THE QCD ANALYSIS OF THE WORLD DATA ON STRUCTURE FUNCTIONS $g_{1}^{p, d, n}$ FOR PROTON, DEUTERIUM AND NEUTRON

I.Savin, JINR, DUBNA

On behalf of the COMPASS collaboration

LIST OF DATA

-List of data sets used in the present analysis

Exp.	Target nucleon	Nr. of points	Reference
EMC	p	10	Nucl. Phys. B 328 (1989) 1
SMC	p	12	Phys.Rev. D 58 (1998) 112001
SMC	d	12	id.
COMPASS	d	43	hep-ex/0609038, submitted to PLB
E143	p	28	Phys.Rev. D 58 (1998) 112003
E143	d	28	id.
E155	d	24	Puintans talk

-Input for analysis: $g_{1}^{p}\left(x, Q^{2}\right), g_{1}^{n}\left(x, Q^{2}\right), g_{1}^{N}=\frac{1}{2}\left(g_{1}^{p}+g_{1}^{n}\right)=\frac{g_{1}^{d}}{1-1.5 \omega_{D}}$

- usual cut $Q^{2}>1 \mathrm{GeV}^{2}$ limits the x range, for COMPASS data $x>0.004$
-two additional points form COMPASS at $\mathrm{Q}^{2}>0.7 \mathrm{GeV}^{2}$: $\mathrm{x}=0.0030-0.0035$ and $x=0.0035-0.0040$ not used in QCD fits

g_{1} @ NLO

In QPM g g_{1} is related to the polarized parton distribution functions (PDF):

$$
g_{1}^{p(n)}\left(x, Q^{2}\right)=\frac{1}{9}\left(C_{N S} \otimes\left[\pm \frac{3}{4} \Delta q_{3}+\frac{1}{4} \Delta q_{8}\right]+C_{S} \otimes \Delta \Sigma+C_{G} \otimes \Delta G\right)
$$

Where $\quad C_{N S}, C_{S}$ and C_{G} are Wilson coefficients,
$\Delta q_{3}, \Delta q_{8}$ - non-singlet polarized quark DF,
$\Delta \Sigma \quad$ - singlet polarized quark DF,
Δ G - polarized gluon DF,
$\otimes \quad$ - convolution: $\quad a(x) \otimes b(x)=\int_{x}^{1} \frac{d y}{y} a\left(\frac{x}{y}\right) \cdot b(y)$.
In the 3 quark limits:

$$
\begin{aligned}
& \Delta \Sigma=\Delta u+\Delta d+\Delta s, \\
& \Delta \mathbf{q}_{3}=\Delta u-\Delta d, \\
& \Delta \mathbf{q}_{8}=\Delta u+\Delta d-2 \Delta s
\end{aligned}
$$

FITTING PROGRAMS

```
PROGRAM 1 [SMC, P.R.D58 (1998) 112002]
    numerical solutions of the DGLAP evolution equations for PDF's.
PROGRAM 2 [Refered to in P.R. D70 (2004) 074032].
```

Works in two steps:

1. Analytical solution of the evolutions equations for the PDF moments,
2. Inverse Mellin transformation of moments for PDF's reconstruction (similar to one developed for the QCD analysis of \mathbf{F}_{2} (x, Q²), [Krivokhizhin et al., Z.Phys. C36 (1987) 51])

Both programs work in the $M S$ renormalization and factorization scheme in next-to-leading (NLO) approximation and require input parametrizations of PDF's

DGLAP EVOLUTION EQUATIONS

$$
\begin{aligned}
& \frac{d}{d t} \Delta q_{N S}=\frac{\alpha_{s}(t)}{2 \pi} P_{q q}^{N S} \otimes \Delta q_{N S} \\
& \frac{d}{d t}\binom{\Delta \Sigma}{\Delta G}=\frac{\alpha_{s}(t)}{2 \pi}\left(\begin{array}{ll}
P_{q q}^{S} & 2 n_{f} P_{q G}^{S} \\
P_{G q}^{S} & P_{G G}^{S}
\end{array}\right) \otimes\binom{\Delta \Sigma}{\Delta G} \text { (singsgetet \& \&luon), }
\end{aligned}
$$

where $t=\log \left(Q^{2} / \Lambda^{2}\right)$ and $P_{q q}, P_{q G}, P_{G q}$ are polarized splitting functions.

EVOLUTION OF MOMENTS

1. $\frac{d}{d t} \Delta q_{3(8)}^{(n)}\left(Q^{2}\right)=\frac{\alpha_{s}(t)}{2 \pi} \gamma_{N S} \Delta q_{3(8)}^{(n)}\left(Q^{2}\right) \quad$ (non-singlet sector),
$\frac{d}{d t}\binom{\Delta \Sigma^{(n)}\left(Q^{2}\right)}{\Delta G^{(n)}\left(Q^{2}\right)}=\frac{\alpha_{s}(t)}{2 \pi}\left(\begin{array}{ll}\gamma_{q q} & \gamma_{q g} \\ \gamma_{g q} & \gamma_{g g}\end{array}\right) \times\binom{\Delta \Sigma^{(n)}\left(Q^{2}\right)}{\Delta G^{(n)}\left(Q^{2}\right)} \begin{aligned} & \text { (singlet \& gluon } \\ & \text { sector), }\end{aligned}$
where

$$
\Delta q^{(n)}\left(Q^{2}\right)=\int_{0}^{1} d x x^{n} \Delta q\left(x, Q^{2}\right)
$$

$\gamma_{i j}$-anomalous dimensions.
2. $\Delta q\left(x, Q^{2}\right)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d n x^{-n} \Delta q^{(n)}$
I.Savin, SPIN 2006,Session 2A

INPUT PARAMETRIZATIONS

-The PDF $\Delta \Sigma_{s} \Delta \mathrm{q}_{3}, \Delta \mathrm{q}_{8}$ and $\Delta \mathrm{G}$ at $\mathrm{Q}_{0}{ }^{2}=3 \mathrm{GeV}^{2}$ are parametrized as:

$$
\Delta F_{k}(x)=\eta_{k} \frac{x^{\alpha_{k}}(1-x)^{\beta_{k}}\left(1+\gamma_{k} x\right)}{\int_{0}^{1} x^{\alpha_{k}}(1-x)^{\beta_{k}}\left(1+\gamma_{k} x\right) d x}, \quad \eta_{k}=\int \Delta F_{k}(x) d x
$$

$-\eta_{3}, \eta_{8}$ are fixed by the barion octet constants F\&D assuming $\operatorname{SU}(3)_{f}$ flavor symmetry:

$$
\eta_{3}=F+D, \quad \eta_{8}=3 F-D
$$

-The linear term $\gamma_{k} x$ used for $\Delta \Sigma$ only.
-Positivity limits $|\Delta s(x)| \leq s(x) \&|\Delta G(x)| \leq G(x)$ imposed at each step.
-Unpolarized PDF's are taken from MRST parametrizations
(Martin et al., Eur.Phys. J.C4(1998) 463).

- Finally, there are 10 free parameters determined by minimizations of the sum (MINUIT):

$$
\chi^{2}=\sum_{i=1}^{230} \frac{\left[g_{1}^{f i t}\left(x_{i}, Q_{i}^{2}\right)-g_{1}^{\exp }\left(x_{i}, Q_{i}^{2}\right)\right]^{2}}{\left[\sigma\left(x_{i}, Q_{i}^{2}\right)\right]^{2}}
$$

FITTED PDF PARAMETERS

Both programs give consistent values of fitted PDF parameters with similar χ^{2} for two solutions, one with $\Delta \mathrm{G}>0$, the other with $\Delta \mathrm{G}<0$:

$\Delta G>0$		
	Prog. Ref. [28]	Prog. Ref. [29]
η_{Σ}	0.276 ± 0.013	0.288 ± 0.011
α_{Σ}	$-0.285_{-0.085}^{+0.073}$	$-0.187_{-0.065}^{+0.072}$
β_{Σ}	$3.61_{-0.24}^{+0.26}$	$3.81_{-0.18}^{+0.25}$
γ_{Σ}	$-16.6_{-1.8}^{+1.6}$	$-15.8_{-1.0}^{+1.4}$
η_{G}	$0.263_{-0.062}^{+0.038}$	$0.194_{-0.097}^{+0.012}$
α_{G}	$6.15_{-0.76}^{+0.58}$	$9.9_{-0.74}^{+1.0}$
β_{G}	20 (fixed)	$30_{\text {(fixed) }}$
α_{3}	$-0.221_{-0.027}^{+0.028}$	$-0.217_{-0.027}^{+0.027}$
β_{3}	$2.43_{-0.10}^{+0.11}$	$2.40_{-0.10}^{+0.11}$
α_{8}	$0.36_{-0.44}^{+0.19}$	$0.43_{-0.41}^{+0.11}$
β_{8}	$3.37_{-1.07}^{+0.63}$	$3.51_{-0.99}^{+0.42}$
χ^{2} / ndf	$233 / 219$	$234 / 219$

$\Delta G<0$		
	Prog. Ref. [28]	Prog. Ref. [29]
η_{Σ}	0.321 ± 0.009	$0.329_{-0.008}^{+0.009}$
α_{Σ}	$1.39_{-0.14}^{+0.15}$	1.40 ± 0.12
β_{Σ}	$4.09_{-0.27}^{+0.29}$	$4.10_{-0.23}^{+0.24}$
γ_{Σ}	-	-
η_{G}	$-0.31_{-0.14}^{+0.10}$	$-0.181_{-0.031}^{+0.042}$
α_{G}	$0.39_{-0.48}^{+0.64}$	0.39 ± 0.17
β_{G}	$13.8_{-5}^{+7.8}$	$16.1_{-4.0}^{+1.3}$
α_{3}	-0.212 ± 0.027	$-0.208_{-0.026}^{+0.027}$
β_{3}	$2.44_{-0.10}^{+0.11}$	2.40 ± 0.10
α_{8}	0.42 ± 0.16	$0.347_{-0.095}^{+0.071}$
β_{8}	$3.53_{-0.53}^{+0.56}$	$3.31_{-0.34}^{+0.30}$
χ^{2} / ndf	$247 / 219$	$248 / 219$

I.Savin, SPIN 2006,Session 2A

FITTED xg_{1} \& WORLD DATA

The world data on $\mathrm{xg}_{1}(\mathrm{x})$ at $\mathrm{Q}_{0}{ }^{2}=3 \mathrm{GeV}^{2}$ are shown in this slide together with the QCD fit for $\Delta \mathrm{G}<0$ (blue lines).

The fit reproduce trends of data rather well. But precisions of present measurements, especially for g_{1}^{d} and g_{1}^{n}, are still poor.

FITTED $\quad \mathrm{xg}_{1}^{\mathrm{d}}(\mathrm{x}) \quad$ \& NEW COMPASS DATA

Each of two solutions for PDF parameters is in agreement with new COMPASS data on g_{1}^{d}

I.Savin, SPIN 2006,Session 2A

FITTED
 AT
 $Q_{0}^{2}=3 G e V^{2}$

The fitted g_{1}^{N} are compared with COMPASS data evolved to $Q_{0}^{2}=3 \mathrm{GeV}^{2}$ with $\Delta \mathbf{G}>\mathbf{0}$ and $\Delta \mathbf{G}<\mathbf{0}$, and with published PDF parametrizations*) obtained without new COMPASS measurements of g_{1}^{d}

-Even additional two points with $\mathrm{Q}^{2}>0.7 \mathrm{GeV}^{2}$ (due to large errors) do not help to choose between $\Delta \mathrm{G}$ solutions,
-Previous parametrizations (averaged in above Fig.) do not reproduce the trend of COMPASS data at $x \rightarrow 0$,
-The fit with $\Delta \mathrm{G}>0$ shows a dip at $x \approx 0.25$ related to the shape of $\Delta \mathrm{G}(\mathrm{x})$
*) LSS = Leader, Sidorov, Stamenov, P.R. D73 (2006) 034023 GRSV = Glueck, Reya, Stratman, Vogelsang, P.R. D63 (2001) 094005
BB = Bluemlein, Boettcher, NP B636 (2002) 225

FITTED g_{1}^{N} AND SHAPE OF $\Delta \mathrm{G}(\mathrm{x})$

$\Delta G>0$

COMPASS data are compatible with positive $\Delta G(x)$. However in this case it must be close to zero at low x, to avoid pushing down to ${ }_{1}^{N}$ negative values, and limited at higher x by positivity constraint $|\Delta G(x)| \leq G(x)$.

As a consequence, the whole $\Delta G(x)$ is squeezed in a narrow interval of x around the maximum at $x \sim \alpha_{G} /\left(\alpha_{G}+\beta_{G}\right) \approx 0.25$

FITTED g_{1}^{N} AND SHAPE OF $\Delta \mathrm{G}(\mathrm{x}), 2$

$\Delta \mathrm{G}<0$

Fit with the negative $\Delta G(x)$ also reproduces well the COMPASS low x data.
But in this case the shape of $\Delta G(x)$ is rather smooth.

PROG 1

PROG 2

I.Savin, SPIN 2006,Session 2A

FIRST MOMENT OF $\Delta \mathrm{G}(\mathbf{x})$

Although the gluon distributions strongly differ in two fits, their first moments are both small and about equal in absolute value (see Table 2):

$$
\left|\eta_{G}\right| \approx 0.2-0.3
$$

So, the gluon contribution to the SPIN of nucleons is rather small.

$\Delta G / \mathbf{G}$

The fitted $\Delta G^{(x)} / G^{(x)}$ are compared to direct measurement of $\Delta G / G$

COMPASS high $p_{T}, Q^{2}<1 \mathrm{GeV}^{2}$ point is in better agreement with
$\Delta G>0$, although it is only 1.3σ away from $\Delta G<0$.

STRANGE QUARK DISTRIBUTIONS

The polarized strange quark distributions, obtained from $\Delta \Sigma(x)-\Delta q_{8}(x)$ are almost identical for $\Delta G>0$ and $\Delta G<0$. They are negative and compatible with constraint $|\Delta \mathbf{S}(\mathbf{x})| \leq \mathbf{s}(\mathbf{x})$

PROG 1
$\Delta G>0$

The strange quark polarization at $\quad Q_{0}^{2}=3 \mathrm{GeV}^{2}$, found from fits, is

$$
(\Delta s+\Delta \bar{s})_{Q^{2}=3 G e V^{2}}=-0.10 \pm 0.01(\text { stat }) \pm 0.01(\text { evol. })
$$

CONCLUSIONS

- New QCD NLO fits of the world g_{1} data, including the latest COMPASS measurements of g_{1}^{d}, have been performed using two evolution formalisms.
- Fits have produced consistent results and yield two solutions for the PDF parameters with $\Delta G(x)>0$ and $\Delta G(x)<0$, which equally well describe the present g_{1} data. The shapes of $\Delta \mathrm{G}(\mathrm{x})$ are very different in two cases. Direct measurements of $\Delta \mathrm{G} / \mathrm{G}$, could help to choose between them.
- The first moments of the polarized gluon and strange quark distributions, found from fits at $Q_{0}^{2}=3 \mathrm{GeV}^{2}$, are equal to:

$$
\begin{gathered}
|\Delta G| \approx 0.2-0.3 \\
(\Delta s+\Delta \bar{s})=-0.10 \pm 0.01(\text { stat })+0.01(\text { evol })
\end{gathered}
$$

OUTLOOK @ COMPASS

Further increase of statistics in 2006 and beyond

- Improvement in precision of direct $\Delta \mathrm{G} / \mathrm{G}$

$$
\begin{aligned}
{[\sigma(\Delta G / G)} & \approx 0.045 \text { for high } p_{\mathrm{T}}, \mathrm{Q}^{2}<1 \mathrm{GeV}^{2} \text { pairs and } \\
& \approx 0.28 \text { for open charm }]
\end{aligned}
$$

- Analysis of semi-inclusive hadron asymmetries in NLO approx
(following suggestions in A.Sissakian, O.Shevchenko, O.Ivanov
Phys.Rev. D73 (2006) 094026)

