Polarized Proton Solid Target at high-T and low-B

T. Uesaka1, T. Wakui2, S. Sakaguchi1, T. Kawahara3, and H. Sakai4

1) Center for Nuclear Study, University of Tokyo, Tokyo 113-0033, Japan
2) Cyclotron Radioisotope Center, Tohoku University, Sendai 980-8578, Japan
3) Department of Physics, Toho University, Chiba 274-8510, Japan
4) Department of Physics, University of Tokyo, Tokyo 113-0033, Japan

Recent progresses in proton polarization at high temperature of > 77K and low magnetic field of < 0.3 T are reviewed. The proton polarization is achieved by transferring an electron polarization in photo-excited triplet states of aromatic molecules to protons, by means of a cross polarization method. The technique was first developed at Leyden University [1,2] and was applied to neutron beam irradiation experiments by Kyoto group [3]. We have recently introduced an Ar-ion laser for excitation of pentacene molecule and achieved the proton polarization of 37\%[4] which is comparable to the value obtained with a dye laser used in Ref. [3].

We applied the proton polarization to a target system for radioactive isotope (RI) beam studies. RI beam experiments conducted under so-called ‘inverse kinematics’ condition require detection of low-energy recoiled protons for discrimination of proton scattering events. Here, smallness of magnetic rigidity of the recoiled proton makes the low-field operation of the polarized target crucial for the proton detection. We have achieved a proton polarization of ~20\% for a target material of φ14mm in area and 1mm in thickness. The target has been used in an RI beam experiment at RIKEN, where analyzing power for the p-6He elastic scattering has been measured at 71 MeV/u [5,6].

In the talk, overview of the polarized target system and results from the RI beam experiment will be presented.