Measurement of Double Helicity Asymmetry in Multi-Particle Productions at PHENIX

Kenichi Nakano for the PHENIX Collaboration

Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Polarized deep inelastic scattering experiments revealed that the contribution of the quark spin $(1/2 \cdot \Delta \Sigma)$ to the proton spin is only 20-30%. The remaining component can be carried by the gluon spin (Δg) and the orbital angular momenta of the quarks and gluons $(L_{q,g})$; $1/2 = 1/2 \cdot \Delta \Sigma + \Delta g + L_{q,g}$. One of the goals of the PHENIX experiment is to obtain Δg , which can be evaluated by measuring double helicity asymmetries (A_{LL}) in longitudinally-polarized proton-proton collisions.

We are measuring A_{LL} in multi-particle production that originates from jet at mid rapidity. This measurement will give us higher statistics in the higher transverse-momentum (p_T) region than that in single particle measurements. Photons and charge particles are measured with the PHENIX Central Arm detector. Particles that satisfy experimental selections with a high- p_T (> 2 GeV/c) photon existing in event are clustered by a cone method. The cone radius $R (= \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2})$ is set to 0.3, and the transverse momentum of the cone (p_T^{cone}) is defined as the vector sum of the transverse momenta of the particles in the cone; $p_T^{\text{cone}} \equiv |\sum_{i \in \text{cone}} \vec{p}_{Ti}|$. The relationship between p_T^{cone} and p_T^{jet} is evaluated with PYTHIA and GEANT simulations.

In this presentation, A_{LL} and cross section analyses with Run 2005 data, which is of $\sim 2.7 \text{ pb}^{-1}$ luminosity and $\sim 46\%$ polarization, will be discussed.