Polarized Parton Distribution Functions with Estimate of Uncertainties Y. Goto¹, N. Hayashi², M. Hirai³, H. Kobayashi², S. Kumano³, M. Miyama⁴, T. Morii⁵, N. Saito^{1,2}, T.-A. Shibata⁶, and T. Yamanishi⁷ (Asymmetry Analysis Collaboration) ¹RIKEN BNL Research Center, Upton, NY 11973, U.S.A. ²Radiation Laboratory, RIKEN, Saitama 351-0198, Japan ³Department of Physics, Saga University, Saga 840-8502, Japan ⁴Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan ⁵Faculty of Human Development, Kobe University, Kobe 657-8501, Japan ⁶Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan ⁷Department of Management Science, Fukui University of Technology, Gakuen, Fukui 910-0028, Japan Experimental data on the structure function $g_1(x, Q^2)$ have been accumulated with the proton, deuteron and ³He targets. We study parameterization of the polarized parton distributions (pol-PDFs) [1] in the leading order (LO) of α_s and in the next-to-leading order (NLO) with estimate of uncertainties. The polarized distributions are provided with a number of parameters at $Q^2=1$ GeV² ($\equiv Q_0^2$). Considering the positivity condition and the helicity retention property following functional form is proposed for the pol-PDFs: $$\Delta f_i(x, Q_0^2) = A_i \, x^{\alpha_i} \left(1 + \gamma_i \, x^{\lambda_i} \right) f_i(x, Q_0^2) \,, \tag{1}$$ where $f_i(x, Q_0^2)$ is an unpolarized parton distribution (GRV98). The subscript i denotes the type of the parton distribution: $f_i \in \{u_v, d_v, \bar{q}, g\}$. The parameters A_i , α_i , γ_i , and λ_i are determined by fitting available experimental data on the inclusive spin asymmetry A_1 from experiments: EMC, SMC, SLAC (E130, E142, E143, E154, E155) and HERMES, where A_1 is expressed with the structure function g_1 and other known functions and g_1 is expressed as linear combination of pol-PDFs Δf_i . The first moments of Δu_v and Δd_v are fixed by the semi-leptonic decay data by assuming the SU(3) symmetry, so that the number of free parameters is reduced from 16 to 14. The χ^2 minimization is performed by using the CERN library subroutine MINUIT with the following definition, $$\chi^2 = \sum (A_1^{data} - A_1^{calc})^2 / (\sigma_{A_1^{data}})^2$$ (2) comparing theoretical asymmetries A_1 with the experimental data weighted by square inverse of the error in each points. As a result, we obtain the minimum χ^2 : $\chi^2/\text{d.o.f}=322.6/359$ for the LO and $\chi^2/\text{d.o.f}=300.4/359$ for the NLO. The uncertainties of pol-PDFs can be estimated from the errors of the parameters. However, previous attempts to quantify the uncertainties on the pol-PDFs have been rather unsatisfactory. This is due to that extracting the uncertainties of pol-PDFs is not easy because there are strong correlations between pol-PDFs of different flavors and from different values of x and Q^2 . We present preliminary results from an effort to quantify the uncertainties in polarized parton distribution functions. [1] Y. Goto, N. Hayashi, M. Hirai, H. Horikawa, S. Kumano, M. Miyama, T. Morii, N. Saito, T.-A. Shibata, E. Taniguchi, and T. Yamanishi, hep-ph/0001046, Phys. Rev. D 62 34017 (2000).