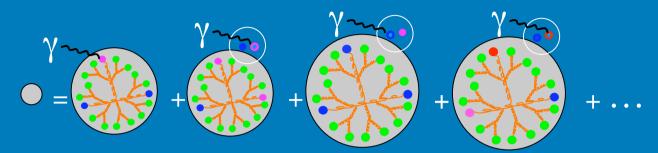
The Spin Dependent Structure Function of Nucleon in the Meson Cloud Model

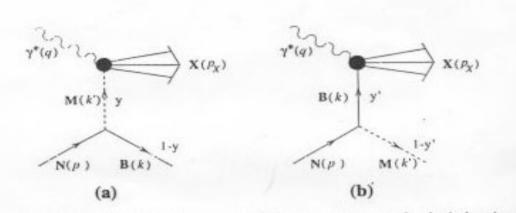

> Fu-Guang Cao Institute of Fundamental Sciences Massey University New Zealand

Overview

2

- Meson cloud model
- Meson cloud contributions to spin structure functions
- Conclusion

Meson Cloud Model



Fock expansion of proton wavefunction.

$$|p
angle_{
m phys} = \sqrt{Z}|p
angle_{
m bare} + \sum_{BM}\int dy \, dk_{\perp}^2 \, \phi_{BM}(y,k_{\perp}^2)|B;M
angle$$

- Bare states are SU(6) symmetric
- $\rho \rightarrow BM$ vertices described by L_{int} plus form factor
- FF constrained by elastic cross-sec
- Quick convergence ⇔ Small prob. of high mass states
- Model incorporates structure + interactions
- Can investigate high-energy
 → low-energy pictures, symmetry breaking etc.

Meson Cloud Model

DIS from the virtual (a) meson, and (b) baryon components of a physical nucleon.

Crucial observation (Sullivan 72) -Pion cloud contribution to DIS scales Implies quark dists of proton modified

Convolution

$$\delta q^p(x) = \int_x^1 rac{dy}{y} f_{p\pi}(y) q^\pi(rac{x}{y})$$

 $q_{phys} = q_{bare} + \delta q^{B(M)}$

• Observed PDF:

Flavour asymmetry in the unpolarized nucleon sea

• Gottfried sum rule S_G

$$F_{0} = \int_{0}^{1} \left(F_{2}^{p} - F_{2}^{n} \right) / x \, dx$$
$$= \frac{1}{3} \int_{0}^{1} \left[u_{v}(x) - d_{v}(x) \right] dx + \frac{2}{3} \int_{0}^{1} \left[\overline{u}(x) - \overline{d}(x) \right] dx$$

• Experimental studies

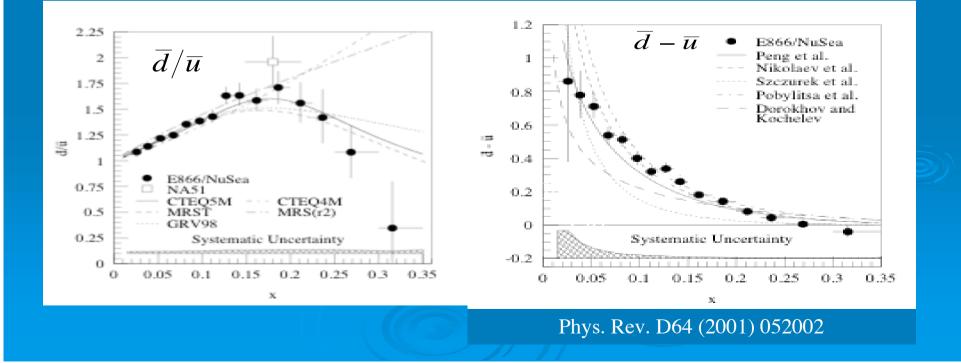
→ NMC (DIS, CERN, 1991) $S_G = 0.235 \pm 0.026 (Q^2 = 4 GeV^2)$

 \rightarrow NA51 (DY, CERN, 1994) $\overline{d}/\overline{u} = 1.96 \pm 0.15 \pm 0.19 \ at \langle x \rangle = 0.18$

 \rightarrow HERMES (SIDIS, DESY, 1998)

$$(\overline{d} - \overline{u})/(u - d), 0.02 < x < 0.3, \langle Q^2 \rangle = 2.3 GeV^2$$

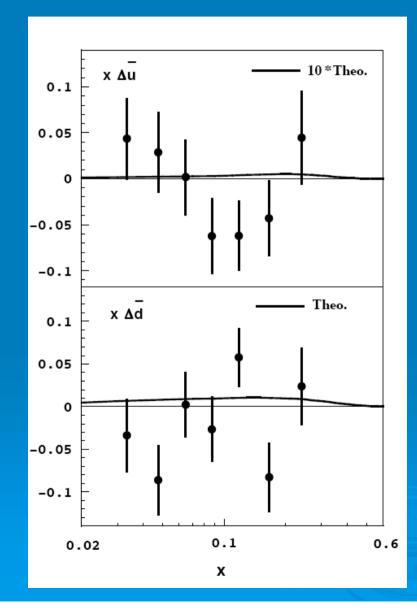
→ E866 (DY, Fermilab, 1998&2001)

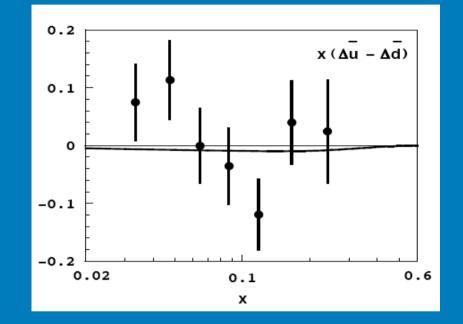

$$\overline{d}/\overline{u}$$
, 0.015 < x < 0.35, $\langle Q^2 \rangle$ = 54GeV²

5

Flavour asymmetry in the unpolarized nucleon sea

Isospin broken in sea


 $p \rightarrow n(udd) + \pi^{+}(u\bar{d})$ $p \rightarrow \Delta^{++}(uuu) + \pi^{-}(d\bar{u})$ • MCM gives good fit to $\overline{d}(x) - \overline{u}(x)$



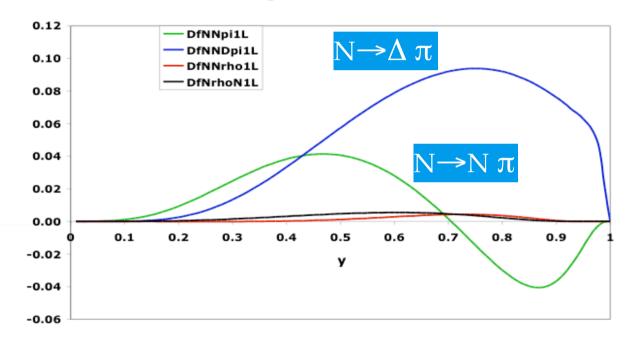
Spin dependent Quark Dists.

- Extend MCM to include vector mesons
 - π cloud dilutes proton spin
 - ρ , ω , K^* able to carry spin
- Interference terms ?
- Get reasonably good agreement with HERMES semi-inclusive data for sea distributions

Spin Dependent Sea Dists.

Data from HermesSmall symmetry breaking

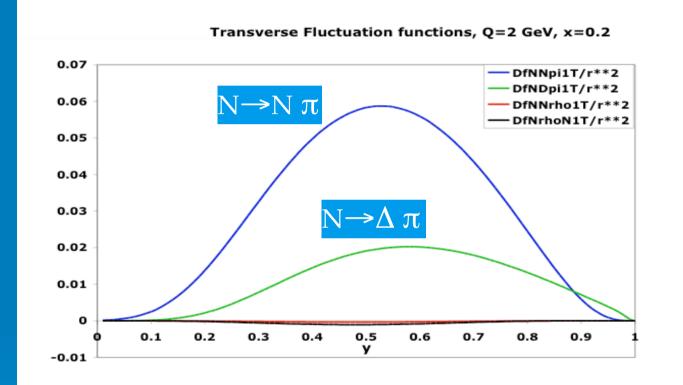
Spin Dependent Structure Functions


- Dominated by valence distributions
 - $N \rightarrow N\pi$, $N \rightarrow \Delta\pi$ most important fluctuations $\mathcal{L}_{int} = ig_{NN\pi}\bar{\psi}\gamma_5\pi\psi$, $f_{N\Delta\pi}\bar{\psi}\pi\partial_\mu\chi^\mu + \text{h.c.}$
- At finite Q² spin of cloud hadrons are not parallel with initial nucleon spin
- Both longitudinal and transverse spin components of cloud contribute to observed structure functions

Spin Dependent Structure Functions

$$egin{aligned} \delta g_1(x,Q^2) &= rac{1}{1+\gamma^2} \int_x^1 rac{dy}{y} \left([\Delta f_{1L}(y) + \Delta f_{1T}(y)] g_1^B(rac{x}{y},Q^2)
ight. \ &+ [\Delta f_{2L}(y) + \Delta f_{2T}(y)] g_2^B(rac{x}{y},Q^2)
ight) \ \delta g_2(x,Q^2) &= -rac{1}{1+\gamma^2} \int_x^1 rac{dy}{y} \left([\Delta f_{1L}(y) - \Delta f_{1T}(y)/\gamma^2] g_1^B(rac{x}{y},Q^2)
ight. \ &- [\Delta f_{2L}(y) - \Delta f_{2T}(y)/\gamma^2] g_2^B(rac{x}{y},Q^2)
ight) \end{aligned}$$

$$\gamma^2 = rac{4x^2m_N^2}{Q^2}$$

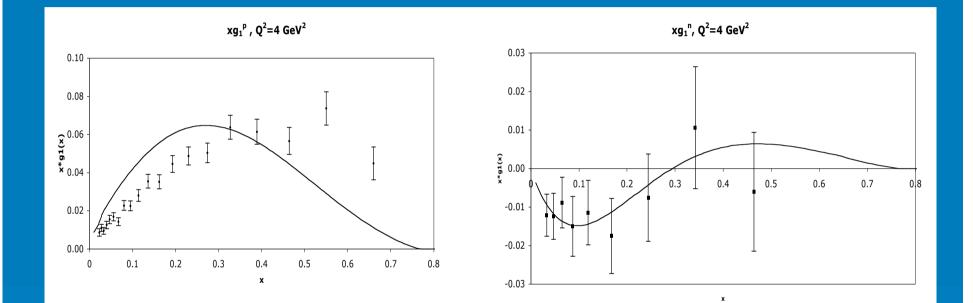

Spin Dependent Fluctuations

Longitudinal fluctuation functions

Long. fluctuations require both N and Δ
s = 3/2 state important

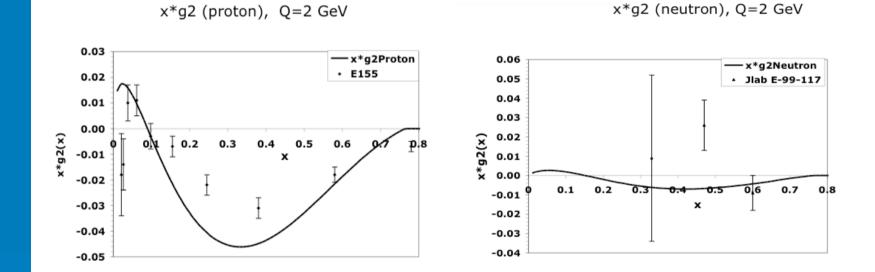
Spin Dependent Fluctuations

N is more important for transverse fluct.
n.b γ ≈ 0.19

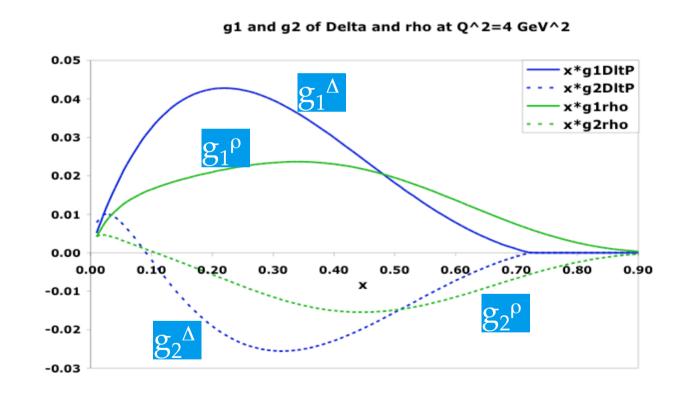

'Bare' Hadron SFs

- Use bag model for N, Δ parton dists
 - Add $\Delta g(x)$ 'by hand'
 - Hyperfine splitting between N and Δ
 - Use NLO evolution
 - Unpol. dists agree with DIS data
- $g_2(x)$ from Wandzura-Wilczek

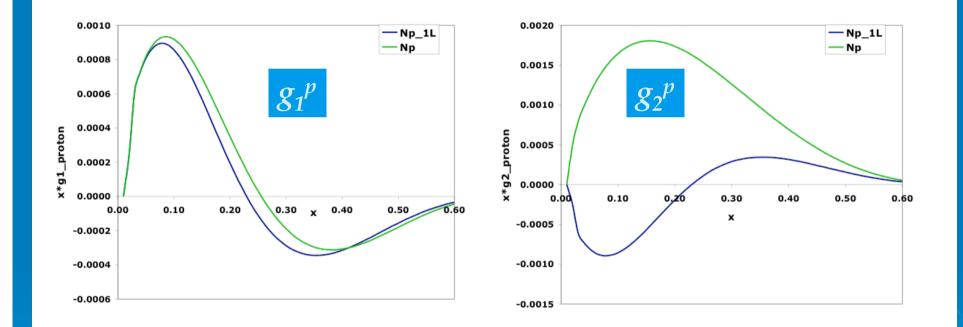
$$g_2^{WW}(x) = -g_1(x) + \int_x^1 rac{dy}{y} g_1(y)$$


• No higher twist component

'Bare' Nucleon $g_1(x)$

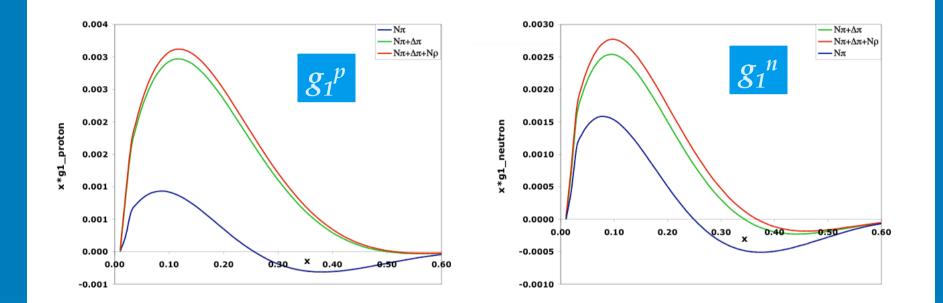

• Data from Hermes

'Bare' Nucleon $g_2(x)$

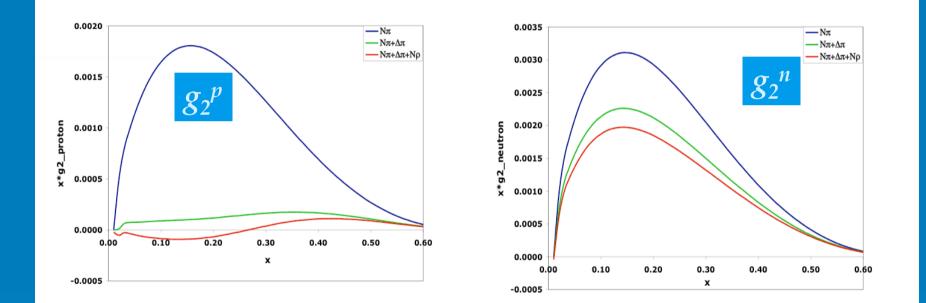

• Data from E155, Jlab E-99-117

'Bare' Hadrons Δ and ρ , $g_1(x)$ and $g_2(x)$

16

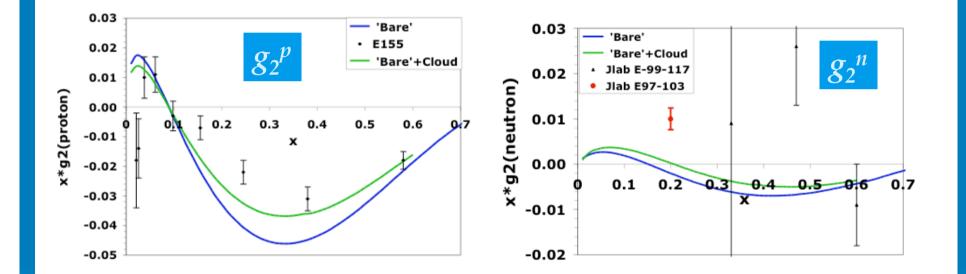

MC Contributions to g_1^p and g_2^p

• The results for the neutron are very similar


• $\Delta f_{1T_{j}} \Delta f_{2L_{j}} \Delta f_{2T}$ are important to g_{2}^{p} and g_{2}^{n}

MC Contributions to g_1^{p} and g_1^{n}

- $\Delta \pi$ is important while Np is not
- $\Delta \pi$ increases g_1^p more than that for g_1^n


MC Contributions to g_2^{p} and g_2^{n}

• $\Delta \pi$ is important

• $\Delta \pi$ affects g_2^p more than that for g_2^n

Comparison with data: g_2^p and g_2^n

20~30% corrections from MC

• Improve the agreement with the experiment

Summary

- Longitudinal (g₁) structure ftns of cloud hadrons affect observed transverse (g₂) structure ftns
- MC contributions to g_1 are small
- MC contributions to g_2 are 20%
 - Similar size to higher twist in g_2^n
 - Theorists have to be careful!

Thanks

- Tony Signal (Massey)
- François Bissey (Massey)