{-}\pi^{+}\text{H}^{3}$ $\rightarrow \Sigma^{-}\pi^{+}dn$ $\rightarrow \Sigma^{-}\pi^{0} \text{ He}^{3}$ $\rightarrow \Sigma^{-}\pi^{0} pd$ $\rightarrow \Sigma^{-}\pi^{0} pd$ $\rightarrow \Sigma^{-} pd$ $\rightarrow \Sigma^{-} pd$ $\text{Total } \Sigma^{-} = (13.8)$	$\begin{array}{c} 4.2 \pm 1.2 \\ 1.6 \pm 0.6 \\ 1.4 \pm 0.5 \\ 1.0 \pm 0.5 \\ 1.0 \pm 0.5 \\ 1.0 \pm 0.4 \\ 1.6 \pm 0.6 \\ 2.0 \pm 0.7 \end{array}$		
	$\begin{array}{l} K^{-}\mathrm{He}^{4} \rightarrow \pi^{-}\Lambda \ \mathrm{He}^{3} \\ \rightarrow \pi^{-}\Lambda \ pd \\ \rightarrow \pi^{-}\Lambda \ ppn \\ \rightarrow \pi^{-}\Sigma^{0} \ \mathrm{He}^{3} \\ \rightarrow \pi^{-}\Sigma^{0} \ (pd,ppn) \\ \rightarrow \pi^{0}\Lambda \ (\Sigma^{0}) \ (pnn) \\ \rightarrow \Lambda \ (\Sigma^{0}) \ (pnn) \\ \rightarrow \pi^{+}\Lambda \ (\Sigma^{0})nnn \\ \mathrm{Total} \ \Lambda \ (\Sigma^{0}) = (69) \end{array}$	$\begin{array}{c} 11.2 \pm 2.7 \\ 10.9 \pm 2.6 \\ 9.5 \pm 2.4 \\ 0.9 \pm 0.6 \\ 0.3 \pm 0.3 \\ 22.5 \pm 4.2 \\ 11.7 \pm 2.4 \\ 2.1 \pm 0.7 \end{array}$		
	$Total = \Lambda + \Sigma = (100_{-7}^{+0})\%$			

Hypernuclear Production by stopped K⁻

• $o(10^{-3})$ per stopped K⁻; ... not so bad

Transition	Input	$^{12}_{\Lambda}{ m B}$ [3]	$^{12}_{\Lambda}$ C [2]	¹⁶ ΛΟ [2]
1-	$[K_{\chi}]$	0.203	0.425	0.219
	$[K_{\rm DD}]$	0.060	0.125	0.055
	Experimental rates	0.28 ± 0.08	0.98 ± 0.12	0.43 ± 0.06
0^{+}	$[K_{\gamma}]$	0.096	0.216	0.134
	$[K_{\rm DD}]$	0.011	0.021	0.020
2+	$[K_{\gamma}]$	0.547	1.052	0.872
	$\begin{bmatrix} K_{\text{DD}} \end{bmatrix}$	0.192	0.410	0.330
$0^+ + 2^+$	$[K_{\gamma}]$	0.643	1.268	1.006
	$\begin{bmatrix} K_{\text{DD}} \end{bmatrix}$	0.203	0.431	0.350
	Experimental rates	0.35 ± 0.09	2.3 ± 0.3	1.68 ± 0.16

TABLE IX. Calculated capture rates per stopped K^- (in units of 10^{-3}) for production of $1s_{\Lambda}$ states (1⁻ transition) and $1p_{\Lambda}$ states (0⁺ and 2⁺ transitions) and selected experimental rates.

3-

2-

1-

Fig. 10. Variation of the B_{Λ} values with the hypernuclear mass numbers.

In-flight (K⁻, π ⁻) in 1970s

- Heidelberg-Saclay group
- "Magic momentum" Recoilless condition
 - \bigcirc Population of Substitutional States: (p_n^{-1}, p_Λ)
 - Spectroscopic information on Excited states
 - $\$ Small Spin-Orbit splitting in Λ hypernuclei

Recoil Momentum of Hyperon

Data in the (K⁻, π ⁻) reactions

 B_{Λ} [MeV]

- Σ hypernuclei in (K⁻, π ⁻)
 - \bigcirc narrow states \rightarrow not reconfirmed
 - ♀ one bound state ${}^{4}_{\Sigma}He$ →confirmed
- Success of (π^+, K^+) Spectroscopy
- Success of Hypernuclear γ Spectroscopy
- H-particle search, Double- Λ hypernuclei

in the 21st century

ハイパー核の作り方

How to produce hypernuclei?

Strangeness exchange reactions: (K⁻, π⁻)

- \bigcirc Large cross section ~ mb/sr at 0 deg.

生成反応とその収量

	(K ⁻ ,π ⁻)	(π ⁺ ,K ⁺)	(e,e'K+)	
рвеам (GeV/c)	~0.7	1.05	1.8	
$d\sigma/d\Omega(\mu b/sr)$	1000	10	1 0 ⁻³	
I _{BEAM} (s ⁻¹)	10 +5	10+6	>10+13	
$\Delta \Omega$ (msr)	20	100	20	
nx (g/cm ²)	3	3	0.1	
ΔE (MeV)	3	2	0.2	
Relative Yield	2	1	>3	

$$\left(\frac{d^2\sigma_{fi}}{d\Omega_3 dE_3}\right)_{lab} = \frac{p_3 E_3}{(2\pi)^2 v_1} |T_{fi}|^2 \delta(\omega - E_1 + E_3)$$

$$T_{fi} = \langle \chi_3^{(-)} | \langle f | \sum_j t_j | i \rangle | \chi_1^{(+)} \rangle$$
t_j:素過程反応

▶ $\chi_3^{(-)}, \chi_1^{(+)}$:平面波(PWIA)、or 歪曲波(DWIA)

Distorted Wave

► Eikonal Approximation: E » U, pR » I

$$\chi^{(+)}(b, z) = e^{ipz}\phi(b, z)$$

 $[-\nabla^2 + \mu^2 - \omega^2]\chi^{(+)}(b, z) = -2\omega U\chi^{(+)}(b, z)$
 $\phi = \exp\{-iv^{-1}\int_{-\infty}^{z}U(b, z')dz'\}$
 $2\omega U(b, z) = p\sigma^{tot}\rho(b, z)$
 $\chi^{(-)*}_{3}(r)\chi^{(+)}_{1}(r) = \exp\{i\mathbf{q}\cdot\mathbf{r} - \frac{1}{2}\sigma_{eff}\int_{-\infty}^{\infty}\rho(b, z')dz'\}$
Mean free path = $1/\rho\sigma=1/(4 \text{ fm}^2)(0.15 \text{ fm}^{-3})=1.6 \text{ fm}, \sigma=40 \text{ mb}$
 \rightarrow 核表面での反応が支配的

Effective nucleon number

$$\left(\frac{d^2\sigma_{fi}}{d\Omega_3 dE_3}\right)_{lab} = \beta \left(\frac{d\sigma}{d\Omega_3}\right)_{lab} N_{eff}(\theta_{lab}; i \to f) \delta(\omega + E_3 - E_1)$$

$$\beta = \left(1 + \frac{E_3^{(0)}}{E_4^{(0)}} \frac{p_3^{(0)} - p_1 \cos \theta_{lab}}{p_3^{(0)}}\right) \frac{p_3 E_3}{p_3^{(0)} E_3^{(0)}}$$

2体系((0))から多体系への運動学因子

Hypernuclear Mass

$$\neg \pi^+ + A \rightarrow K^+ + HY$$

•
$$M_{HY}^2 = (E_{\pi} + M_A - E_K)^2 - (p_{\pi} - p_K)^2$$
; missing mass

$$M_{HY} - M_A = B_n - B_A + M_A - M_n$$

$$-B_{\Lambda} = M_{HY} - (M_{A} + B_{n} - M_{n} + M_{\Lambda})$$

Need incident momentum & out-going momentum Two Spectrometers

$$K^{-} + A \rightarrow \pi^{-} + HY$$

•
$$M_{HY}^2 = (M_K + M_A - E_\pi)^2 - (p_\pi)^2$$
; missing mass

$$\mathbf{M}_{HY} - \mathbf{M}_{A} = \mathbf{B}_{n} - \mathbf{B}_{\Lambda} + \mathbf{M}_{\Lambda} - \mathbf{M}_{n}$$

$$\blacktriangleright -B_{\Lambda} = M_{HY} - (M_{A} + B_{n} - M_{n} + M_{\Lambda})$$

► Need out-going π^- momentum only → One Spectrometer

Spectroscopic Information

► Mass→Binding Energy

- Missing Mass measurement in in-flight reactions
- Weak decays of Hyperfragments
- Spin Assignment
 - Weak Decay
 - Gamma Decay

$^{208}Pb(e,e'p)$

- ZAN(e,e'p) Z-IA'N: nucleon hole state
- ► Deep Hole States → Large Spreading Width > a few MeV

Excited levels of Λ -hypernuclei

Monochromatic Peak

Mesonic decay of Hyperfragments

▶ ⁴∧H

Fig. 9. The theoretical π^- decay spectrum $\Gamma_{\pi^-}({}_{A}^{4}H)/\Gamma_{A}$ as a function of the proton-³H relative energy $E_{\rm pt}$.
Quasi-monochromatic

▶ ⁵ $_{\Lambda}$ He→ π ⁻ +p+⁴He; p_π = 99.9 MeV/c, Δ p~1.4 MeV/c

Fig. 4. The theoretical π^- decay spectrum $\Gamma_{\pi^-}({}_{1}^{5}\text{He})/\Gamma_{1}$ with YNG drawn as a function of the $p\alpha$ relative energy $E_{p\alpha}$ is compared with the observed π^- decay spectrum taken in the emulsion experiment ^{18,33}). The calculated π^- decay rate is compared with the experimental values ^{12,20}) in table 1 and fig. 5.

Mesonic Decay Rate

• $\Gamma_{\pi}/\Gamma_{\Lambda}$ ~0.4 - 0.6 for light fragments

Fig. 5. Summary of the theoretical π -decay rates in units of Γ_1 . The open circle and the cross correspond to ORG and YNG, respectively. The π^- decay rates of ${}_{11}^6$ He in the case of the F0 .1.1 interaction are also shown. The experimental values for ${}_{1}^5$ He are taken from refs. 12,20).

Y-ray spectroscopy

Charged-particle Spectroscopy

• magnetic spectrometer: $\Delta p/p > 10^{-4}$

- ► △E = 0.3 ~ 2 MeV
- Absolute Energy Level
- selectivity for produced states

Gamma-ray Spectroscopy: Low detection efficiency

- Nal(~100 keV), Ge(2-3 keV): Excellent Resolution
- Energy level separation
- Low-lying states below particle-emission threshold

rroauction, structure and Decay of Hypernuclei

Fig. 2.4. The sticking probabilities $S_k(q; (0f)_N, (0f)_Y)$ of Eq. (2.2) as a function of q. The harmonic oscisize parameter b = 1.94 fm is used.

► (K⁻, π -): q<100 MeV/c $\rightarrow \Delta \ell = 0$ dominant

Angular Distributions

(K , π) reaction at $p_K = 720 \text{ MeV}/c.^{255}$

(K^{-}, π^{-}) on $|^{2}C\&|^{6}O$

Angular distribution in (π^+, K^+)

Spin of ${}^{4}\Lambda H(I)$

- ► ${}^{4}{}_{\Lambda}$ H= 3 H(1/2)+ $\Lambda(1/2)$
 - ► Initial State: J=0 or 1
 - Final State: π (0⁻), ⁴He(0⁺)
 - ► s-wave(J=0) or p-wave(J=1)
 - isotropic or $\cos \Theta^2$

 $\rightarrow \pi^{-}$

 \vdash^4 He

 $^{4}_{\Lambda}\mathrm{H}$

Fig. 1 The angular distribution of the π^- from the decay ${}_{\Lambda}H^4 \rightarrow \pi^- + He^4$, for hyperfragments produced in the capture reaction $K^- + He^4 \rightarrow {}_{\Lambda}H^4 + \pi^0$.

Spin of ${}^{4}\Lambda H(2)$

► $R_4 = ({}^4 \Lambda H \rightarrow \pi^- + {}^4He)/(all \pi^- decays of {}^4 \Lambda H)$

Motivations of Hypernuclear Spectroscopy

Extract YN and YY interactions

- difficulties in YN and YY scattering measurements
- Hyperon as an impurity
 - Structure change, new symmetry, etc.
- Hyperon in nuclei
 - effective mass, magnetic moment, etc.

Realistic Nuclear Force

Based on a lot of pp & pn scattering data:

~5900 dσ/dΩ, >2000 Pol., +1700 data

Hyperon-Nucleon Scattering

$$\Sigma^{\pm}p$$
, Λp : only 38 data points

- Ξ^-p elastic scattering and $\Xi^-p \rightarrow \Lambda\Lambda$ reaction
- Asymmetry in Λp and Σ⁺p elastic scattering

from Dover & Feshbach Ann.Phys.198(90)321

Need hi gh quality data with high stati stics

Baryon-Baryon Interaction

Baryon-Baryon Systems in SU(3)

S=-1 $\Sigma N(T=3/2)\Sigma N - \Lambda N(T=1/2)$ S=-2 $\Sigma \Sigma(T=2)\Xi N - \Sigma \Lambda - \Sigma \Sigma(T=1)\Xi N - \Sigma \Sigma - \Lambda \Lambda(T=0)$ S=-3 $\Xi \Sigma(T=3/2)\Xi \Sigma - \Xi \Lambda(T=1/2)$ S=-4 $\Xi \Xi(T=1)$

 $S=0 \text{ NN(T=0)} \\ S=-1 \Sigma N - \Lambda N(T=1/2) \\ S=-2 \Xi N - \Sigma \Lambda(T=1) \\ S=-3 \Xi \Sigma(T=3/2) \\ \end{cases}$

10 a

8 5

 $1_{\rm S}$

S=-1 $\Sigma N(T=3/2)$ S=-2 $\Xi N-\Sigma \Lambda-\Sigma \Sigma(T=1)$ S=-3 $\Xi \Sigma-\Xi \Lambda(T=1/2)$ S=-4 $\Xi\Xi(T=0)$

S=-1 Σ N- Λ N(T=1/2) S=-2 Ξ N- Σ A(T=1) Ξ N- Σ Σ - Λ A(T=0) S=-3 Ξ Σ - Ξ A(T=1/2)

8 a

S=-1 Σ N- Λ N(T=1/2) S=-2 Ξ N- Σ A- $\Sigma\Sigma$ (T=1) Ξ N(T=0) S=-3 $\Xi\Sigma$ - Ξ A(T=1/2)

- Understanding of the flavor SU(3) baryon-baryon interaction

 - Repulsive cores in Y-N/Y-Y ?
 What's the origin ?
 - Spin-dependent forces in Y-N/Y-Y.

Dibaryons

 $S=-2 \equiv N-\Sigma\Sigma-\Lambda\Lambda(T=0)$ H Dibaryon ?

Theory Interest in Flavor Nuclear Physics

• Recent Model building:

1. Nijmegen models: OBE and ESC Soft-core (SC)

Rijken, Phys.Rev. C73, 044007 (2006) Rijken & Yamamoto, Phys.Rev. C73, 044008 (2006) Rijken & Yamamoto, arXiv:nucl-th/060874 (2006)

- 2. Chiral-Unitary Approach model Sasaki, Oset, and Vacas, Phys.Rev. C74, 064002 (2006)
- 3. Jülich Meson-exchange models Haidenbauer, Meissner, Phys.Rev. C72, 044005 (2005)
- 4. Jülich Effective Field Theory models Polinder, Haidenbauer, Meissner, Nucl.Phys. A 779, 244 (2006)
- 5. Quark-Cluster-models: QGE + RGM

Fujiwara et al, Progress in Part. & Nucl.Phys. 58, 439 (2007) Valcarce et al, Rep.Progr.Phys. 68, 965 (2005)

Th.A. Rijken

QCd-world I

QCD-world I: mesons and baryons

QCD-world II

QCD-world II: Baryon/Meson-baryon Interactions

Quark Pauli principle

(0s) ⁶ is not allowed for [51]	$SU(6)_{fs}$ -contents of the various potentials on the isospin,spin basis.		
$[222]_c \times [51]_{sf} \times [6]_o \neq [1^6]$		(S, I)	$V = aV_{[51]} + bV_{[33]}$
▶ n: $- ddu>{2 ++->- +-+>}/3\sqrt{2}$	$NN \rightarrow NN$	(0, 1)	$V_{NN}(I=1) = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$
$\Sigma^{-1} dd_{S} > \{2 ++->_{-} +-+>_{-} _{-}++>\} /3_{3}/2$	$NN \rightarrow NN$	(1, 0)	$V_{NN} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$
	$\Lambda N \to \Lambda N$	(0, 1/2)	$V_{\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
	$\Lambda N \to \Lambda N$	(1, 1/2)	$V_{\Lambda\Lambda} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
	$\Sigma N \to \Sigma N$	(0, 1/2)	$V_{\Sigma\Sigma} = \frac{17}{18} V_{[51]} + \frac{1}{18} V_{[33]}$
	$\Sigma N \to \Sigma N$	(1, 1/2)	$V_{\Sigma\Sigma} = \frac{1}{2}V_{[51]} + \frac{1}{2}V_{[33]}$
	$\Sigma N \to \Sigma N$	(0, 3/2)	$V_{\Sigma\Sigma} = \frac{4}{9}V_{[51]} + \frac{5}{9}V_{[33]}$
	$\Sigma N \to \Sigma N$	(1, 3/2)	$V_{\Sigma\Sigma} = \frac{8}{9}V_{[51]} + \frac{1}{9}V_{[33]}$

Impurity Effect - I

Glue-like role

- Energetical stabilization
 - Resonant states in neutron-rich nuclei
 - →Bound states in A-hypernuclei

Impurity Effect -2

- Structure Change
 - Shrinkage of nuclear clusters

6_{Li}

(π , K) Spectroscopy

- Merits
 - * Large momentum transfer q~350 MeV/c
 - * Efficiently produces deeply-bound states
 - ***** Low backgrouds: γ , n
- Demerits
 - * No difference in angular distributions

(π^+, K^+) Spectroscopy

Reaction mechanism:

- Dover, Ludeking, Walker, Phys. Rev. C22(1980) 2073.
- Success at BNL(1985, 1988)
 - ∆E~3 MeV
 - Up to $^{89}\Lambda$ Y

▶ q~350 MeV/c

natural-parity stretched states

$$[(\ell_{N}j_{N})^{-1}(\ell_{\Lambda}j_{\Lambda})] \text{ with } J = \ell_{N} + \ell_{\Lambda}$$

SKS spectrometer at KEK-PS

Superconducting Kaon Spectrometer for the (π⁺,K⁺) reactions

- Constructed by INS, Univ. of Tokyo, from 1987 to 1990
- In operation since 1992
- $B_{max} = 3T(500A)$
- Pole Gap=50 cm
- 10.6 MJ stored
- Cold Mass ~4.5 t
- ~280 tons

Design Specifications of the SKS

Momentum resolution:

0.1%(FWHM) at 720 MeV/c

- Solid angle: 100 msr
 - To get enough yields
- Short Flight Path: ~5 m
 - To reduce K⁺ decays
- Initial Goal of Energy Resolution:

2 MeV(FWHM)

K6 Beam Line for the SKS

Challenges in the SKS

- Good Energy Resolution: <2 MeV(FWHM)
- ^I Magnetic Field Mapping: △B/B<10⁻³
 - Fully automated 3D positioning system
 - (120,000points x 7excitations) in 1.5 months
 - Very careful calibrations
- 3 T magnet with very low heat leak
- He transfer line with rotation capability

Momentum resolution

K6 Beamline

Matrix representations for magnets

$$\vec{x}'_{out} = QQDQQ\vec{x}_{in}$$
$$\vec{x} = (x, y, \theta \equiv dx/dz, \varphi \equiv dy/dz, \delta \equiv (p - p_0)/p_0)$$

x' | θ >~0

• Resolution in 1st order $\frac{\langle x' | x \rangle \sigma_x}{\langle x' | \delta \rangle} \qquad QQDQQ = \begin{cases} \langle x \\ \langle y \\ \langle q \\ \langle q \\ \rangle \end{cases}$

$$QDQQ = \begin{pmatrix} \langle x'|x \rangle & \langle x'|y \rangle & \langle x'|\vartheta \rangle & \langle x'|\varphi \rangle & \langle x'|\delta \rangle \\ \langle y'|x \rangle & \langle y'|y \rangle & \langle y'|\vartheta \rangle & \langle y'|\varphi \rangle & \langle y'|\delta \rangle \\ \langle \vartheta'|x \rangle & \langle \vartheta'|y \rangle & \langle \vartheta'|\vartheta \rangle & \langle \vartheta'|\varphi \rangle & \langle \vartheta'|\delta \rangle \\ \langle \varphi'|x \rangle & \langle \varphi'|y \rangle & \langle \varphi'|\vartheta \rangle & \langle \varphi'|\varphi \rangle & \langle \varphi'|\delta \rangle \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

(π, K^+) experiments with SKS

 $E_{140a:}$ $B_{12}C_{,28}S_{i,89}Y_{,139}L_{a,208}P_{b}$

```
Phys. Rev. C 53 (1996) 1210.
```

► E336: ⁷Li, ⁹Be, ¹³C, ¹⁶O

Nucl. Phys. A 639 (1998) 93c, Nucl. Phys. A 691 (2001) 123c.

Phys. Rev. C 64 (2001) 044302.

Phys. Rev. Lett. 94 (2005) 052502.

E140a: First (π^+ ,K⁺) exp. with the SKS

E369: 12C

Core-excited states of $\Lambda^{12}C$

New states are resolved. Effects of ΛN spin-dependent forces

Parity-mixing intershell coupling

T. Motoba, in HYP97(Nucl. Phys. A 639 (1998) 135c.)

E336: ⁹**A**Be

T.Motoba, Il Nuovo Cim. 102A (1989) 345.
$E336: \Lambda^7 Li \Lambda^{13}C, \Lambda^{16}O$

E369: <u>N</u>89Y

- $B_{\Lambda s}$ =23.1±0.1 MeV
- Energy Splitting
 - ▲Ef=1.70±0.10 MeV
 - ΔE_d =1.63±0.14 MeV
 - △Ep=1.37±0.20 MeV
- Peak Ratio
 - R/Lf=0.99±0.07
 - R/L_d=0.69±0.06
- Extra n-hole at +4.1±0.1 MeV, width=3.2±0.2 MeV

E369: $\Lambda^{51}V$

Splitting in d-(and p-) orbit(s)

B∧s=(20±0.13)+0.56 MeV

Width=1.95 MeV

Peak Ratio=1(fixed)

Extra n-holes

At +3.3±0.2 MeV, width=1.95 MeV

At +6.6±0.2 MeV, width=3.46 MeV

Heavy Λ -Hypernuclei

• A bridge to strange matter

- 2-body Y-N interaction
 - Baryon-baryon interactions in SU(3)_f
 - Short range part: meson picture or quark picture ?
- Light hypernuclei (A<~20)
 - Fine structure Spin-dependent interactions
 - Cluster structure
- Heavy hypernuclei (A>~80)
 - Single-particle potential: $U_0(r)$, $m_{\Lambda}^*(r)$, $V_{\Lambda}NN$, ...
- Neutron star (A~10⁵⁷): $\rho > 5 \rho_0$
 - Hyperonization
- Softening of E.O.S.
- Superfluidity

E521: Production of neutron-rich Λ hypernuclei by the (π -,K⁺) double-charge-exchange reaction

A pilot experiment for spectroscopic studies of the neutron-rich Λ hypernuclei via the (π^-, K^+) reaction Production cross section/ Background (sensitivity) \Rightarrow Understanding of the Reaction Mechanism

Reaction mechanism

Tretyakova, Akaishi et al.

Experiemntal Results

FIG. 2. Missing-mass spectrum of the (π^-, K^+) reaction on a ¹⁰B target at 1.05 GeV/*c*. The horizontal axis shows the binding energy of a Λ , whereas the vertical axis shows the cross section in terms of nb/sr/MeV.

P.K. Saha et al., PRL 94 (2005) 052502.

Ratio of the Λ production cross section (π^-, K^+) to (π^+, K^+)

TABLE I. Hypernuclear production cross sections for the bound region averaged over the scattering angle from 2° to 14°. The cross section with an asterisk shows a lower limit by extrapolating the quasifree components linearly. The quoted errors are statistical.

Reaction	Cross S	Cross Section		
	$1.05 { m GeV}/c$	1.2 GeV/c		
$\overline{{}^{12}\mathrm{C}(\pi^+,K^+)^{12}_\Lambda\mathrm{C}}$	$18.0 \pm 0.7 \ \mu b/sr$	$17.5 \pm 0.6 \ \mu b/sr$		
$^{10}\mathrm{B}(\pi^+,K^+)^{10}_\Lambda\mathrm{B}$	$7.8 \pm 0.3 \ \mu b/sr$			
$^{10}{ m B}(\pi^{-},K^{+})^{10}_{\Lambda}{ m Li}$	$5.8 \pm 2.2 \text{ nb/sr}$	$11.3 \pm 1.9 \text{ nb/sr}$		
		$9.6 \pm 2.0^{\circ} \text{ nb/sr}$		

Σ mixing ?

► T. Harada et al., PRC 79 (2009) 014603.

$P_{\Sigma} \sim 0.47 - 0.68\%$

Summary on (π ,K) spectroscopy

- The (π,K) Spectroscopy has been successful.
 - \blacktriangleright Gross feature of Single-particle levels of Λ
 - **Effective for Heavy** Λ hypernuclei
 - ► High-resolution spectroscopy (△E-0.2 MeV) will be interesting
 - Possibility to study neutron-rich hypernuclei with (π, K^+)

Second day in UT

Hypernuclear γ -rays

before Hyperball

	$^{10}B(K^{-},\pi^{-})$		
$4_{\Lambda}\mathbf{H}, 4_{\Lambda}\mathbf{H}e$	1.10±0.04 MeV	Nal	(e) ^{3}He $^{7/2^{+}}$ $^{7}\text{Li} + {}^{3}\text{He}$ $^{19.9}$
7 _{ALi}	2.034±0.023 MeV	Nal	7 Li p (3 ⁻)
9 _A Be	3.079±0.04 MeV	Nal	$\frac{\sqrt{9}Be}{ABe} = \frac{2.0}{3/2} = \frac{2}{9}B = \frac{10}{A}B$
IO _A B	not observed	Ge	(d) ${}^{9}\text{Be}(\text{K}^{-},\pi^{-})$ 3.040 2 ⁺ 3/2 ⁺ 3.067
(a) $V_{\text{sto}}^{\text{K}^{-}\text{sto}}$ $0 \frac{1/2^{+}}{^{3}\text{H}} \frac{M1}{^{0^{+}}}$	$E2 = 5/2^{+} 3.007$ $E2 = 5/2^{+} 3.024$ $E2 = 1/2^{+} 0$		
$^{\text{A}}_{\Lambda}\text{H}$	$^{4}_{\Lambda}$ He		$^{\circ}Be$ $^{\circ}ABe$

<u>Hyperball</u>

- Large acceptance for small hypernuclear γ yields
 - Ge (r.e. 60%) x 14 ∆Ω ~ 15%
 - η peak~ 3% at 1 MeV
- High-rate electronics for huge background 1 TeV/sec, 100 kHz
- BGO counters for π⁰ and Compton suppression
- Resolution of hypernuclear spectroscopy <u>1 MeV \rightarrow 2 keV FWHM</u>

(Tohoku/ Kyoto/ KEK, 1998)

E419: γ spectroscopy of $^{\prime}$ Li

- First exp. with Hyperball
- $B(E2) \rightarrow shrinking effect$
- Spin-flip $M1 \rightarrow \Lambda N$ spin-spin force

n

First observation of well-identified hypernuclear γ rays with Ge.

Doppler shift attenuation method

• $\tau \gamma$ -decay $\sim \tau$ stopping

- ► 5.8 ps 13 ps
 - mixture of a sharp peak and a broad peak

Lifetime and B(E2)

Lifetime Measurement using Dopper Shift Attenuation Method

$$\begin{split} \Gamma(E(M)\lambda:I_i \to I_f) &= \frac{8\pi(\lambda+1)}{\lambda[(2\lambda+1)!!]^2} \frac{1}{\hbar} (\frac{\omega}{c})^{2\lambda+1} B(E(M)\lambda;I_i \to I_f) \\ B(E(M)\lambda;I_i \to I_f) &= \sum_{\mu M_f} |\langle I_f M_f | \mathcal{M}(E(M)\lambda,\mu) | I_i M_i \rangle|^2 \\ &= \frac{1}{2I_i+1} |\langle I_f | | \mathcal{M}(E(M)\lambda) | | I_i \rangle|^2 \\ \mathcal{M}(E\lambda,\mu) &= \int \rho(\vec{r}) r^{\lambda} Y_{\lambda\mu}(\hat{r}) d\tau \\ \mathcal{M}(M\lambda,\mu) &= \frac{-1}{c(\lambda+1)} \int \vec{j}(\vec{r}) \cdot (\vec{r} \times \nabla) r^{\lambda} Y_{\lambda\mu}(\hat{r}) d\tau \\ \Gamma(E1) &= 1.59 \times 10^{15} (E)^3 B(E1) \\ \Gamma(E2) &= 1.22 \times 10^9 (E)^5 B(E2) \qquad in \ e^2 (fm)^{2\lambda} \end{split}$$

Summary on 7_{Λ} Li

AN spin-orbit force

Summary of p-shell levels

► Δ=0.48 MeV, S_Λ=-0.01 MeV, S_N=-0.43 MeV, T=0.03 MeV

Table 18

Energies of the four hypernuclear level spacings that are described in terms of the spin-dependent ΛN interaction parameters obtained by Millener's shell model calculations [101]

Hypernuclear levels		Shell model calculation by Millener	$\Lambda \Sigma$ (MeV)	Exp. (MeV)
$^{7}_{\Lambda}$ Li	$E(3/2^+) - E(1/2^+)$	$1.444 \Delta + 0.054 S_A + 0.016 S_N - 0.271 T$	+0.071	0.692
$^{7}_{\Lambda}$ Li	$\overline{E(7/2^+, 5/2^+)}$	$-0.05 \Delta + 0.07 S_A + 0.70 S_N - 0.08 T$		1.858
	$-\overline{E(3/2^+, 1/2^+)}^{a}$	$+\Delta E_{\rm core}^{\rm b}$		
$^{9}_{\Lambda}$ Be	$E(3/2^+) - E(5/2^+)$	$-0.037 \varDelta - 2.464 S_{\Lambda} + 0.003 S_{N} + 0.994 T$	-0.008	0.043
$^{16}_{\Lambda}$ O	$E(1^{-}) - E(0^{-})$	$-0.382\varDelta + 1.378S_{\Lambda} - 0.004S_{N} + 7.850T$	-0.014 ^c	0.026

Experimental energies obtained by the Hyperball experiments are also shown. The effect of the Λ - Σ coupling estimated by Millener is listed as $\Lambda\Sigma$.

^a $\overline{E(J_1, J_2)} = [(2J_1 + 1)E(J_1) + (2J_2 + 1)E(J_2)]/(2J_1 + 2J_2 + 2)$ denotes the center of gravity energy for the doublet (J_1, J_2) .

^b
$$\Delta E_{\text{core}} = E(^{6}\text{Li}; 3^{+}) - E(^{6}\text{Li}; 1^{+}) = 2.186 \text{ MeV}.$$

^c A small 1⁻ mixing effect of 0.016 MeV is added to a Λ - Σ coupling effect of -0.030 MeV.

γ spectrum of ¹⁰ Λ B (E930-2)

Hyperball-J

- Ge (single, r.e.~60%) x ~32 → peak efficiency ~6% at 1 MeV (x ~3 of Hyperball)
- Mechanical cooling
- -- Lower temp. for less radiation damage
- -- Save space for flexible arrangement
- PWO background suppression counters replaced from BGO for higher rate

Waveform readout (under development)
 => Rate limit ~2x10⁷ particles /s
 (x5 of Hyperball)

<u>**g** factor of Λ in nucleus</u>

Motivation

 μ_Λ in nucleus -> medium effect of baryons

Can be investigated using a Λ in 0s orbit

B(M1) of Λ -spin-flip M1 transition -> g_{Λ}

$$\begin{aligned} \mathsf{B}(\mathbf{M1}) &= (2J_{up} + 1)^{-1} \mid \leq \Psi_{\text{low}} \parallel \mu \parallel \Psi_{\text{up}} > \mid^2 \\ &= (2J_{up} + 1)^{-1} \mid \leq \psi_{\Lambda\downarrow} \psi_c \parallel \mu \parallel \psi_{\Lambda\uparrow} \psi_c > \mid^2 \\ &\mu = g_c J_c + g_\Lambda J_\Lambda = g_c J + (g_\Lambda - g_c) J_\Lambda \end{aligned}$$

$$= \frac{3}{8\pi} \frac{2J_{low} + 1}{2J_c + 1} (g_{\Lambda} - g_c)^2 \quad [\mu_N^2]$$

How to measure

Doppler-shift attenuation method : $\Gamma = BR / \tau = \frac{16\pi}{9} E_{\gamma}^3 B(M1)$

Preliminary data (statistical error only) from ⁷_ΛLi (3/2⁺->1/2⁺) (BNL E930)

 $g_{\Lambda} = -1.1 \stackrel{+0.6}{_{-0.4}} \mu_N \iff g_{\Lambda}$ (free) = -1.226 μ_N

Reduction of constituent q mass? Swelling?

applied to "hypernuclear shrinkage" in ⁷_ALi (5/2⁺->1/2⁺) from B(E2) *PRL 86 ('01)1982*

-> < 5% accuracy at J-APRC

Proposed B(MI) measurement

Difficulties in B(M1) measurement Doppler Shift Attenuation Method works only when $\tau < t_{stop}$ \mathbf{r} is very sensitive to E_v because B(M1) $\propto 1/\tau \propto E_v^3$. But E_v is unknown. Cross sections and background cannot be accurately estimated. **Previous attempts:** ${}^{10}_{\Lambda}B$, ${}^{11}_{\Lambda}B$ (E_v too small $\rightarrow \tau >> t_{stop}$), ${}^{7}_{\Lambda}Li$ (by product: indirect population) To avoid ambiguities, we use the best-known hypernucleus, 7_{Λ} Li. Energies of all the bound states and B(E2) were measured, γ -ray background level was measured, cross sections are reliably calculated. • $\tau = 0.5$ ps, $t_{stop} = 2.3$ ps for 1.5 GeV/c (K⁻, π ⁻) and Li₂O target Calc. by Motoba $^{7}\text{Li}(K^{-}, \pi^{-})^{7}_{\Lambda}\text{Li}$ **(Κ⁻,π⁻)** 25 $^{5}_{\Lambda}$ He + d 3.877 20

Expected yield and sensitivity

Yield estimate

E Hypernuclei

History of **S** Hypernuclei

- $\checkmark \Sigma^-$ atom X-ray : Level shifts, widths
 - CERN('75), RAL('78), BNL('93)
 - -12C~208Pb, 23 data points
 - $V_{opt}(r) = t_{eff} Q(r)$ (C.J.Batty, Nucl. Phys. A372 (81) 433)
 - -Re $V_{opt}(0) \sim 25-30$ MeV, Attractive
 - -Im $V_{opt}(0) \sim 10-15$ MeV, Absorptive
 - $\Sigma N \rightarrow \Lambda N$ conversion (strong interaction)
 - Σ hypernuclei may exist, but the widths are broad
 - No Spectroscopy $\Gamma \sim 2 \text{ImV}$

Σ -Nucleus potential

✓ Σ-atom X-ray

C.J.Batty et al., NP A372(81)433. $V(r) + iW(r) = -\left(\frac{4\pi\hbar^2}{2\mu}\right) \left(1 + \frac{\mu}{M_N}\right) \overline{a}\rho(r)$

 $= -(28 + i15)MeV\rho(r)/\rho_0$

 $\overline{a} = 0.35 + i0.19$: scattering – length, μ : reduced – mass

✓ DWIA analysis: Green Function method

Morimatsu and Yazaki, NP A483(88)493, R.S.Hayano, NP A478(88)113c. V₀<12 MeV, W₀>6 MeV for ¹²C

Narrow width problem in 1980s

BNL E887

600 MeV/c4 degrees

✓ No Peaks !!

E887 vs. CERN Data

S. Bart et al., PRL 83 (1999) 5238.

束縛状態の問題

✓ ポテンシャルの実部の深さ?

- Σ原子のX線データの密度依存型ポテンシャ

ルによる再解析

ルによる

中鮮

小

ドレン

・

弱い引力:

原子核外部の

長距離

• 強い斥力:原子核内部

$$2\mu V_{opt}(r) = -4\pi \left(1 + \frac{\mu}{m_n}\right) \left\{ \left[b_0 + B_0 \left(\frac{\rho(r)}{\rho(0)}\right)^{\alpha}\right] \rho(r) + \left[b_1 + B_1 \left(\frac{\rho(r)}{\rho(0)}\right)^{\alpha}\right] \delta\rho(r) \right\}$$

• 軽い核を除いて、束縛状態は存在しない!?

Repulsive ??

- C.J.Batty,E.Friedman,A.Gal,
 Phys.Lett.B335(94)273;
 PTP Suppl.117(94)227.
- ✓ J.Mares et al., NP A594(95)311.

Existence of any bound states ?

- Only candidate
 - ${}^{4}\text{He}(K^{-}_{\text{stop}},\pi^{-})$: R.S.Hayano et al.
 - predicted by Harada and Akaishi
- ✓ Definitive evidence ?
 - Large bakcground
 - K⁻ orbit
 - *S or P ?*

H.Outa et al., Prog. Theor. Phys. Suppl. 117 (1994) 177.

BNL E905: In-flight (K⁻,π⁻)

- ✓ 600 MeV/c, 4 deg.
- ✓ Simple analysis: DWIA
- Established the existence of a bound state
 - B_{Σ} : 4.4±0.3±1 MeV
 - Width: 7±0.7+1.2/-0.0 MeV
 (FWHM)

Harada and Akaishi

- Strong Isospin dependence
 - Lane term
 - $U_{C \Sigma} = U^0 + U^t T_{C^{\bullet}t \Sigma} / A$
 - T. Harada et al., Nucl. Phys. A507(1990) 715.
 - T. Harada, PRL 81 (1998) 5287.

E438: Study of Σ -nucleus potential by the (π -,K⁺) reaction on heavy nuclei

Measured Inclusive (π-,K+) Spectra on C, Si, Ni, In, & Bi

- Similar Shape P.K. Saha et al., Phys. Rev. C 70 (2004) 044613. - No peak in $-B\Sigma^- < 0$ MeV - Maximum @ -BΣ- >120 MeV Cross Section [µ b/sr/(4 MeV)] (a) C (b) Si 12 10 ^{4°} < θ_K < 8° $4^{\circ} < \theta_{\rm K} < 8^{\circ}$ 6 Binding energy (-B,-) (MeV) Cross Section [µ b/sr/(4 MeV)] (d) In (e) Bi (c) 12 $4^{\circ} < \theta_{\rm K} < 8^{\circ}$ $4^{\circ} < \theta_{\rm K} < 8^{\circ}$ $4^{\circ} < \theta_{\rm K} < 8^{\circ}$ 10 8 6 2 0 50 100 150 50 100 150 50 100 150 50 0 0 0 -B 5- (MeV) -B _- (MeV) -B _- (MeV)

Theoretical analysis by Harada & Hirabayashi

T. Harada, Y. Hirabayashi / Nuclear Physics A 759 (2005) 143-169

Summary on Σ hypernuclei

No narrow states in unbound region

- \blacktriangleright One bound state in ${}^{\mathtt{4}}{}_{\Sigma}He$
 - ${}^{7}_{\Sigma}$ Li ? Nucl. Phys. A 547 (1992) 175c.
- Σ-Nucleus potential is repulsive in medium-heavy system.

Weak decay of Hypernuclei

W. M. Alberico and G. G., Phys. Rep. **369**, 1 (2002); *Hadron Physics*, IOS Press, Amsterdam, 2005, p. 125 [nucl-th/0410059].
E. Oset and A. Ramos, Prog. Part. Nucl. Phys. 41, 191 (1998).

への崩壊

$$\begin{array}{rccc} \Lambda & \to & \pi^{-}p & (\text{B.R.} = 63.9 \times 10^{-2}) \\ & \pi^{0}n & (\text{B.R.} = 35.8 \times 10^{-2}) \end{array}$$

with a lifetime $\tau_{\Lambda}^{\rm free} \equiv \hbar/\Gamma_{\Lambda}^{\rm free} = 2.632 \times 10^{-10}$ sec.

$$\begin{array}{rcl}
\Lambda & \to & n\gamma & (\text{B.R.} = 1.75 \times 10^{-3}) \\
& & p\pi^{-}\gamma & (\text{B.R.} = 8.4 \times 10^{-4}) \\
& & pe^{-}\overline{\nu}_{e} & (\text{B.R.} = 8.32 \times 10^{-4}) \\
& & p\mu^{-}\overline{\nu}_{\mu} & (\text{B.R.} = 1.57 \times 10^{-4})
\end{array}$$

▲=1/2則

$$\begin{aligned} |\pi^{-}p\rangle &= \sqrt{\frac{1}{3}} \left| \frac{3}{2}, -\frac{1}{2} \right\rangle - \sqrt{\frac{2}{3}} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle, \\ |\pi^{0}n\rangle &= \sqrt{\frac{2}{3}} \left| \frac{3}{2}, -\frac{1}{2} \right\rangle + \sqrt{\frac{1}{3}} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle. \end{aligned}$$

Hence the ratio of amplitudes for $\Delta I = 1/2$ transitions yields:

$$\frac{\Gamma_{\Lambda\to\pi^-p}^{\text{free}}}{\Gamma_{\Lambda\to\pi^0n}^{\text{free}}} \simeq \frac{\left|\langle \pi^-p|T_{1/2,-1/2}|\Lambda\rangle\right|^2}{\left|\langle \pi^0n|T_{1/2,-1/2}|\Lambda\rangle\right|^2} = \left|\frac{\sqrt{2/3}}{\sqrt{1/3}}\right|^2 = 2, \qquad \qquad \left\{\frac{\Gamma_{\Lambda\to\pi^-p}^{\text{free}}}{\Gamma_{\Lambda\to\pi^0n}^{\text{free}}}\right\}$$

while a $\Delta I = 3/2$ process should give:

$$\frac{\Gamma_{\Lambda \to \pi^- p}^{\text{free}}}{\Gamma_{\Lambda \to \pi^0 n}^{\text{free}}} \simeq \frac{\left| \langle \pi^- p | T_{3/2, -1/2} | \Lambda \rangle \right|^2}{\left| \langle \pi^0 n | T_{3/2, -1/2} | \Lambda \rangle \right|^2} = \left| \frac{\sqrt{1/3}}{\sqrt{2/3}} \right|^2 = \frac{1}{2}.$$

$$\begin{cases} \frac{\Gamma_{\Lambda \to \pi^- p}}{\Gamma_{\Lambda \to \pi^0 n}^{\text{free}}} \\ \\ \frac{\left| \frac{A_{1/2}}{A_{3/2}} \right| \simeq 30. \end{cases}$$

ハイパー核の弱崩壊

- ▶ 中間子崩壊モード
- ∧→πN (Q~37 MeV) → PN(90 MeV/c) < PF
 非中間子崩壊モード Pauli Suppressed
 - ∧N→NN (Q~176 MeV) → p_N (400 MeV/c) > p_F

Mass number dependence of Γ_{NM}

NON-MESONIC WEAK DECAY OF HYPERNUCLEI

One-nucleon induced

$$\begin{array}{cccc} \Lambda n & \to & nn & & \Gamma_n \\ \Lambda p & \to & np & & \Gamma_p \end{array}$$

Two-nucleon induced

 $\Lambda NN \to nNN$ Γ_2

 $\Gamma_{\rm T} = \Gamma_{\rm M} + \Gamma_{\rm NM} = \Gamma_{\pi^0} + \Gamma_{\pi^-} + \Gamma_n + \Gamma_p + \Gamma_2$

$\Gamma_n/\Gamma_p/(\chi)$

THE RATIO Γ_n/Γ_p

For many years, a sound theoretical explanation of the large experimental values of $\frac{\Gamma_n}{\Gamma_p} \equiv \frac{\Gamma(\Lambda n \to nn)}{\Gamma(\Lambda p \to np)}$ has been missing

Theory strongly underestimated Experiment!

[W. M. Alberico and G. G., Phys. Rep. 369, 1 (2002)]
 [E. Oset and A. Ramos, Prog. Part. Nucl. Phys. 41, 191 (1998)]

Experiment

- ♦ Large uncertainties in the extraction of Γ_n/Γ_p from "old" data (< year 2002)
 - only Single–Proton Spectra measured
 - very indirect determination of the decay rates, probable overestimation of $\frac{\Gamma_n}{\Gamma_p} = \frac{\Gamma_{\rm T} - \Gamma_{\rm M} - \Gamma_2 - \Gamma_p}{\Gamma_p} \iff \Gamma_p \text{ underestimated}, \Gamma_2 \text{ neglected}$ $\left(\Gamma_2 = 0, \Gamma_p = 0.8[\Gamma_p]^{\text{th}} : \frac{\Gamma_n}{\Gamma_p} = 1 \iff \left[\frac{\Gamma_n}{\Gamma_p}\right]^{\text{th}} = 0.3\right)$
 - KEK-E462/E508: simultaneous measurement of Single-Proton and Single-Neutron Spectra (year 2003) [1]
 - improved determination of $\frac{\Gamma_n}{\Gamma_p}$ from $\frac{N_n}{N_p}$ ratio

KEK–E462/E508: Nucleon–Nucleon Coincidence Spectra (years 2003–2006) [2]

- more direct determination of $\frac{\Gamma_n}{\Gamma_n}$ from $\frac{N_{nn}}{N_{nn}}$ ratio

First data from FINUDA@DAΦNE, experiments planned at J–PARC and HypHI@GSI

[1] S. Okada et al., PLB 597, 249 (2004)

[2] B. H. Kang et a., PRL 96, 062301 (2006); M. J. Kim et al., PLB 641, 28 (2006)

Theory

♦ The One–Pion–Exchange (OPE) model predicts very small ratios:

$$\left[\frac{\Gamma_n}{\Gamma_p}\right]^{\text{OPE}} \left(^5_{\Lambda}\text{He}, \,^{12}_{\Lambda}\text{C}\right) = 0.1 \div 0.2$$

 $[\Delta I = 1/2 \text{ rule} + \text{strong tensor component } \Lambda N(^3S_1) \rightarrow nN(^3D_1) \text{ requiring } I_{nN} = 0 \iff N = p]$

• but the OPE reproduces the observed total non-mesonic rates, $\Gamma_{\rm NM} = \Gamma_n + \Gamma_p(+\Gamma_2).$

Other interaction mechanisms beyond the OPE should then be responsible for the overestimation of Γ_p and the underestimation of Γ_n

+ Heavier Mesons (ρ , K, K^* , ω , η , 2π , $2\pi/\rho$, $2\pi/\sigma$) [Parreño et al., Itonaga et al., Jido et al.]

♦ Direct Quark Mechanism [Oka et al.]

♦ Two–Nucleon Induced Mechanism [Alberico et al., Ramos et al.]

♦ Nucleon Final State Interactions [Ramos et al., Garbarino et al.]

History of hypernuclear weak decay experiments...

Year	Method	 ★ Clean decay identification → ground state spin assignment ★ Low energy threshold for p 	Merit/ Demerit	
~1960	Emulsion and Bubble chamber	 * Hypernuclear formation is not identified * Blind for neutral particles * No timing information 		
1985	Counter experiment start @BNL/KEK w/ (K,π)	 ★ Hypernuclear formation tagged → branching ratio ! ★ Direct lifetime meas. w/TOF counter 		
1995	SKS experiments w/ (π,K) reaction	* Still hard to see neutral particles * High energy threshold for p (Ep>30/	~40MeV)	
2000~2002	n+p/n+n coincidence 1/	 * Heavy ∧ hypernucleanproduction p + 2 * Neutral particlendetection * Asymmetry of p from NMWDA → n + *Hmproved statistics 	π) π ⁰)	
2004∼ →	New era starte FINUDA@DAFNE	$ \rightarrow \frac{n+p}{n+n} \left(\begin{array}{c} \text{double} \\ \Gamma_{nm} \end{array} \right) \left\{ \begin{array}{c} \Gamma_{p} \\ \Gamma_{p} \\ \Gamma_{n} \end{array} \right\} \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + \mathcal{C} \\ \Gamma_{n} \end{array} \right) \left(\begin{array}{c} \Lambda + $	n + p) n + n)	

: The most important observable used to study the isospin structure of the NMWD.

 Γ_n / Γ_p ratio

Experimental difficulties in single nucleon measurement

✓ Difficulty in detecting neutrons.

 \rightarrow There is no experiment to observe both of the protons and neutrons simultaneously with high statistics.

- ✓ Final state interaction (FSI) effect
 - \rightarrow not well established

 \checkmark Distinguish between the FSI and " $\Lambda NN \rightarrow nNN$ " process

(One of the theoretical model)

The present experiment

1) Angular correlation (back-to-back, cosθ<-0.8) 2) Energy correlation (Q~E(N1)+E(N2) ~152MeV) Direct measurement of the Γ_n / Γ_p ratio

 $\Rightarrow Select \Lambda N \rightarrow NN events$ $w/o FSI effect & \Lambda NN \rightarrow NNN.$ $N(\Lambda n \rightarrow nn) \times (\Omega_n \times \Omega_n)_{av.}$ $\times \varepsilon_n^2 \times (1 - R_{FSI})$

$$N(\Lambda p \rightarrow np) \times (\Omega_n \times \Omega_p)_{av.}$$
$$\times \varepsilon_n \times \varepsilon_p \times (1 - R_{FSI})$$

* cosθ<-0.8

* E(N1)+E(N2) cut

$$\frac{\Gamma_{n}}{\Gamma_{p}} = \frac{N(nn - pair coin)}{N(np - pair coin)} \times \frac{\varepsilon_{p}}{\varepsilon_{n}}$$

Select light hypernuclei to minimize FSI effect, ⁵_AHe and ¹²_AC

Excitation-energy spectra for ${}^{6}_{\Lambda}$ Li and ${}^{12}_{\Lambda}$ C

$_{\Lambda}^{6}Li Hypernuclear mass spectra$

Decay counter Setup

(KEK-PS K6 & SKS)

Excitation spectra w/ coincident decay particles for ¹²^C

Expected Spectrum

Single proton/neutron spectra from ${}^{5}_{\Lambda}$ He and ${}^{12}_{\Lambda}$ C

Mass number dependence of neutron energy spectra (A=5,12,89)

As the mass number become lager, the number of neutron become lager in the low energy part, and smaller in the high energy part.

np- & nn- angular distribution ($^{5}_{\Lambda}$ He)

Coincidence Measurement (A=12)

偏極と非対

偏極ハイパー核の生成

FIG. 8. The spin-nonflip amplitude (f), spin-flip one (g), differential cross section, and polarization calculated as a function of the laboratory scattering angle for $\pi^+n \to \Lambda K^+$ at $p_{\pi} = 1.04 \text{ GeV}/c$. See Eq. (1) for the definition of the amplitudes and Eq. (11) for the Λ polarization in the free space. The two-body laboratory cross section is given by $d\sigma/d\Omega = C(|f|^2 + |g|^2)$ where C is a proportionality coefficient [7].

Asymmetry measurement of decay proton

Asymmetry : Volume of the asymmetric emission from NMWD

Difference of acceptance & efficiency \rightarrow canceled out !!

Importance of α_{nm} measurement

If assuming initial S state

Initial state	Final state	Amplitude	Isospin	Parity
¹ S ₀	¹ S ₀	а	1	No
	³ P ₀	b	1	Yes
³ S ₁	³ S ₁	С	0	No
	³ D ₁	d	0	No
	¹ P ₁	е	0	Yes
	³ P ₁	f	1	Yes

$$\alpha_{p}^{NM} = \frac{\sqrt{3}/2[-ae+b(c-\sqrt{2}d)/\sqrt{3}+(\sqrt{2}c+d)f]}{1/4\{a^{2}+b^{2}+3(c^{2}+d^{2}+e^{2}+f^{2})\}}$$

We can know the interference between states with different Isospin and Parity.

$$\Gamma_n / \Gamma_p = \frac{2(a^2 + b^2 + f^2)}{a^2 + b^2 + c^2 + d^2 + e^2 + f^2} \quad \text{(Applying \Delta I=1/2 rule)}$$

α_{NM} for ${}^5{}_{\Lambda}\text{He}$ NMWD

•Polarization of Λ

 $A_{\pi} = \alpha_{\pi} P_{\Lambda} \epsilon$

Estimated from mesonic decay

 $\begin{cases} A_{\pi}:Asymmetry \text{ of Pion} \\ \alpha_{\pi}:Asymmetry \text{ Parameter of Pion} \\ (=-0.642 \pm 0.013) \\ P_{\Lambda}:Polarization \text{ of Lambda} \\ \epsilon :Attenuation factor \end{cases}$

•Asymmetry Parameter of Proton $A_p = \alpha_p^{NM} P_{\Lambda} \epsilon$

We can calculate $\alpha^{\rm NM}$ without theoretical help !

Asymmetry parameter of ${}^5_{\Lambda}$ He

Nucl.Phys.A754 (2005) 168c nucl-ex/050916

Asymmetry parameter of ${}^{12}_{\Lambda}C$, ${}^{11}_{\Lambda}B$

POLARIZED HYPERNUCLEI: THE DECAY ASYMMETRY

• Weak decay proton intensity from $\vec{\Lambda}p \to np$: $I(\theta) = I_0 [1 + p_\Lambda a_\Lambda \cos \theta]$

 $p_{\Lambda} = \Lambda \text{ polarization}$ $a_{\Lambda} = \text{intrinsic } \Lambda \text{ asymmetry parameter}$

 $a_{\Lambda} \iff$ interference among PC and PV $\vec{\Lambda}p \rightarrow np$ channels \implies information on strengths and relative phases of the decay amplitudes \checkmark Nucleon FSI modify the weak decay proton intensity $I(\theta)$ Experimentally one measures $I^{M}(\theta) = I_{0}^{M} \left[1 + p_{\Lambda} a_{\Lambda}^{M} \cos \theta\right]$ \implies observable Λ asymmetry parameter $a_{\Lambda}^{M} = \frac{1}{p_{\Lambda}} \frac{I^{M}(0^{\circ}) - I^{M}(180^{\circ})}{I^{M}(0^{\circ}) + I^{M}(180^{\circ})}$

	$^{5}_{\Lambda}\mathrm{He}$	$^{12}_{\Lambda}C$
Sasaki et al. a_{Λ}		
$\pi + K + DQ$	-0.68	
Parreño et al.	0.69	0.72
$\pi + \rho + \kappa + \kappa^* + \omega + \eta$ Itonaga et al.	-0.08	-0.73
$\pi + K + \omega + 2\pi/\rho + 2\pi/\sigma$	-0.33	
Barbero et al.		
$\pi + \rho + K + K^* + \omega + \eta$	-0.54	-0.53
KEK–E508 a_{Λ}^{M}		$-0.16\pm0.28^{+0.18}_{-0.00}$
KEK-E462	$+0.07\pm0.08^{+0.08}_{-0.00}$	

KEK-E508/E462: T. Maruta et al., EPJA 33, 255 (2007)

Theory Experiment

FSI prevent establishing direct comparisons between a_{Λ} and a_{Λ}^{M} \implies a theoretical evaluation of a_{Λ}^{M} is required

OME + Nucleon FSI

[W. M. Alberico, G.G., A. Parreño and A. Ramos, PRL 94, 082501 (2005)] $OME = \pi + \rho + K + K^* + \eta + \omega$ $I(\theta) = I_0 [1 + p_\Lambda a_\Lambda \cos \theta] \qquad I^M(\theta) = I_0^M [1 + p_\Lambda a_\Lambda^M \cos \theta]$

 $^{12}_{\Lambda}C$ $^{11}_{\Lambda}\text{B}$ $^{5}_{\Lambda}$ He -0.81-0.73-0.68 a_{Λ} $a^{\rm M}_{\Lambda} (T_p \geq 30 {\rm MeV})$ -0.46-0.39-0.37 $a^{\mathrm{M}}_{\Lambda} (T_{p} \geq 50 \mathrm{~MeV})$ -0.52-0.55-0.51 $a_{\Lambda}^{\mathrm{M}} (T_p \geq 70 \mathrm{MeV})$ -0.55-0.70-0.65 $0.07 \pm 0.08^{+0.08}_{-0.00}$ **KEK-E462** $-0.16 \pm 0.28^{+0.18}_{-0.00}$ **KEK-E508**

Data from [T. Maruta et al., EPJA 33, 255 (2007)]

Comparison with recent calculations

Effective Field Theory: $\pi + K +$ Leading–Order Contact Interactions

[A. Parreño, C. Bennhold and B. R. Holstein, PRC 70, 051601 (2004)]

- LOCI coefficients fixed to reproduce experimental $\Gamma_{\rm NM}$ and Γ_n/Γ_p for ${}_{\Lambda}^5{\rm He}$, ${}_{\Lambda}^{11}{\rm B}$ and ${}_{\Lambda}^{12}{\rm C}$ and $a_{\Lambda}({}_{\Lambda}^5{\rm He})$
- Predicted a dominating central, spin– and isospin–independent contact term
- $\bullet \quad \pi + K + \sigma + \text{Direct Quark}$

[K. Sasaki, M. Izaki, M. Oka, PRC 71, 035502 (2005)]

- Decay data for s-shell hypernuclei fitted to obtain the weak couplings of the scalar–isoscalar σ –meson, $\mathcal{H}^W_{\Lambda\sigma N} = g_W \bar{\psi}_N (A_\sigma + B_\sigma \gamma_5) \phi_\sigma \psi_\Lambda$
- All $^5_\Lambda {\rm He}$ decay observables reasonably reproduced. No calculation for $^{12}_\Lambda {\rm C}$

• OME +
$$\sigma$$
, OME = $\pi + \rho + K + K^* + \eta + \omega$

[C. Barbero and A. Mariano, PRC 73, 024309 (2006)]

- Unknown σ couplings fixed to reproduce measured $\Gamma_{\rm NM}(^{5}_{\Lambda}{\rm He})$ and $\Gamma_{n}/\Gamma_{p}(^{5}_{\Lambda}{\rm He})$
- Improved overall agreement with experiment for $^{12}_{\Lambda}C$ and $^{5}_{\Lambda}He$ but data for $a_{\Lambda}(^{5}_{\Lambda}He)$ could not be reproduced

 \implies Importance of the Scalar–Isoscalar channel in Asymmetry calculations

► FINUDA

Fig. 2. The ratio $A_{\text{low}}/(A_{\text{low}} + A_{\text{high}})$ as a function of the hypernuclear mass number.

► KEK E502: PRL 103(2009) 182502.

► Γ_{2N}/Γ_{NM}=0.29±0.13

FIG. 4. The momentum sum (upper) and the angular (lower left) correlation of the pair sum $N_{np} + N_{nn}$ and the normalized nucleon yields $N_N(E)$ are compared with those of INC(1N + 2N) (solid lines) with $b_{2N} = 0.29$. The decomposed 1N- (dashed lines) and 2N-NMWD (dotted lines) contribution also are

∆|=|/2則の

s-shell Hypernuclei $\iff \Delta I = 1/2$ Rule

♦ Block–Dalitz Phenomenological Model \implies Spin–Isospin structure of $\Lambda N \rightarrow nN$

• Introducing the rates R_{NJ} for the spin-singlet (R_{n0}, R_{p0}) and spin-triplet (R_{n1}, R_{p1}) elementary $\Lambda N \to nN$ interactions:

$$\Gamma_{\rm NM}(^{3}_{\Lambda}{\rm H}) = (3R_{n0} + R_{n1} + 3R_{p0} + R_{p1})\frac{\rho_{2}}{8}$$

$$\Gamma_{\rm NM}(^{4}_{\Lambda}{\rm H}) = (R_{n0} + 3R_{n1} + 2R_{p0})\frac{\rho_{3}}{6}$$

$$\Gamma_{\rm NM}(^{4}_{\Lambda}{\rm He}) = (2R_{n0} + R_{p0} + 3R_{p1})\frac{\rho_{3}}{6}$$

$$\Gamma_{\rm NM}(^{5}_{\Lambda}{\rm He}) = (R_{n0} + 3R_{n1} + R_{p0} + 3R_{p1})\frac{\rho_{4}}{8}$$

◆ Relations which test the $\Delta I = 1/2$ Rule $\frac{\Gamma_n({}^4_{\Lambda}\text{He})}{\Gamma_p({}^4_{\Lambda}\text{H})} = \frac{\frac{\Gamma_n}{\Gamma_p}({}^4_{\Lambda}\text{H})\frac{\Gamma_n}{\Gamma_p}({}^4_{\Lambda}\text{He})}{\frac{\Gamma_n}{\Gamma_p}({}^5_{\Lambda}\text{He})} = \frac{R_{n0}}{R_{p0}} \iff \Delta I = 1/2 \text{ Rule}: \quad \frac{R_{n1}}{R_{p1}} \le \frac{R_{n0}}{R_{p0}} = 2$

6	$\Gamma_n/\Gamma_\Lambda^{ m free}$	$\Gamma_p/\Gamma_\Lambda^{\rm free}$	$\Gamma_{\rm NM}/\Gamma_{\Lambda}^{\rm free}$	Γ_n/Γ_p	Ref.
${}^4_{\Lambda}{ m H}$			0.22 ± 0.09		reference value
			0.17 ± 0.11		KEK [11]
			0.29 ± 0.14		[73]
$^{4}_{\Lambda}$ He	0.04 ± 0.02	0.16 ± 0.02	0.20 ± 0.03	0.25 ± 0.13	BNL [74]
$^{5}_{\Lambda}\mathrm{He}$	0.20 ± 0.11	0.21 ± 0.07	0.41 ± 0.14	0.93 ± 0.55	BNL [37]

TABLE XI. – Experimental data for the non-mesonic weak decay of s-shell hypernuclei.

► △I=I/2

$$R_n({}^1S_0) = 2R_p({}^1S_0), \ R_n({}^3P_0) = 2R_p({}^3P_0), \ R_n({}^3P_1) = 2R_p({}^3P_1).$$

$$\begin{aligned} \frac{R_{n1}}{R_{p1}} &\leq \frac{R_{n0}}{R_{p0}} = 2. \\ \frac{R_{n0}}{R_{p0}} &= \frac{4r^2 - 4r + 1}{2r^2 + 4r + 2} \\ r &= \frac{\langle I_f = 1 || A_{1/2} || I_i = 1/2 \rangle}{\langle I_f = 1 || A_{3/2} || I_i = 1/2 \rangle} \end{aligned}$$

To J-PARC

Non-mesonic weak decay of ${}^4_\Lambda$ He and ${}^4_\Lambda$ H

see S.Ajimura : J-PARC LOI 21 Spin / isospin dependence

 \rightarrow Need one-order higher statistics. \rightarrow J-PARC

Third day in UT

Production of Secondary Meson Beams

▶
$$p+A \rightarrow \pi$$
, K, + X at forward angles

$$E_{cm} = (m_1^2 + m_2^2 + 2E_1^{lab}m_2)^{1/2} \sim (2E_1^{lab}m_2)^{1/2}$$

►
$$\pi^+ > \pi^-$$
 ← charge conservation

π > K >> anti-p

```
ss: K<sup>+</sup>∧(500+175), K<sup>-</sup>K<sup>+</sup> (500+500)
```


Fig. 5. 18-GeV production cross sections on 1-cm carbon target.

Fig. 6. 24-GeV production cross sections on 1-cm carbon target.

Electro-Static Mass Separator

Decay of Meson Beams

- Lifetime (cτ): π⁺(7.8045 m), K⁻(3.713 m)
- **Decay Length** = $\beta \gamma c \tau = p/m \cdot c \tau$
 - K⁻@I GeV/c : 1000/500•cT=7.4 m 5m line: Decay rate=1-exp(-5m/7.4m)~49%

π-@| GeV/c: 1000/140•cτ=55.7 m 15m line: Decay rate=1-exp(-15m/55.7m)~23%
Introduction to J-PARC

- Japan Proton Accelerator Research Complex
- Three high-intensity proton beams at 400 MeV (LINAC), 3 GeV (RCS), and 50 GeV(MR).
- To produce various secondary beams in high-intensity: K, π, antip, V, neutron, µ, etc.
- Construction: 2001 2008
- Joint Project between KEK and JAEA

Phase 1&2

J-PARC Facility (KEK/JAEA) South to North

Hadron Exp.

Facility

Neutrino Beams (to Kamioka)

Materials and L Experimenta Facility

Linac

3

Synchrotron

50 Gev Synchrotron

Photo in July of 2009

Beam Power Frontier

Materials and Life Science Experimental Facility

Facility similar to SNS in the US and to ISIS in the UK

Materials & Life Science Experimental Facility

1996~

Detection of v_e at Super Kamiokande \Leftrightarrow Totally new experiment

Accelerator-Driven Transmutation (ADS)

International Research Center

• One of Three major Neutron Sources in Material and Life Science

FNA

SNS

Anti-p

• Unique Kaon Factory, and One of Three Neutrino beam lines. Anti-proton in GSI.

J-PARC

Neutrino Centers

Neutron Centers

• Top runner in ADS.

GSI

ISIS

ZERN

H- Ion Source, RFQ

$LINAC \rightarrow 3GeV$

3GeV Ring

50 GeV Ring

LINAC beam at 181 MeV: Jan.24,07

RCS acceleration at 3 GeV; Oct. 31, 2007

Hadron Exp. Hall

60m x 56m Compl. in July, 2007

I 60 m long Test starts in Jan., 2007

Slow-extraction Line

I2 kW Ni rotator water cooled

Production Target T1

3 m long +/-400 kV in 10cm gap

Electro-Static Separator

Mineral Insulator Coil

KI.8 DI coil

Recent beam status At Hadron Hall

- Double-stage electro-static separator works very well
 - Good K/π ratio !
 - Intensity & Time structure should be improved.

Proposals at J-PARC

- Proposal Call : Nov., 2005 Apr., 2006
- 20 proposals including 4 Lols
 - I3 proposals in Nuclear Physics
- Five Day-I Experiments
 - ► E05: Ξ hypernuclei Spectroscopy (Nagae)
 - EI3: Hypernuclear γ -ray Spectroscopy (Tamura)

[lst priority]

[2nd priority]

- EI5: Search for K⁻pp bound state (Iwasaki, Nagae)
- ► EI7: Kaonic ³He 3d→2p X-ray (Hayano, Outa)
- ► EI9: Search for Penta-quark in $\pi^-p \rightarrow K^-X$ reaction (Naruki)
 - Day-I experiments --
- **E07**: Hybrid-Emulsion for Double- Λ (Imai, Nakazawa, Tamura)
- ► E03: Ξ -atom X rays (Tanida)
- EI0: Production of neutron-rich Λ -hypernuclei with the double-charge-exchange reaction (A. Sakaguchi and T. Fukuda)
- and more ...

Kaonic Nuclei

KN Bound States

Prediction by Akaishi and Yamazaki

- **KN scattering lengths**
- K-p atomic shift(KEK E228)
- Mass & width of Λ (1405)

- Strong attraction in I=0 KN interaction
- **K-pp, K-ppp, K-pppn, ...**

Formation of High Density State

K interaction

KN interaction

 \rightarrow strongly attractive in the isospin I=0 term (A. D. Martin, kaonic hydrogen X-ray @ KpX)

- How about K-Nucleus interaction ?
 - Very deep attractive ? (I50—200MeV)
 - Shallow attractive ? (50—75MeV)

• Ambiguity remains with kaonic atom data ($\varrho << \varrho_o$)

Hadronic Atoms

K-p interaction near threshold

Kaonic Atoms

C.J. Batty et al. | Physics Reports 287 (1997) 385-445

Antikaon in nuclear medium

Theory

- Kaon condensation in neutron stars
- Mass modification in a high density matter
- Experiment
 - Heavy ion collision (high T)
 - ► Nuclear K bound state (T=0)
 - could exist when the potential is very deep
 - predicted by Akaishi and Yamazaki

Importance of *KNN* Systems

- ► *K*⁻*p*:
 - Λ (1405) is such a bound state or a 3-quark state ?
- K⁻pp, K⁻pn, (K⁻nn):

• modification of \overline{KN} interaction, isospin dependence.

- ► *K⁻ppn*. and/or *K⁻pnn*, *K⁻ppp*:
 - modification of KN interaction ?, Isospin dependence ?
 - nuclear contraction effects
 - many-body effect, relativistic effect,

Detection Methods (I)

Missing-mass spectroscopy

- ▶ (K⁻_{stop}, n or p) ... KEK-PS E471/E549, **FINUDA**
 - ⁴He(K⁻_{stop}, n)S⁺(3140) ...K⁻ppn ?
 - ► ⁴He(K⁻_{stop}, p)S⁰(3115) ...K⁻pnn ?
- ▶ (K⁻, n or p) ... BNL-AGS E930 / KEK-PS E548
 - ▶ ¹⁶O(K⁻, n)¹⁵OK⁻ ... B_K= 130, 90, (50) MeV
- (K⁻, π⁻), (π⁺, K⁺) ... J-PARC

Detection Methods (2)

Invariant-mass spectroscopy

► Heavy-ion collision ... GSI-FOPI

► K⁻ absorption at rest in a nucleus ... FINUDA

three final particles to be detected

$$+n$$
, $\Sigma^- + p$

 π

 $K^-ppn \to \Lambda + d$

 $K^- pn \to \Lambda$

 $K^-pp \to \Lambda' + p$

FINUDA experiment

- Beam energy 510 MeV
- Luminosity $<5 \times 10^{32}/cm^{2}/s$
 - $(10^{32}/cm^2/s = 216 \text{ K}^{\pm}/s)$
- Crossing angle 12.5 mrad

Event display (K-pp $\rightarrow \Lambda + p$)

Momentum (MeV/c)

PID by dE/dx in OSIM

Momentum calibration

Detection of a Λ hyperon

Invariant mass of a proton and a π -

Λ momentum distribution

Λ in Kaon absorption

• quasi-free process (80–85%)

$$K^- + "N" \rightarrow \Lambda + \pi$$
, $\Sigma + \pi$
 $p_\Lambda \lesssim 400 \,\mathrm{MeV}/c$
• two-nucleon absorption (15–20%)
 $K^- + "NN" \rightarrow \Lambda + N$, $\Sigma + N$

 $p_{\Lambda}: 400 - 700 \,{
m MeV}/c$

Λ -p coincidence events

• About 5% of the Λ events are associated with a proton.

Angular correlation of Λ -p

Naive expectation of invariant mass distribution

Evidence for K-pp in FINUDA

Few-body calculations on K ⁻ pp											
	▶ К-р	p does exi but m	does exist !! but maybe broad.								
	(MeV)	ATMS Yamazaki & Akaishi, PLB535 (2002) 70.	Variational Dote, Hyodo, Weise, PRC79 (2009) 014003.	Faddeev Shevchenko, Gal, Mares, PRL98 (2007) 082301.	Faddeev Ikeda & Sato, PRC79 (2009) 035201.	Variational Wycech & Green, PRC79 (2009) 014001.					
	В	48	17-23	50-70	60-95	40-80					
	Г	61	40-70	90-110	45-80	40-85					

New FINUDA data

► K⁻pp confirmed for ⁶Li only, with better statistics

DISTO data on K-pp

A Search for deeply-bound kaonic nuclear states by in-flight ³He(K⁻,n) reaction EI5 M. Iwasaki et al.

Experimental Setup

Cylindrical Detector System

A newly developed system for invariant mass study

Status of CDS

• All of the components(CDC, CDH) have been installed into the solenoid magnet.

CDS commissioning with 0.5 T magnetic field is now under way using cosmic ray.

Neutron counter

Neutron spectrum

► (V₀,W₀)=(-300 MeV, -93 MeV)→B=51 MeV, Γ= 67 MeV

S=-2 Systems

Hybrid Emulsion Experiments

by K. Nakazawa

KEK EI76

Introduction of experimental method

- 1. select Q.F. (K-,K+) reaction & reconstruct K+.
- 2. following up K⁺ meson in emulsion.
- $_{K^+}$ 3. following down Ξ cand. track.
 - 4. check seq. topology of DHY at end point.

\Rightarrow Ξ^{-} stops : 77.6 +/- 5.1 events captured by

light elem. (C,N,O) : $42.3_{-9.6}^{+4.5}$ % heavy elem. (Ag, Br): $57.7_{-9.6}^{+6.1}$ %

$\begin{array}{c} \underline{\text{most probable case}}\\ ^{14}\text{N} + \Xi^{-} => \frac{13}{\Lambda\Lambda}\text{B} + p + n\\ ^{13}_{\Lambda\Lambda}\text{B} => \frac{13}{\Lambda}\text{C}^{*} + \pi^{-} \quad \vdots \quad Ex = 4.9 \text{ MeV}\\ \hline 13 \text{B} \quad B_{AA} = 23.3 \text{ +/- } 0.7 \text{ MeV}\\ ^{13}_{\Lambda\Lambda}\text{B} \quad B_{AA} = 0.6 \text{ +/- } 0.8 \text{ MeV} \end{array}$

[Assumption] B_{Ξ}- = 0.17 MeV (atomic **3D** in ¹⁴N- Ξ ⁻)

S.Aoki et al, NPA 828 (2009) 191.

KEK E373

Nagara Event

H.Takahashi et al., PRL 87 (2001) 212502.

Summary of Emulsion events

	AZ captu	- <i>B_{AA} - B</i> ≘- ured [MeV]	Δ <i>Β_{ΛΛ} - Β</i> Ξ- Α [MeV]	ssumed level	<i>В</i> лл [MeV]	∆ <i>В</i> ∧∧ [MeV]		
NAGARA	<mark>^6∕He</mark> 12℃	$B_{AA} = 6.79 + \Delta B_{AA} = 0.55 + B \Xi^- < 1.86$	· 0.91 <i>B</i> Ξ [−] (+/- 0.16) 0.91 <i>B</i> Ξ [−] (+/- 0.17)	3D	6.91 +/- 0.16	0.67 +/- 0.17		
MIKAGE		9.93 +/- 1.72	3.69 +/- 1.72	3D	10.06 +/- 1.72	3.82 +/- 1.72		
DEMACHI- YANAGI	10 Be*12C	11.77 +/- 0.13	-1.65 +/- 0.15 <i>cf. Ex</i> = 3.0	3D	11.90 +/- 0.13	-1.52 +/- 0.15 f. Ex = 3.0		
HIDA	11 Be 16C	20.26 +/- 1.15	2.04 +/- 1.23	3D	20.49 +/- 1.15	2.27 +/- 1.23		
	¹² Βe ¹⁴ Ν	22.06 +/- 1.15		3D	22.23 +/- 1.15			
E176	<mark>13</mark> B->13	C * <i>Ex</i> = 4.9		3D	23.3 +/- 0.7	0.6 +/- 0.8		
M Danyez et al. Pl		Be* <i>Ex</i> = 3.0	c	not hecked, yet.	14.7 +/- 0.4	1.3 +/- 0.4		
R.H.Dalitz et al., Proc. R.S.Lond.A436(1989)1								

Search for Double-A with Sequential Weak Decay

- Large Branch of Mesonic Weak Decay in Light hyperfragments
- Characterisitc π⁻ emission

Fig. 8. The 1-binding energy $B_1({}_1{}_1^{\circ}\text{He})$ is plotted as a function of the weak decay pion momentum q_{π} . The corresponding 1.1 interaction matrix element ΔB_{11} is also shown on the right scale. The hatch for the π^- decay indicates the predicted pion momentum width $\Delta q = 0.45 \text{ MeV}/c$.

Fig. 7. The theoretical π^- decay spectrum $\Gamma_{\pi^-(\Lambda^0_1 \text{He})}/\Gamma_{\Lambda}$ with YNG is drawn by solid line as a function of the proton- ${}^{5}_{\Lambda}$ He relative energy $E \equiv E_{p_1^{\circ}\text{He}}$. The shallow Λ -binding energy case described in sect. 4.2 results in the dotted curve in which case the pion momentum and energy should be shifted (cf. fig. 8).

Suggested decay mode of $^4\Lambda\Lambda$ H and limits on Δ B $\Lambda\Lambda$

Spectroscopic Study of Ξ -Hypernucleus, ${}^{12}{}_{\Xi}$ Be, via the ${}^{12}C(K^-,K^+)_{E05}$ Reaction T. Nagae et al.

- ► Discovery of Ξ-hypernuclei
- Measurement of Ξ -nucleus potential depth and width of ${}^{12}\Xi\text{Be}$
- ▶ Beam: K⁻ @ 1.8 GeV/c, 1.4x10⁶/spill
- CH₂ ~2 g/cm²: 2 weeks for tuning and calibrations
- ¹²C 5.4 g/cm² : 4 weeks
- Setup:KI.8 & SKS+

Unique experiment at J-PARC : No other place can do this experiment !

Purpose of the experiment

- First Spectroscopic Study of S=-2 systems in (K⁻,K⁺) reaction
 - ► Ξ -hypernuclei \rightarrow double- Λ hypernuclei
 - Ξp - $\Lambda\Lambda$ mixing
 - First step for multi-strangeness baryon systems
- EN Interactions: almost no information
 - Attractive or repulsive $? \rightarrow$ potential depth
 - ► $\Xi p \rightarrow \Lambda \Lambda$ conversion ? \rightarrow conversion width
 - ► Isospin dependence ? \rightarrow Lane term($\tau_{\Xi} \cdot \tau_{C}/A$)

Strangeness Nuclear Physics

Neutron Number

Purpose of the experiment cont.

- First Spectroscopic Study of S=-2 systems in (K⁻,K⁺) reaction
 - ▶ Ξ -hypernuclei → double- Λ hypernuclei
 - ► Ξp - $\Lambda\Lambda$ mixing
 - First step for multi-strangeness baryon systems
- EN Interactions: almost no information
 - Attractive or repulsive $? \rightarrow$ potential depth
 - ► $\Xi p \rightarrow \Lambda \Lambda$ conversion ? \rightarrow conversion width
 - ► Isospin dependence ? → Lane term($\tau_{\Xi} \cdot \tau_C / A$)

S=-2 Baryon Systems

Energy Spectrum of S=-2 systems

Purpose of the experiment cont.

- First Spectroscopic Study of S=-2 systems in (K⁻,K⁺) reaction
 - ▶ Ξ -hypernuclei → double- Λ hypernuclei
 - ► Ξp - $\Lambda\Lambda$ mixing
 - First step for multi-strangeness baryon systems
- EN Interactions: almost no information
 - Attractive or repulsive $? \rightarrow$ potential depth
 - ► $\Xi p \rightarrow \Lambda \Lambda$ conversion ? \rightarrow conversion width
 - ► Isospin dependence ? → Lane term($\tau_{\Xi} \cdot \tau_C / A$)

E hypernuclei potential ? • Λ, Σ, Ξ, K in Neutron Star Core ? $\mu_B = m_B + \frac{k_F^2}{2m_B} + \frac{U(k_F)}{2m_B}$ Chemical Potential: n (1) x_{∉A}=0.6 $x_{u2} = 2/3$ $x_{u2} = x_{A}$ р 0.1 -U**5<**0, U=<0 0.01 1 n (2) x_1=0.6 Fraction 0.1 - $U_{\Sigma}>0, U_{\Xi}<0$ 0.01 Λ 1 n (3) X. = 0.6 $\begin{array}{c} x_{\omega E} = 1 \\ x_{E} = x_{E} \end{array}$ 0.1 _ $U_{\Sigma}>0, U=>0$ 0.01 3 2 0 $u=\rho/\rho_0$

Purpose of the experiment cont.

- First Spectroscopic Study of S=-2 systems in (K⁻,K⁺) reaction
 - ▶ Ξ -hypernuclei → double- Λ hypernuclei
 - ► Ξp - $\Lambda\Lambda$ mixing
 - First step for multi-strangeness baryon systems
- ► ΞN Interactions: almost no information
 - Attractive or repulsive $? \rightarrow$ potential depth
 - ► $\Xi p \rightarrow \Lambda \Lambda$ conversion ? \rightarrow conversion width
 - ► Isospin dependence ? → Lane term($\tau_{\Xi} \cdot \tau_C / A$)

U_{Ξ} and Partial Wave Contributions in Nuclear Matter

Model	Т	۱S ⁰	³ S ₁	^I P _I	³ P ₀	³ P ₁	³ P ₂	U_{Ξ}	Γ_{Ξ}
NHC-D	0 1	-2.6 -3.2	0.1 -2.3	-2.1 -3.0	-0.2 -0.0	-0.7 -3.1	-1.9 -6.3	-25.2	0.9
Ehime	0 1	-0.9 -1.3	-0.5 -8.6	-1.0 -0.8	0.3 -0.4	-2.4 -1.7	-0.7 -4.2	-22.3	0.5
ESC04d*	0 1	6.3 7.2	-18.4 -1.7	1.2 -0.8	1.5 -0.5	-1.3 -1.2	-1.9 -2.8	-12.1	12.7

- ► OBE (NHC-D, Ehime)
 - odd-state attraction
 - ► strong A-dependence of V_{Ξ}
- ► ESC04d*

► strong attraction of ${}^{3}S_{1}(T=0)$

Hyperon-Nucleus Potentials

	Central	Spin-Orbit	Imaginary
٨N	V^~2/3xV ^N ~30 MeV	very small	
۸٨	weak attraction $\Delta B_{\Lambda\Lambda} \sim I MeV$		
ΣΝ	Strongly Repulsive, Large Isospin-dep.	Vso [∑] ~Vso ^N	Large
ΞN	Weakly Attractive, Isospin-dep.: Large or Small ??	Vso ⁼ « -Vso ^N ??	Small or Large ??

duction are indicated with arrows.

Experimental Setup

KI.8 beam line

- ► Double Electro-static Separators \rightarrow K⁻/ π ⁻=6.9
- High Intensity: I.4x10⁶ K⁻/spill @ 30 GeV(9µA)
- Beam Spectrometer (QQDQQ): Δp/p=3.3x10⁻⁴ (FWHM)
- SKS+ spectrometer
 - A new dipole magnet in front of SKS
 - Acceptance: 30 msr
 - Momentum Resolution: $\Delta p/p=1.7 \times 10^{-3}$ (FWHM)
 - New simple cryogenics system

SKS+ Spectrometer

Summary

- ► J-PARC Construction: 2001 ~ 2009
 - Beam commissioning: LINAC(Oct., 06), RCS (Sep., 07), MR(May, 08)
 - Beam from MR: Jan., 09
- Day-I Experiments in preparation
 - ► Ξ hypernuclei
 - Deeply-bound Kaonic nuclei
 - Hypernuclear gamma-ray spectroscopy
 - etc.