$\begin{array}{c} \mbox{Predictions for azimuthal dependence of double} \\ \mbox{spin asymmetries } A_{LT} \mbox{ and } A_{LL} \mbox{ in Semi Inclusive} \\ \mbox{DIS} \end{array}$

Aram Kotzinian

Yerevan Physics Institute, Alikhanian brothers str. 2, 375036 Yerevan, Armenia

In the leading order of QCD parton model of Semi Inclusive Deep Inelastic Scattering (SIDIS) the double spin asymmetry A_{LT} arises due to the longitudinal polarization of quarks in the transversely polarized nucleon. The corresponding k_T^2 weighted distribution function $g_{1T}^{(1)}$ can be related to ordinary helicity distribution $g_1(x)$ measured in DIS. Using recent parameterizations for (un)polarized distribution and fragmentation functions we calculated A_{LT} asymmetry on transversely polarized proton and deuteron targets for different types hadron production. The role of Lorentz invariance relations and k_T -dependent positivity constraints for distribution functions are discussed.

Next, we present the result of our calculations of the transverse momentum dependence of the SIDIS double-spin asymmetry. The 1/Q kinematical corrections induce the azimuthal modulation of this asymmetry. This effect is similar to the Cahn effect in unpolarized SIDIS.

The measurement of azimuthal and transverse momentum dependence of A_{LT} and A_{LL} asymmetries will provide the information on the intrinsic momentum dependence of distribution functions g_{1L} and g_{1T} .

The predictions are given for COMPASS, HERMES and JLab energies.