





# THE QCD ANALYSIS OF THE WORLD DATA ON STRUCTURE FUNCTIONS $g_1^{p,d,n}$ FOR PROTON, DEUTERIUM AND NEUTRON

I.Savin, JINR, DUBNA

On behalf of the COMPASS collaboration

## LIST OF DATA

#### -List of data sets used in the present analysis

| Exp.    | Target nucleon | Nr. of points | Reference                         |
|---------|----------------|---------------|-----------------------------------|
| EMC     | р              | 10            | Nucl. Phys. B 328 (1989) 1        |
| SMC     | р              | 12            | Phys.Rev. D 58 (1998) 112001      |
| SMC     | d              | 12            | id.                               |
| COMPASS | d              | 43            | hep-ex/0609038, submitted to PLB  |
| E143    | р              | 28            | Phys.Rev. D 58 (1998) 112003      |
| E143    | d              | 28            | id.                               |
| E155    | d              | 24            | Phys. Lett. D 463 (1999) 339      |
| E155    | р              | 24            | Phys.Lett. B 493 (2000) 19        |
| JLAB    | n              | 3             | Phys. Rev. Lett. 92 (2004) 012004 |
| E142    | n              | 8             | Phys.Rev. D 54 (1996) 6620        |
| E154    | n              | 11            | Phys.Rev. Lett. 79 (1997) 26      |
| HERMES  | n              | 9             | Phys.Lett. B 404 (1997) 383       |
| HERMES  | р              | 9             | Phys.Rev. D75 (2005) 012003       |
| HERMES  | d              | 9             | id.                               |
| Total   |                | 230           |                                   |

See Catarina's Quintans talk

-Input for analysis:  $g_1^p(x,Q^2), g_1^n(x,Q^2), g_1^N = \frac{1}{2}(g_1^p + g_1^n) = \frac{g_1^d}{1 - 1.5\omega_p}$ 

- usual cut  $Q^2 > 1 \text{ GeV}^2$  limits the x range, for COMPASS data x > 0.004

-two additional points form COMPASS at  $Q^2 > 0.7$  GeV<sup>2</sup>: x = 0.0030 - 0.0035 and x = 0.0035 - 0.0040 not used in QCD fits

## **g**<sub>1</sub> @ **NLO**

In QPM  $g_1$  is related to the polarized parton distribution functions (PDF):

$$g_1^{p(n)}(x,Q^2) = \frac{1}{9} \left( C_{NS} \otimes \left[ \pm \frac{3}{4} \Delta q_3 + \frac{1}{4} \Delta q_8 \right] + C_S \otimes \Delta \Sigma + C_G \otimes \Delta G \right)$$

Where  $C_{NS}$ ,  $C_{S}$  and  $C_{G}$  are Wilson coefficients,

 $\Delta q_3$ ,  $\Delta q_8$  - non-singlet polarized quark DF,

 $\Delta \Sigma$  - singlet polarized quark DF,

**△ G** - polarized gluon DF,

 $\otimes$  -convolution:  $a(x) \otimes b(x) = \int_{x}^{1} \frac{dy}{y} a\left(\frac{x}{y}\right) \cdot b(y)$ .

In the 3 quark limits:

$$\Delta \Sigma = \Delta \mathbf{u} + \Delta \mathbf{d} + \Delta \mathbf{s},$$

$$\Delta q_3 = \Delta u - \Delta d$$

$$\Delta q_8 = \Delta u + \Delta d - 2\Delta s$$

## FITTING PROGRAMS

PROGRAM 1 [SMC, P.R. D58 (1998) 112002]

numerical solutions of the DGLAP evolution equations for PDF's.

PROGRAM 2 [Referred to in P.R. D70 (2004) 074032].

Works in two steps:

- 1. Analytical solution of the evolutions equations for the PDF moments,
- 2. Inverse Mellin transformation of moments for PDF's reconstruction (similar to one developed for the QCD analysis of  $\mathbf{F}_2$

(x, Q<sup>2</sup>), [Krivokhizhin et al., Z.Phys. C36 (1987) 51])

Both programs work in the  $\overline{MS}$  renormalization and factorization scheme in next-to-leading (NLO) approximation and require input parametrizations of PDF's

## **DGLAP EVOLUTION EQUATIONS**

$$rac{d}{dt}\Delta q_{NS}=rac{lpha_{_S}(t)}{2\pi}P_{qq}^{NS}\otimes\Delta q_{NS}$$
 (non – singlet),

$$\frac{d}{dt} \binom{\Delta \Sigma}{\Delta G} = \frac{\alpha_s(t)}{2\pi} \binom{P_{qq}^S \ 2n_f P_{qG}^S}{P_{Gq}^S \ P_{GG}^S} \otimes \binom{\Delta \Sigma}{\Delta G} \text{ (singlet & gluon),}$$

where  $t=\log\left(Q^2/\Lambda^2\right)$  and  $P_{qq}$  ,  $P_{qG}$  ,  $P_{Gq}$  are polarized splitting functions.

#### **EVOLUTION OF MOMENTS**

1. 
$$\frac{d}{dt}\Delta q_{3(8)}^{(n)}(Q^2) = \frac{\alpha_s(t)}{2\pi}\gamma_{NS}\Delta q_{3(8)}^{(n)}(Q^2)$$
 (non-singlet sector),

$$\frac{d}{dt} \begin{pmatrix} \Delta \Sigma^{(n)} \left( Q^2 \right) \\ \Delta G^{(n)} \left( Q^2 \right) \end{pmatrix} = \frac{\alpha_s(t)}{2\pi} \begin{pmatrix} \gamma_{qq} & \gamma_{qg} \\ \gamma_{gq} & \gamma_{gg} \end{pmatrix} \times \begin{pmatrix} \Delta \Sigma^{(n)} \left( Q^2 \right) \\ \Delta G^{(n)} \left( Q^2 \right) \end{pmatrix}$$
(singlet & gluon sector),

where 
$$\Delta q^{(n)} \left( Q^2 \right) = \int_0^1 dx x^n \Delta q \left( x, Q^2 \right),$$

 $\gamma_{ii}$  -anomalous dimensions.

2. 
$$\Delta q(x,Q^2) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} dn x^{-n} \Delta q^{(n)}$$

#### INPUT PARAMETRIZATIONS

-The PDF  $\Delta\Sigma_{s}$   $\Delta q_{3}$ ,  $\Delta q_{8}$  and  $\Delta G$  at  $Q_{0}^{2}$ = 3 GeV<sup>2</sup> are parametrized as:

$$\Delta F_k(x) = \eta_k \frac{x^{\alpha_k} \left(1 - x\right)^{\beta_k} \left(1 + \gamma_k x\right)}{\int_0^1 x^{\alpha_k} \left(1 - x\right)^{\beta_k} \left(1 + \gamma_k x\right) dx}, \qquad \eta_k = \int \Delta F_k(x) dx$$

 $-\eta_3$ ,  $\eta_8$  are fixed by the barion octet constants F&D assuming SU(3)<sub>f</sub> flavor symmetry:

$$\eta_3 = F + D$$
,  $\eta_8 = 3F - D$ .

- -The linear term  $\gamma_k \mathbf{x}$  used for  $\Delta \Sigma$  only.
- -Positivity limits  $|\Delta s(x)| \le s(x) \& |\Delta G(x)| \le G(x)$  imposed at each step.
- -Unpolarized PDF's are taken from MRST parametrizations (Martin et al., Eur.Phys. J.C4(1998) 463).
- Finally, there are 10 free parameters determined by minimizations of the sum (MINUIT):

$$\chi^{2} = \sum_{i=1}^{230} \frac{\left[g_{1}^{fit}\left(x_{i}, Q_{i}^{2}\right) - g_{1}^{\exp}\left(x_{i}, Q_{i}^{2}\right)\right]^{2}}{\left[\sigma\left(x_{i}, Q_{i}^{2}\right)\right]^{2}}.$$

## FITTED PDF PARAMETERS

Both programs give consistent values of fitted PDF parameters with similar  $\chi^2$  for two solutions, one with  $\Delta G > 0$ , the other with  $\Delta G < 0$ :

| $\Delta G > 0$        |                                   |                                    |  |  |  |
|-----------------------|-----------------------------------|------------------------------------|--|--|--|
|                       | Prog. Ref. [28]                   | Prog. Ref. [29]                    |  |  |  |
| $\eta_{\Sigma}$       | $0.276 \pm 0.013$                 | $0.288 \pm 0.011$                  |  |  |  |
| $lpha_{\Sigma}$       | $-0.285{}^{+\ 0.073}_{-\ 0.085}$  | $-0.187  {}^{+\ 0.072}_{-\ 0.065}$ |  |  |  |
| $eta_{\Sigma}$        | $3.61  {}^{+\ 0.26}_{-\ 0.24}$    | $3.81  {}^{+\ 0.25}_{-\ 0.18}$     |  |  |  |
| $\gamma_{\Sigma}$     | $-16.6^{+1.6}_{-1.8}$             | $-15.8  {}^{+\ 1.4}_{-\ 1.0}$      |  |  |  |
| $\eta_G$              | $0.263  {}^{+\ 0.038}_{-\ 0.062}$ | $0.194  {}^{+\ 0.012}_{-\ 0.097}$  |  |  |  |
| $\alpha_G$            | $6.15  {}^{+\ 0.58}_{-\ 0.76}$    | $9.9  {}^{+\ 1.0}_{-\ 0.74}$       |  |  |  |
| $eta_G$               | 20 (fixed)                        | 30 (fixed)                         |  |  |  |
| $\alpha_3$            | $-0.221{}^{+\ 0.028}_{-\ 0.027}$  | $-0.217^{+0.027}_{-0.027}$         |  |  |  |
| $eta_3$               | $2.43  {}^{+\ 0.11}_{-\ 0.10}$    | $2.40^{+0.11}_{-0.10}$             |  |  |  |
| $\alpha_8$            | $0.36^{+0.19}_{-0.44}$            | $0.43^{+0.11}_{-0.41}$             |  |  |  |
| $\beta_8$             | $3.37  {}^{+\ 0.63}_{-\ 1.07}$    | $3.51  {}^{+\ 0.42}_{-\ 0.99}$     |  |  |  |
| $\chi^2/\mathrm{ndf}$ | 233/219                           | 234/219                            |  |  |  |

| $\Delta G < 0$        |                                                         |                                     |  |  |  |
|-----------------------|---------------------------------------------------------|-------------------------------------|--|--|--|
|                       | Prog. Ref. [28]                                         | Prog. Ref. [29]                     |  |  |  |
| $\eta_{\Sigma}$       | $0.321 \pm 0.009$                                       | $0.329  {}^{+\ 0.009}_{-\ 0.008}$   |  |  |  |
| $lpha_{\Sigma}$       | $1.39  {}^{+\ 0.15}_{-\ 0.14}$                          | $1.40 \pm 0.12$                     |  |  |  |
| $eta_{\Sigma}$        | $4.09 ^{+ 0.29}_{- 0.27}$                               | $4.10^{+0.24}_{-0.23}$              |  |  |  |
| $\gamma_{\Sigma}$     | <del>-</del>                                            | -                                   |  |  |  |
| $\eta_G$              | $-0.31  {}^{+\ 0.10}_{-\ 0.14}$                         | $-0.181  {}^{+\ 0.042}_{-\ 0.031}$  |  |  |  |
| $lpha_G$              | $0.39  {}^{+\ 0.64}_{-\ 0.48}$                          | $0.39 \pm 0.17$                     |  |  |  |
| $eta_G$               | $13.8  {}^{+}_{-} {}^{7.8}_{5.3}$                       | $16.1  {}^{+\ 1.3}_{-\ 4.0}$        |  |  |  |
| $lpha_3$              | $-0.212 \pm 0.027$                                      | $-0.208  {}^{+\ 0.027}_{-\ 0.026}$  |  |  |  |
| $eta_3$               | $2.44^{+0.11}_{-0.10}$                                  | $2.40 \pm 0.10$                     |  |  |  |
| $\alpha_8$            | $0.42 \pm 0.16$                                         | $0.347  {}^{+\; 0.071}_{-\; 0.095}$ |  |  |  |
| $\beta_8$             | $3.53 \stackrel{+}{_{-0.53}} \stackrel{0.56}{_{-0.53}}$ | $3.31  {}^{+\ 0.30}_{-\ 0.34}$      |  |  |  |
| $\chi^2/\mathrm{ndf}$ | 247/219                                                 | 248/219                             |  |  |  |

## FITTED xg<sub>1</sub> & WORLD DATA

The world data on  $xg_1(x)$  at  $Q_0^2=3$  GeV<sup>2</sup> are shown in this slide together with the QCD fit for  $\Delta G < 0$  (blue lines).







The fit reproduce trends of data rather well. But precisions of present measurements, especially for  $g_1^d$  and  $g_1^n$ , are still poor.

## **FITTED** $xg_1^d(x)$ & **NEW COMPASS DATA**

Each of two solutions for PDF parameters is in agreement with new COMPASS data on  $g_1^d$ 



The fitted  $g_1^N$  are compared with COMPASS data evolved to  $Q_0^2=3GeV^2$  with  $\Delta G>0$  and  $\Delta G<0$ , and with published PDF parametrizations\*) obtained without new COMPASS measurements of  $g_1^d$ 



- -Even additional two points with  $Q^2 > 0.7$  GeV<sup>2</sup> (due to large errors) do not help to choose between  $\Delta G$  solutions.
- -Previous parametrizations (averaged in above Fig.) do not reproduce the trend of COMPASS data at  $x\rightarrow 0$ ,
- -The fit with  $\Delta G > 0$  shows a dip at  $x \approx 0.25$  related to the shape of  $\Delta G(x)$
- \*) LSS = Leader, Sidorov, Stamenov, P.R. D73 (2006) 034023
  - GRSV = Glueck, Reya, Stratman, Vogelsang, P.R. D63 (2001) 094005
  - BB = Bluemlein, Boettcher, NP B636 (2002) 225

# FITTED $g_1^N$ AND SHAPE OF $\Delta G(x)$

## $\Delta G > 0$

COMPASS data are compatible with positive  $\Delta G(x)$ . However in this case it must be close to zero at low x, to avoid pushing down  $\operatorname{to}^N$  negative values, and limited at higher x by positivity constraint  $|\Delta G(x)| \leq G(x)$ .





As a consequence, the whole  $\Delta G(x)$  is squeezed in a narrow interval of x around the maximum at  $x \sim \alpha_G/(\alpha_G + \beta_G) \approx 0.25$ 

# FITTED $g_1^N$ AND SHAPE OF $\Delta G(x)$ , 2

## $\Delta G < 0$

Fit with the negative  $\Delta G(x)$  also reproduces well the COMPASS low x data. But in this case the shape of  $\Delta G(x)$  is rather smooth.



## FIRST MOMENT OF $\Delta G(x)$

Although the gluon distributions strongly differ in two fits, their first moments are both small and about equal in absolute value (see Table 2):

$$|\eta_G| \approx 0.2 - 0.3$$

So, the gluon contribution to the SPIN of nucleons is rather small.



## The fitted $\Delta G^{(x)}/G^{(x)}$ are compared to direct measurement of $\Delta G/G$



COMPASS high  $p_T$ ,  $Q^2 < 1$  GeV<sup>2</sup> point is in better agreement with  $\Delta G > 0$ , although it is only 1.3 $\sigma$  away from  $\Delta G < 0$ .

## STRANGE QUARK DISTRIBUTIONS

The polarized strange quark distributions, obtained from  $\Delta\Sigma(x)$  -  $\Delta q_8(x)$  are almost identical for  $\Delta G > 0$  and  $\Delta G < 0$ . They are negative and compatible with constraint  $|\Delta S(x)| \leq s(x)$ 



The strange quark polarization at  $Q_0^2 = 3GeV^2$ , found from fits, is

$$(\Delta s + \Delta \overline{s})_{O^2 = 3GeV^2} = -0.10 \pm 0.01(stat) \pm 0.01(evol.)$$

## **CONCLUSIONS**

- New QCD NLO fits of the world  $g_1$  data, including the latest COMPASS measurements of  $g_1^d$ , have been performed using two evolution formalisms.
- Fits have produced consistent results and yield two solutions for the PDF parameters with  $\Delta G(x) > 0$  and  $\Delta G(x) < 0$ , which equally well describe the present  $g_1$  data. The shapes of  $\Delta G(x)$  are very different in two cases. Direct measurements of  $\Delta G/G$ , could help to choose between them.
- The first moments of the polarized gluon and strange quark distributions, found from fits at  $Q_0^2=3GeV^2$ , are equal to:

$$\left|\Delta G\right| \approx 0.2 - 0.3,$$
 
$$(\Delta s + \Delta \overline{s}) = -0.10 \pm 0.01(stat) + 0.01(evol)$$

## **OUTLOOK @ COMPASS**

Further increase of statistics in 2006 and beyond

- Improvement in precision of direct ∆G/G

$$[\sigma(\Delta G/G) \approx 0.045 \text{ for high p}_T, \ Q^2 < 1 \text{ GeV}^2 \text{ pairs and}$$
  
  $\approx 0.28 \text{ for open charm}]$ 

- Analysis of semi-inclusive hadron asymmetries in NLO approx (following suggestions in A.Sissakian, O.Shevchenko, O.Ivanov Phys.Rev. D73 (2006) 094026)