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Motivation

@ The growth in statistics and improving precision of polarized data
allow us to reduce errors in the extraction of polarized parton
distributions.

@ Experience in unpolarized case showed that sometimes a
discrepancy between theory and experiments is not a signal of
"new physics” but "old physics” we do not fully understand

e High-Er jets at the Tevatron,
e B production,
o ...

@ Need for faithful estimation of errors on polarized parton
distribution functions (PDF).
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Problem

Faithful estimation of errors

@ Single quantity: 1-o error
@ Multiple quantities: 1-0 contours

@ Function: need an "error band” in the space of functions (i.e. the
probability density P[f] in the space of functions f(x))

Expectation values are Functional integrals

(FIOID = /fo[f(x)]P[f(X)]
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Problem

Faithful estimation of errors

@ Single quantity: 1-o error
@ Multiple quantities: 1-0 contours

@ Function: need an "error band” in the space of functions (i.e. the
probability density P[f] in the space of functions f(x))

Expectation values are Functional integrals

(FIOID = /fo[f(x)]P[f(X)]

Determine an infinite-dimensional object (a function) from a finite set of
data points ... mathematically ill-defined problem.
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Introduction

Solution
Standard Approach

@ Introduce a simple functional form with enough free parameters
q(x, @) = x*(1 — x)°P(x; M, ..., A\n).

@ Fit parameters minimizing x?2.
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Introduction

Solution
Standard Approach

@ Introduce a simple functional form with enough free parameters
q(x, @) = x*(1 — x)°P(x; M, ..., A\n).

@ Fit parameters minimizing x?2.

Open problems:

@ Error propagation from data to parameters and from parameters to
observables is not trivial.

@ Theoretical bias due to the chosen parametrization is difficult to
assess.
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Introduction

The Strategy

Bayesian Inference Method
[Giele, Keller and Kosower, hep-ph/0104052]

@ Generate a Monte-Carlo sampling of the function space according
to a reasonable prior distribution.

@ Compute observables as functional integrals with the probability
measure defined by the sampling.

@ Update probability using Bayesian inference on the MC sample.

@ lterate until convergence is reached.

The originally "infinite dimensional” problem is made finite by choosing
a prior, but the final result should not depend on this choice.
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The Neural Network Approach

@ Generate N, Monte-Carlo replicas of the experimental data.

@ Train a Neural Network on any of the replicas, defining a
probability density on the space of the observable.

© Expectation values for observables are sums over nets

1 Nrep

Nrep k=1

(Flgr(x, @))) = Fg™ N (x,a®)
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Neural Networks

Qutput

+ @6,

Hidden

f @ 6%,

Input

@ Neural Networks are a class of algorithms suitable to fit noisy or

incomplete data.
[for HEP applications see ACAT 2005]

@ Any continuous function can be approximated with neural network

with one internal layer and non-linear neuron activation function.
[G. Cybenko (1989)] )
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Neural Networks

Training

@ Set network parameters randomly.

@ If there are different inputs, normalize them.

@ Define a figure of merit E (i.e. x?).

@ Define a criterion of convergence (i.e. x2 ~ 1).
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Neural Networks

Training

@ Set network parameters randomly.

@ If there are different inputs, normalize them.

@ Define a figure of merit E (i.e. x?).

@ Define a criterion of convergence (i.e. x2 ~ 1).
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Neural Networks

Training

@ Set network parameters randomly.

@ If there are different inputs, normalize them.

@ Define a figure of merit E (i.e. x?).

@ Define a criterion of convergence (i.e. x2 ~ 1).
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Neural Networks

Training

@ Set network parameters randomly.

@ If there are different inputs, normalize them.

@ Define a figure of merit E (i.e. x?).

@ Define a criterion of convergence (i.e. x2 ~ 1).
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Neural Networks
Training Methods

@ Back Propagation
@ Set network parameters randomly.

@ Present and input and compute the output.

© Evaluate x°.
© Modify the weights according to
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© Back to 2, until stability in x? is reached.
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Neural Networks
Training Methods

@ Back Propagation
@ Set network parameters randomly.

@ Present and input and compute the output.

© Evaluate x°.
© Modify the weights according to

o 2
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© Back to 2, until stability in x? is reached.

@ Genetic Algorithm
@ Set network parameters randomly.
@ Make clones of the set of parameters.
© Mutate each clone.
@ Evaluate x? for all the clones.
© Select the clone that has the lowest x2.
@ Back to 2, until stability in x? is reached.
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g1 from Neural Networks

g1 from Neural Networks
Data & MC replicas

Data in the present analysis

Experiment T range Q% range | # of points
E80 0.110 — 0.510 | 1.02 — 4.09 7
E130 0.380 — 0.580 | 1.45—1.70 5
EMC 0.015—0.466 | 3.50 —29.5 10
SMC 0.005 — 0.480 | 1.30 — 58.0 12
E143 0.031 —0.749 | 1.27 —9.52 28
E155 0.015 —0.750 | 1.22 — 34.72 24

HERMES | 0.023 — 0.660 | 0.92 —7.36 20
Total 0.005 —0.750 | 0.92 —58.0 106

A. Guffanti (UoE)

@ Only statistical and (when available)
uncorrelated systematic errors.

@ g is extracted from Ay data using
the NNPDF parmetrization of

[Del Debbio et al., hep-ph/0501067]
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g1 from Neural Networks

g1 from Neural Networks
Data & MC replicas

@ Generate N, Monte-Carlo replicas of the data according to:

g™ (x. @) = g (x. @) + ric]

@ Validate Monte-Carlo replicas against experimental data

(statistical estimators, faithful representation of uncertainties
convergence rate increasing Nrep)
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g7 from Neural Networks

Preliminary Fit

— Q' =2GeV
o Bxpts.1<Q <2GeV’

o
a
TrTrIT

9,°(x)

< o 9 <
2 2
.

P I R R

Network architecture: 4-3-1
Nrep = 100
g~ p ey Training: Genetic Algorithm

0.001 0.01 01
X

T T T T
—_— Q7 =aGeV
®  Expis.3<Q’<5GeV’

Input: x, G2, Inx, In Q
Output: gy(x, Q%)

o
@
UL

. Ll Ll A,
0.001 0.01

-

A. Guffanti (UoE) SPIN 2006 13/16



g7 from Neural Networks

Preliminary Fit
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Summary

Where we are ...

@ We derived a parametrization of the structure function gf with
faithful error estimation, based on Monte-Carlo techniques and
Neural Networks.

@ It could be used as input in a (Factorization-)Scheme-Invariant
analysis to determine «;. ([Bliemlein and Béttcher])

@ Inclusion of new data and finalization of the analysis before the
end of the year.
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Conclusions & Outlook

Instead of Conclusions
The way to NN Polarized PDFs

The general strategy is the same as in the structure function case but

@ Each PDF is parametrized by a different neural network
(Buy™ (x, GB). Ad™ (x, GF). AG"™) (x, GF), Ag" (x, GF)).

@ The training of neural networks on experimental data involves
DGLAP evolution and convolution with Wilson Coefficients.

@ Include other observables (gf”", SIDIS, polarized Drell-Yan).
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