Measurement of the Double Longitudinal Spin Asymmetry in Inclusive Jet Production in Polarized p-p Collisions at $\sqrt{s} = 200$ GeV at STAR

David Relyea (Caltech) for the STAR Collaboration

SPIN 2006 Kyoto University

Outline:

- Motivation
- Experimental Setup
- Analysis
- Systematics
- Summary

1

Constraining $\Delta G: pp \rightarrow Jet + X$

 Δf : polarized parton distribution functions

David Relyea

2

How to Measure A_{LL}

Collide two polarized proton beams, (Y)ellow and (B)lue

Measure the *double-spin asymmetry*:

$$A_{LL} = \frac{1}{P_Y P_B} \frac{N^{parallel} - R \cdot N^{antiparallel}}{N^{parallel} + R \cdot N^{antiparallel}}$$

N: Spin dependent yields (# of reconstructed jets)

P: Beam polarization (determined by RHIC Polarimeter)

R: Relative luminosities between different spin states

STAR Detector at RHIC

Unique capability at RHIC for complete jet reconstruction!

STAR Spin

4

STAR Jets: Reconstruction and Triggers

1) Midpoint cone algorithm

- Adapted from Tevatron II
- Seed energy = 0.5 GeV, cone angle = 0.4 in $\eta \phi$

2) **Triggers**

- BBC coincidence required for all triggers
- High Tower: HT1 (HT2)
 - $E_{T} > 2.8$ (3.8) GeV deposited in one tower
 - $(\Delta \eta \ge \Delta \phi) = (0.05 \ge 0.05)$

✓ Jet Patch: JP1 (JP2) - new for 2005!

- $E_{T} > 4$ (5.5) GeV deposited in one tower patch
- $(\Delta \eta \ge \Delta \phi) = (1.0 \ge 1.0)$

• HT2

15

10

JP2

20

25

Jet pT (GeV)

30

STAR Spin

10⁻¹

10⁻³ 5

Thu Sep 21 19:27:39 2006

STAR Jets: Cuts and Statistics

3) Cuts

- BBC time bin (~a vertex cut)
- Z vertex reconstruction requirement
- Software trigger: selects jets responsible for event triggers
- Jet centroid: 0.2 < η < 0.8 (removes detector edges)
- Jet neutral energy fraction: $E_{jet}(BEMC)/E_{jet}(total) < 0.8$ (same as 2003)

4) Statistics

- I. 3.1 pb⁻¹ sampled
 - \Rightarrow 1.6 pb⁻¹ after run selection
- II. $\langle P_B P_Y \rangle \approx 0.25$
- III. 1.97 M events (post-cuts)
 - \Rightarrow 1.39 M in JP2
- IV. $\sim 2\%$ of jet events contain multiple jets

6

Previous Results: 2003/2004

arXiv:hep-ex/0608030

Submitted to PRL

STAR Spin

David Relyea

7

2005 Results, Inclusive Jet A_{LL}

Systematic band does not include 25% scale error from polarization

*Theory curves from B.Jager et. al., PRD70 (2004)034010

STAR Jet A_{LL}: 2003/2004 vs 2005

2003/2004 and 2005 results consistent

2005 Jet A_{LL} vs Fill

David Relyea **STAR** 10

Jet A_{LL} Systematics: Reconstruction + Trigger Bias

Reconstruction Bias

• Detector + Jet Reconstruction Algorithm overestimate jet p_T (~20-30% high)

Trigger Bias

Each trigger sensitive to different subprocesses (qq/qg/gg)

DIS ΔG parameterizations combined with partonic information from PYTHIA to estimate:

- 1. A_{LL} (jet) [PYTHIA],
- 2. A₁₁ (detector) [PYTHIA+GEANT], and
- 3. A_{LL}^{--} (detector+triggers)

Difference between A_{LL} (detector) and A_{LL} (jet) is reconstruction bias

Difference between A_{LL} (detector+triggers) and A_{LL} (detector) is trigger bias

Jet A_{LL} Systematics: False Asymmetries

- We observe 1-3 σ single spin asymmetries (SSAs), depending on cuts
 - Yellow beam and "like sign" (++,--) asymmetries both non-zero
 ⇒ Suggests SSA caused by one anomalous spin state
- Source of these asymmetries still unclear
- Uncertainty bounded by A_{like-sign}
 - $\delta A_{LL} \propto A_{I.s.}/2$
 - $A_{I.s.} = 7.9 \pm 5.2 \times 10^{-3} \implies \delta A_{LL} < 0.0065$

2005 Jet A_{LL}, Systematics

effect	(x 10 ⁻³)
False Asymmetries	<6.5
Reconstruction +	2-12
Trigger Bias	(p _T dependent)
Non-longitudinal	3
Polarization	
Relative Luminosity	2
Backgrounds	<1

Outlook: 2006 Jet A_{LL} Projection

- Increase in sampled luminosity over 2005
- Polarization ~ 60% (FOM is P⁴L)
- Entire BEMC instrumented
- Beamline shielding installed
- Greater emphasis on high p_T jets and dijets with triggers

14

STAR

Summary

- 2005 Jet A_{LL} Preliminary Result
 - 1.6 pb⁻¹, $< P_B P_Y > \approx 0.25$
 - ~10x larger sample than 2003/2004 with higher polarization
 - A significant contribution to global understanding of $\Delta G!$
- Present/Near Future
 - 2003/2004 results submitted to PRL
 - 2006 data collection finished
 - Larger FOM than 2005
 - Full calorimeter coverage from -1 < η < 2
 - Emphasis on dijets and high \textbf{p}_{T} jets
 - \Rightarrow Expect to publish 2005 data in ~6 months

2005 Results, Inclusive Jet A_{LL}

Systematic band does not include 25% scale error from polarization

*Theory curves from B.Jager et. al., PRD70 (2004)034010

Backup

A_{LL} Systematics and Cross-checks: Backgrounds

Jet background contribution estimated by measuring:

- Background fraction
 - Difference in the distribution of the jet neutral energy fraction for runs with "high" and "low" background
- Asymmetry of high background jets

A_{LL} Systematics and Cross-checks: Relative Luminosity

A_{LL} Systematics and Cross-checks: Non-longitudinal Beam Polarization

Non-longitudinal beam polarization changes A_{LL}:

$$\delta A_{LL}^{A_{\Sigma}} = |\tan \theta_B \tan \theta_Y \cos (\phi_Y - \phi_B) A_{\Sigma}|$$

To bound this effect,

- ⇒ Calculate A_{Σ} from transverse data: $|A_{\Sigma}| \le 0.1$
- \Rightarrow Estimate the beam transverse polarization component
 - Local polarimetry (BBC up-down and left-right asymmetries)

$$\Rightarrow |\delta A_{LL}^{A_{\Sigma}}| \le 0.003$$

Local Polarimetry

Vertical Component : Yellow 19% , Blue 13%

Radial Component: Yellow 22%, Blue 4%

SSA backup: A_{LL} vs Jet Neutral Energy

Jet $\Psi(\Delta r)$ vs Δr , 2004

Jet Cross Section and Asymmetry

The polarized cross section for jet production is a convolution:

2005 Results: Inclusive Jet A_{LL}

	Spin 2006, preliminary result, STAR inclusive jets								
	All numbers in units of 1e-3 absolute on A_{LL}								
	bin 1	bin 2	bin 3	bin 4	bin 5	bin 6	bin 7	bin 8	bin 9
pt*	5.6	6.9	8.4	10.4	12.8	15.7	19.3	23.8	29.2
A_{LL}	-3.8	2.1	1.7	15.9	-12.4	-5.4	-14.4	-10.6	125.1
stat uncertainty	7.1	6.5	6.7	7.8	10.2	15.0	24.0	41.4	80.4
A_{L}	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
Trigger + Smear	3.9	3.7	1.7	0.3	2.7	4.3	6.9	10.9	8.8
Non-longitudinal	3	3	3	3	3	3	3	3	3
Relative Luminosity	2	2	2	2	2	2	2	2	2
Bgd effect on lumi	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Bgd effect on yield	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Random Pattern	0	0	0	0	0	0	0	0	0
dominant sys	6.5	6.5	6.5	6.5	6.5	6.5	6.9	10.9	8.8
quad sys sum	8.5	8.4	7.7	7.5	8.0	8.6	10.2	13.2	11.6
	* Middle point of the histogram bin: = max - min								

Cuts: Software trigger

STAR Spin

- Removes jets which (depending on trigger)
- 1. sit outside 40 degrees from the triggering jet patch center, or
- 2. do not contain a trigger tower

Reduces statistics by 6.5%

- Reduces monojet events by 1.2%
- Reduces multiple jet events by 76.5%

Plots are PYTHIA simulation Black is the distribution of $(\phi_{jet} - \phi_{jet patch})$ without the cut Red is with the cut

pT bin smearing

The detector gives a biased measurement of jet pT. The amount of this bias has been calculated using PYTHIA:

The overall shift of each p_T bin is ~20-30%

Random Pattern Analysis

The random pattern analysis randomly creates new spin states for every run. 1000 random patterns were used. The RMS of the distribution of the ϵ_{LL} s is smaller (within error) than the statistical error, so the systematic error from bunch-dependent correlations is zero.

