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Introduction

Motivation

The growth in statistics and improving precision of polarized data
allow us to reduce errors in the extraction of polarized parton
distributions.

Experience in unpolarized case showed that sometimes a
discrepancy between theory and experiments is not a signal of
”new physics” but ”old physics” we do not fully understand

High-ET jets at the Tevatron,
B production,
...

Need for faithful estimation of errors on polarized parton
distribution functions (PDF).
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Introduction

Problem
Faithful estimation of errors

Single quantity: 1-σ error

Multiple quantities: 1-σ contours

Function: need an ”error band” in the space of functions (i.e. the
probability density P[f ] in the space of functions f (x))

Expectation values are Functional integrals

〈F [f (x)]〉 =

∫
DfF [f (x)]P[f (x)]

Determine an infinite-dimensional object (a function) from a finite set of
data points ... mathematically ill-defined problem.
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Introduction

Solution
Standard Approach

Introduce a simple functional form with enough free parameters

q(x , Q2) = xα(1− x)βP(x ;λ1, ..., λn).

Fit parameters minimizing χ2.

Open problems:

Error propagation from data to parameters and from parameters to
observables is not trivial.

Theoretical bias due to the chosen parametrization is difficult to
assess.
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Introduction

The Strategy
Bayesian Inference Method

[Giele, Keller and Kosower, hep-ph/0104052]

Generate a Monte-Carlo sampling of the function space according
to a reasonable prior distribution.

Compute observables as functional integrals with the probability
measure defined by the sampling.

Update probability using Bayesian inference on the MC sample.

Iterate until convergence is reached.

The originally ”infinite dimensional” problem is made finite by choosing
a prior, but the final result should not depend on this choice.
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The Neural Network Approach

The Neural Network Approach

1 Generate Nrep Monte-Carlo replicas of the experimental data.

2 Train a Neural Network on any of the replicas, defining a
probability density on the space of the observable.

3 Expectation values for observables are sums over nets

〈F [g1(x , Q2)]〉 =
1

Nrep

Nrep∑
k=1

F
(

g(net)(k)
1 (x , Q2)

)
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The Neural Network Approach

Neural Networks

Neural Networks are a class of algorithms suitable to fit noisy or
incomplete data.

[for HEP applications see ACAT 2005]

Any continuous function can be approximated with neural network
with one internal layer and non-linear neuron activation function.

[G. Cybenko (1989)]
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The Neural Network Approach

Neural Networks
Training

Set network parameters randomly.
If there are different inputs, normalize them.
Define a figure of merit E (i.e. χ2).
Define a criterion of convergence (i.e. χ2 ∼ 1).

A. Guffanti (UoE) SPIN 2006 9 / 16



The Neural Network Approach

Neural Networks
Training

Set network parameters randomly.
If there are different inputs, normalize them.
Define a figure of merit E (i.e. χ2).
Define a criterion of convergence (i.e. χ2 ∼ 1).

A. Guffanti (UoE) SPIN 2006 9 / 16



The Neural Network Approach

Neural Networks
Training

Set network parameters randomly.
If there are different inputs, normalize them.
Define a figure of merit E (i.e. χ2).
Define a criterion of convergence (i.e. χ2 ∼ 1).

A. Guffanti (UoE) SPIN 2006 9 / 16



The Neural Network Approach

Neural Networks
Training

Set network parameters randomly.
If there are different inputs, normalize them.
Define a figure of merit E (i.e. χ2).
Define a criterion of convergence (i.e. χ2 ∼ 1).

A. Guffanti (UoE) SPIN 2006 9 / 16



The Neural Network Approach

Neural Networks
Training Methods

Back Propagation
1 Set network parameters randomly.
2 Present and input and compute the output.
3 Evaluate χ2.
4 Modify the weights according to

ω
(l)
ij → ω

(l)
ij − η

∂χ2

∂ω
(l)
ij

5 Back to 2, until stability in χ2 is reached.

Genetic Algorithm
1 Set network parameters randomly.
2 Make clones of the set of parameters.
3 Mutate each clone.
4 Evaluate χ2 for all the clones.
5 Select the clone that has the lowest χ2.
6 Back to 2, until stability in χ2 is reached.
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g1 from Neural Networks

g1 from Neural Networks
Data & MC replicas

Data in the present analysis

Experiment x range Q2 range # of points

E80 0.110− 0.510 1.02− 4.09 7

E130 0.380− 0.580 1.45− 1.70 5

EMC 0.015− 0.466 3.50− 29.5 10

SMC 0.005− 0.480 1.30− 58.0 12

E143 0.031− 0.749 1.27− 9.52 28

E155 0.015− 0.750 1.22− 34.72 24

HERMES 0.023− 0.660 0.92− 7.36 20

Total 0.005− 0.750 0.92− 58.0 106

Only statistical and (when available)
uncorrelated systematic errors.

g1 is extracted from A1 data using
the NNPDF parmetrization of F2

[Del Debbio et al., hep-ph/0501067]
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g1 from Neural Networks

g1 from Neural Networks
Data & MC replicas

Generate Nrep Monte-Carlo replicas of the data according to:

g(art),i
1 (x , Q2) = g(exp)

1 (x , Q2) + riσ
i
t

Validate Monte-Carlo replicas against experimental data.
(statistical estimators, faithful representation of uncertainties,
convergence rate increasing Nrep)
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g1 from Neural Networks

gP
1 from Neural Networks

Preliminary Fit

0.001 0.01 0.1 1
x

0

0.1

0.2

0.3

0.4

0.5

0.6

g 1p (x
)

Q
2
 = 4 GeV

2

Expts. 3 < Q
2
 < 5 GeV

2

0.001 0.01 0.1 1
x

0

0.1

0.2

0.3

0.4

0.5

0.6

g 1p (x
)

Q
2
 = 2 GeV

2

Expts. 1 < Q
2
 < 2 GeV

2

Network architecture: 4-3-1
Nrep = 100
Training: Genetic Algorithm

Input: x , Q2, ln x , ln Q2

Output: g1(x , Q2)
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g1 from Neural Networks

gP
1 from Neural Networks

Preliminary Fit
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Conclusions & Outlook

Summary
Where we are ...

We derived a parametrization of the structure function gp
1 with

faithful error estimation, based on Monte-Carlo techniques and
Neural Networks.

It could be used as input in a (Factorization-)Scheme-Invariant
analysis to determine αs. ([Blüemlein and Böttcher])

Inclusion of new data and finalization of the analysis before the
end of the year.
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Conclusions & Outlook

Instead of Conclusions
The way to NN Polarized PDFs

The general strategy is the same as in the structure function case but

Each PDF is parametrized by a different neural network
(∆u(net)

v (x, Q2
0), ∆d (net)

v (x, Q2
0), ∆q(net)(x, Q2

0), ∆g(net)(x, Q2
0)).

The training of neural networks on experimental data involves
DGLAP evolution and convolution with Wilson Coefficients.

Include other observables (gd,n
1 , SIDIS, polarized Drell-Yan).
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