Strangeness Nuclear Physics at the J-PARC era Tomofumi NAGAE Kyoto University

Contents

- Strangeness in Nuclear Physics
- Brief history of Strangeness Nuclear Physics
- J-PARC status
- Recent Topics and Prospects in SNP
 - S=-1 Baryon Systems
 - S=-2 Baryon Systems
 - Kaonic Nuclei
- Summary

Strangeness in Nuclear Physics

Strangeness in Nucleons

- Strange Form Factors
- Strange Quark Contents
- QCD Phase Transition
 - at High-Temperature
 - at High-Density

Nucleon Strange Form Factors Jianglai Liu et al. PHYSICAL REVIEW C 76, 025202 (2007)

- Parity-violating electron elastic scattering
 - SAMPLE, PVA4,HAPPEx, G0
 - G^{s}_{E} =-0.008±0.016 • G^{s}_{M} =0.29±0.21

Strange quark contents in Nucleon

Lattice QCD

 $y \equiv \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u + \bar{d}d|N\rangle}$

y=0.2±0.2 ?

■ JLQCD: y=0.030(16)_{stat}(+6,-8)_{extrap}(+1,-2)_{ms}

H. Ohki et al., Phys. Rev. D78, 054502 (2008)

QCD Phase Transition at High-Temperature AQCD~ms • Two (u,d) flavors: 2nd order

Three (u,d,s) flavors: Cross-over two pure flavors qauge ∞ second first order m_s a 0.1 one flavor first .025 .01 _attice QCD 0 025 \cap mu,d a

QCD Phase Transition at High-Density

Two Flavors

Three Flavors

Color-Flavor Locked Phase ?

Hadron Many-Body Systems with Strangeness

- Hypernuclei : Hyperons (Λ, Σ, Ξ) in Nuclei

3-dim. Nuclear Chart

by H. Tamura

From 1974 Nobel Lecture by A. Hewish, "Pulsars and High Density Physics",

 At yet deeper levels the neutronneutron interaction may result in the creation of a solid neutron lattice, although this possibility is under debate, and finally there is the question of a material composed of stable hyperons

Strangeness nuclear physics can have an answer

What's in the Neutron Star Core ?

By F. Weber

→EA0002: T. Hatsuda Modern Picture of Baryon-**Baryon Interactions** long short medium 200 150 [MeV] Nuclear Force from Lattice QCD 100 50 $V_{\rm c}(r)$ 0 lattice QCD -50 S₀ -100 1.0 2.0 1.5 2.5 0.5 $r \, [fm]$ NN potential wave function В 100 600 1.2 inger 500 NN wave function $\phi(r)$ 1.0 Schrodi 50 400 /_C(r) [MeV] 0.8 $\phi(x,y,z=0; {}^{1}S_{0})$ 300 0 0.6 1.5 200 1.0 0.4 0.5 50 100 2.0 0. 0.2 -2 ſfm 0 k[fm]0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 r [fm]

r [fm]

N.Ishii, S.Aoki, T.Hatsuda, Phys.Rev.Lett.99,022001 (2007).

M. Danysz and J. Pniewski

M. Danysz and J. Pniewski

M. Danysz and J. Pniewski

Nuclear Emulsion Ground states of Light Λ hypernuclei

1970s - 1985

1970s - 1985

1970s - 1985

RN PS Recoil-less Method Excited Levels of Λ hypernuclei Σ hypernuclei Puzzle

AGS

AGS

(+)

1

(π,K⁺), (K⁻_{stop},π⁻)

KEK PS

Λ, Σ hypernuclei
H dibaryon
Double-Λ hypernuclei
YN scattering

AGS

K-,K+)

62

(π,Κ⁺), (Κ⁻_{stop},π⁻)

(EK PS

Λ, Σ hypernuclei
H dibaryon
Double-Λ hypernuclei
YN scattering

AGS

K-,K+)

Hypernuclear Physics Strangeness Nuclear Physics

(π,K⁺), (K⁻_{stop},π⁻)

Λ, Σ hypernuclei
H dibaryon
Double-Λ hypernuclei
YN scattering

AGS

 (K^+)

HI, anti-p

GSI/FAIR

(e,e

J-PARC (K⁻,K⁺), (K⁻,π⁻)

HI, anti-p

GSI/FAIR

(e,e

J-PARC (K⁻,K⁺), (K⁻,π⁻)

HI, anti-p

NΕ

GSI/FAIR

(e,e

J-PARC (K⁻,K⁺), (K⁻,π⁻)

HI, anti-p

GSI/FAIR

(e,e

_____**J-PARC** (K⁻,K⁺), (K⁻,π⁻)

HI, anti-p

GSI/FAIR

(e,e

________ (K⁻,K⁺), (K⁻,π⁻)

HI, anti-p

NΕ

GSI/FAIR

(e,e

LJ-PARC (K⁻,K⁺), (K⁻,π⁻)

HI, anti-p

GSI/FAIR

(e,e

J-PARC (K⁻,K⁺), (K⁻,π⁻)

HI, anti-p

GSI/FAIR

(e,e

J-PARC (K⁻,K⁺), (K⁻,π⁻)

HI, anti-p

GSI/FAIR

(e,e

→ J-PARC (K⁻,K⁺), (K⁻,π⁻)

HI, anti-p

GSI/FAIR

(e,e

J-PARC (K⁻,K⁺), (K⁻,π⁻)

J-PARC Facility (KEK/JAEA) South to North

Photo in July of 2009

115

10

J-PARC Facility (KEK/JAEA) South to North

50 GeV Synchrotron

3

Synchrotron

CY2007 Beams JFY2008 Beams Materials and L Experimental Facility

11

Linac

Hadron Exp. Facility

Photo in July of 2009

J-PARC Facility (KEK/JAEA) South to North

Hadron Exp.

Facility

Neutrino Beams (to Kamioka)

Materials and L Experimenta Facility

Linac

3

Synchrotron

50 Gev Synchrotron

Photo in July of 2009

Inauguration Ceremony on July 6, 2009

From J-PARC to the World

Beam Extraction at Hadron Exp. Hall: Jan. 27, 2009

Hadron Experimental Hall

World highest intensity Kaon beams !

First beam in Feb. 2009

1111

30~50 GeV

Primary Beam

K1.8BR

Production target (T1)

K1.1BR

TT MARKEN

K1.8

60m x 56m

S=-1 Baryon Systems

Success of (π⁺,K⁺) Spectroscopy

H.Hotchi et al., PRC 64, 044302(2001)

->BJooo1: H. Tamura Success of Hypernuclear Gamma-Ray Spectroscopy - Hyperball : Tohoku/KEK/Kyoto in 1998

14 Ge(r.e.60%);
Ω~15%, ε~3% at 1 MeV

BGO suppressor

Upgraded to Hyperball2 in Tohoku (2005~)

Efficiency 2.4% -> ~4%

Hypernuclear Gamma-rays

by H. Tamura

ΛN Effective Interaction

$V_{\Lambda N}^{eff} = V_0(r) + V_{\sigma}(r)\vec{s_{\Lambda}}\vec{s_{N}} + V_{\Lambda}(r)\vec{\ell_{\Lambda N}}\vec{s_{\Lambda}} + V_N(r)\vec{\ell_{\Lambda N}}\vec{s_{N}} + V_T(r)S_{12}$ $\Delta \qquad S_{\Lambda} \qquad S_{N} \qquad T$

Parameters in MeV

	Δ	S_{Λ}	S_N	T
A = 7 - ?	0.430	-0.015	-0.390	0.030
A = 11 - 16	0.330	-0.015	-0.350	0.024

Very small LS

by D.J. Millener

→EA0001: L. Tang

JLab E01-011: (e,e'K+)

→BJ0005: A. Matsumura

$^{12}\Lambda B$

O. Hashimoto @ Hyp-X

Σ -Hypernuclei

One bound state observed: ⁴₂He

28C $T K^+$

CROSS

SECTION

 $\mathfrak{q}\mathfrak{n})$

Sr

MeV)[CAL

T. Nagae et al., PRL 80 (1998) 1605.

Neutron-rich Hypernuclei J-PARC E10 with (π^- , K⁺) reaction A. Sakaguchi et al.

S=-2 Baryon Systems

Double- Λ Hypernuclei

- "Nagara" event; мл⁶Не
 - Uniquely identified
 - ΔB_{ΛΛ}=1.01±0.02+0.18/-0.11 MeV

0.67 MeV (updated by Nakazawa@Hyp-X)

smaller than before (~4 MeV)

KEK E373

H. Takahashi et al., PRL87, (2001) 212502.

S=-2 World

Energy Spectrum of S=-2 systems

Spectroscopic Study of Ξ -Hypernucleus, ¹² $_{\Xi}$ Be, via the ¹²C(K⁻,K⁺) Reaction J-PARC E05 T. Nagae et al.

- Measurement of Ξ -nucleus potential depth and width

E-Nucleus potential?

Chemical Potential:

$$\mu_{B} = m_{B} + \frac{k_{F}^{2}}{2m_{B}} + \frac{U(k_{F})}{2m_{B}}$$

Kaonic Nuclei

→EA0003: H. Fujioka

Evidence for K-pp in FINUDA

■ Back-to-back Λ-p pairs in Stopped K⁻ absorption

B=115+6/-5+3/-4 MeV

→CD0008: A. Dote

Theoretical work on K-pp K-pp does exist !!

...but maybe broad (consistent with FINUDA)

(MeV)	ATNS Yamazaki & Akaishi, PLB535 (2002) 70.	Variational Dote, Hyodo, Weise, PRC79 (2009) 014003.	Faddeev Shevchenko, Gal, Mares, PRL98 (2007) 082301.	Faddeev Ikeda & Sato, PRC79 (2009) 035201.	Variational Wycech & Green, PRC79 (2009) 014001.
B	48	17-23	50-70	60-95	40-80
	61	40-70	90-110	45-80	40-85

New FINUDA data on K-pp

• First evidence of K^-pp with ${}^{6}Li+{}^{7}Li+{}^{12}C$

Confirmed for ⁶Li only, with better statistics

FINUDA Coll., PRL 94(2005)212303

FSI, $\Sigma N \rightarrow \Lambda N$ conversion cannot explain the new data

DISTO data on K-pp

■ $p+p \rightarrow K^-pp + K^+$ at 2.85 GeV

Peak properties:

- $M = 2.267 \pm 0.002 \text{ GeV/c}^2$
- $\Gamma = 0.118 \pm 0.008 \text{ GeV/c}^2$
- SYMMETPICI

M. Maggiora @Hyp-X

In-flight (K⁻,n) reaction on ³He

J-PARC E15 M. Iwasaki, T. Nagae et al.

Summary

- J-PARC; construction completed.
 - will open a new era for Strangeness Nuclear Physics.
- Day-1 Experiments are about to run.
 - E hypernuclear Spectroscopy
 - Hypernuclear γ-ray Spectroscopy
 - Search for Kaonic Nuclei
 - Neutron-rich hypernuclei
 - and more ...

Summary

- J-PARC; construction completed.
 - will open a new era for Strangeness Nuclear Physics.
- Day-1 Experiments are about to run.
 - E hypernuclear Spectroscopy
 - Hypernuclear γ-ray Spectroscopy
 - Search for Kaonic Nuclei
 - Neutron-rich hypernuclei
 - and more ...

