Hadron Tomography

Matthias Burkardt
burkardt@nmsu.edu
New Mexico State University
Las Cruces, NM, 88003, U.S.A.

Outline

- GPDs: probabilistic interpretation as Fourier transforms of impact parameter dependent PDFs
- $H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow q\left(x, \mathbf{b}_{\perp}\right)$
- $\tilde{H}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow \Delta q\left(x, \mathbf{b}_{\perp}\right)$
- $E\left(x, 0,-\Delta_{\perp}^{2}\right)$
$\hookrightarrow \perp$ deformation of unpol. PDFs in \perp pol. target
- physics: orbital motion of the quarks
\hookrightarrow intuitive explanation for SSAs
- exclusive SSAs
- Sivers effect
- $2 \tilde{H}_{T}+E_{T} \longrightarrow \perp$ deformation of \perp pol. PDFs in unpol. target
- correlation between quark angular momentum and quark transversity
\hookrightarrow Boer-Mulders function $h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$
- Summary

Generalized Parton Distributions (GPDs)

- GPDs: decomposition of form factors at a given value of t, w.r.t. the average momentum fraction $x=\frac{1}{2}\left(x_{i}+x_{f}\right)$ of the active quark

$$
\begin{array}{rlr}
\int d x H_{q}(x, \xi, t) & =F_{1}^{q}(t) & \int d x \tilde{H}_{q}(x, \xi, t)=G_{A}^{q}(t) \\
\int d x E_{q}(x, \xi, t) & =F_{2}^{q}(t) & \int d x \tilde{E}_{q}(x, \xi, t)=G_{P}^{q}(t)
\end{array}
$$

- x_{i} and x_{f} are the momentum fractions of the quark before and after the momentum transfer
- $2 \xi=x_{f}-x_{i}$
- GPDs can be probed in deeply virtual Compton scattering (DVCS)

Generalized Parton Distributions (GPDs)

- formal definition (unpol. quarks):

$$
\begin{aligned}
\int \frac{d x^{-}}{2 \pi} e^{i x^{-} \bar{p}^{+} x}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)|p\rangle & =H\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \gamma^{+} u(p) \\
+ & E\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \frac{i \sigma^{+\nu} \Delta_{\nu}}{2 M} u(p)
\end{aligned}
$$

- in the limit of vanishing t and ξ, the nucleon non-helicity-flip GPDs must reduce to the ordinary PDFs:

$$
H_{q}(x, 0,0)=q(x) \quad \tilde{H}_{q}(x, 0,0)=\Delta q(x) .
$$

Form Factors vs. GPDs

operator	forward matrix elem.	off-forward matrix elem.	position space
$\bar{q} \gamma^{+} q$	Q	$F(t)$	$\rho(\vec{r})$
$\int \frac{d x^{-} e^{i x p^{+}} x^{-}}{4 \pi} \bar{q}\left(\frac{-x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)$	$q(x)$	$H(x, \xi, t)$	$?$

Form Factors vs. GPDs

operator	forward matrix elem.	off-forward matrix elem.	position space
$\bar{q} \gamma^{+} q$	Q	$F(t)$	$\rho(\vec{r})$
$\int \frac{d x^{-} e^{i x p^{+}} x^{-}}{4 \pi} \bar{q}\left(\frac{-x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)$	$q(x)$	$H(x, 0, t)$	$q\left(x, \mathbf{b}_{\perp}\right)$

$q\left(x, \mathbf{b}_{\perp}\right)=$ impact parameter dependent PDF

Impact parameter dependent PDFs

- define \perp localized state [D.Soper,PRD15, 1141 (1977)]

$$
\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \lambda\right\rangle \equiv \mathcal{N} \int d^{2} \mathbf{p}_{\perp}\left|p^{+}, \mathbf{p}_{\perp}, \lambda\right\rangle
$$

Note: \perp boosts in IMF form Galilean subgroup \Rightarrow this state has
$\mathbf{R}_{\perp} \equiv \frac{1}{P^{+}} \int d x^{-} d^{2} \mathbf{x}_{\perp} \mathbf{x}_{\perp} T^{++}(x)=\sum_{i} x_{i} \mathbf{r}_{i, \perp}=\mathbf{0}_{\perp}$ (cf.: working in CM frame in nonrel. physics)

- define impact parameter dependent PDF
$q\left(x, \mathbf{b}_{\perp}\right) \equiv \int \frac{d x^{-}}{4 \pi}\left\langle p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right| \bar{q}\left(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right) \gamma^{+} q\left(\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right\rangle e^{i x p^{+} x^{-}}$

$$
\begin{aligned}
q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right), \\
\Delta q\left(x, \mathbf{b}_{\perp}\right) & =\int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}} \tilde{H}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right),
\end{aligned}
$$

Transversely Deformed Distributions and $E\left(x, 0,-\Delta_{\perp}^{2}\right.$

M.B., Int.J.Mod.Phys.A18, 173 (2003)

- So far: only unpolarized (or long. pol.) nucleon! In general $(\xi=0)$:

$$
\begin{aligned}
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \uparrow\rangle & =H\left(x, 0,-\Delta_{\perp}^{2}\right) \\
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \downarrow\rangle & =-\frac{\Delta_{x^{-} i \Delta_{y}}^{2 M}}{2 M}\left(x, 0,-\Delta_{\perp}^{2}\right)
\end{aligned}
$$

- Consider nucleon polarized in x direction (in IMF)

$$
|X\rangle \equiv\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \uparrow\right\rangle+\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \downarrow\right\rangle
$$

\hookrightarrow unpolarized quark distribution for this state:

$$
q\left(x, \mathbf{b}_{\perp}\right)=\mathcal{H}\left(x, \mathbf{b}_{\perp}\right)-\frac{1}{2 M} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} E\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}}
$$

- Physics: $j^{+}=j^{0}+j^{3}$, and left-right asymmetry from j^{3} ! [X.Ji, PRL 91, 062001 (2003)]
- Consider nucleon moving in \hat{z}-direction.
- quarks orbiting around the axis of motion (long. pol. nucleon), the orbital motion does not affect the longitudinal momentum distribution.
- quarks orbiting around \perp direction (\perp pol.nucleon) orbital motion adds/subtracts to long. momentum for $y>0$ and $y<0$ respectively
- PDFs rapidly fall with x
\hookrightarrow boost/de-boost on $\pm \hat{y}$ side results in enhancement/suppression of $q\left(x, \mathbf{b}_{\perp}\right)$.
- details described by $E\left(x, 0,-\Delta_{\perp}^{2}\right)$.

Transversely Deformed Distributions and $E\left(x, 0,-\Delta_{\perp}^{2}\right.$

- $q\left(x, \mathbf{b}_{\perp}\right)$ in \perp polarized nucleon is deformed compared to longitudinally polarized nucleons !
- mean \perp deformation of flavor q (\perp flavor dipole moment)

$$
d_{y}^{q} \equiv \int d x \int d^{2} \mathbf{b}_{\perp} q_{X}\left(x, \mathbf{b}_{\perp}\right) b_{y}=\frac{1}{2 M} \int d x E_{q}(x, 0,0)=\frac{\kappa_{q}^{p}}{2 M}
$$

with $\kappa_{u / d}^{p} \equiv F_{2}^{u / d}(0)=\mathcal{O}(1-2) \quad \Rightarrow \quad d_{y}^{q}=\mathcal{O}(0.2 f m)$

- simple model: for simplicity, make ansatz where $E_{q} \propto H_{q}$

$$
\begin{aligned}
& E_{u}\left(x, 0,-\Delta_{\perp}^{2}\right)=\frac{\kappa_{u}^{p}}{2} H_{u}\left(x, 0,-\Delta_{\perp}^{2}\right) \\
& E_{d}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)=\kappa_{d}^{p} H_{d}\left(x, 0,-\Delta_{\perp}^{2}\right)
\end{aligned}
$$

with $\kappa_{u}^{p}=2 \kappa_{p}+\kappa_{n}=1.673 \quad \kappa_{d}^{p}=2 \kappa_{n}+\kappa_{p}=-2.033$.

- Model too simple but illustrates that anticipated deformation is very significant since κ_{u} and κ_{d} known to be large!

Exclusive SSAs

(A.Belitsky \& D.Müller; see also S.J.Brodsky \& A.Mukherjee)

- For simplicity, only \perp momentum transfer

$$
\mathcal{A} \propto \int d^{2} \mathbf{b}_{\perp} q\left(\mathbf{b}_{\perp}, x\right) T_{q} e^{i \boldsymbol{\Delta}_{\perp} \cdot \mathbf{b}_{\perp}}
$$

where T_{q} is the parton-level "Compton"-amplitude
\hookrightarrow left-right asymmetry of quark distribution translates directly into left-right asymmetry of the scattering amplitude
\hookrightarrow exclusive SSA probe GPDs which describe this deformation ("Huygen's principle!")

SSAs in SIDIS $\left(\gamma+p \uparrow \longrightarrow \pi^{+}+X\right)$

- use factorization (high energies) to express momentum distribution of outgoing π^{+}as convolution of
- momentum distribution of quarks in nucleon
\hookrightarrow unintegrated parton density $f_{q / p}\left(x, \mathbf{k}_{\perp}\right)$
- momentum distribution of π^{+}in jet created by leading quark q
\hookrightarrow fragmentation function $D_{q}^{\pi^{+}}\left(z, \mathbf{p}_{\perp}\right)$
- average \perp momentum of pions obtained as sum of
- average k_{\perp} of quarks in nucleon (Sivers effect)
- average \mathbf{p}_{\perp} of pions in quark-jet (Collins effect)

GPD \longleftrightarrow SSA (Sivers)

- Sivers: distribution of unpol. quarks in \perp pol. proton

$$
f_{q / p^{\uparrow}}\left(x, \mathbf{k}_{\perp}\right)=f_{1}^{q}\left(x, \mathbf{k}_{\perp}^{2}\right)-f_{1 T}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right) \frac{\left(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}\right) \cdot S}{M}
$$

- without FSI, $\left\langle\mathbf{k}_{\perp}\right\rangle=0$, i.e. $f_{1 T}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right)=0$
- with FSI, $\left\langle\mathbf{k}_{\perp}\right\rangle \neq 0$ (Brodsky, Hwang, Schmidt)
- FSI formally included by appropriate choice of Wilson line gauge links in gauge invariant def. of $f_{q / p}\left(x, \mathbf{k}_{\perp}\right)$
- What should we expect for Sivers effect in QCD ?

GPD \longleftrightarrow SSA (Sivers)

- example: $\gamma p \rightarrow \pi X$ (Breit frame)

- u, d distributions in \perp polarized proton have left-right asymmetry in \perp position space (T-even!); sign "determined" by $\kappa_{u} \& \kappa_{d}$
- attractive FSI deflects active quark towards the center of momentum
\hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$-direction into momentum asymmetry that favors $-\hat{y}$ direction
\hookrightarrow correlation between sign of κ_{q}^{p} and sign of SSA: $f_{1 T}^{\perp q} \sim-\kappa_{q}^{p}$
- $f_{1 T}^{\perp q} \sim-\kappa_{q}^{p}$ confirmed by HERMES results (also consistent with COMPASS $f_{1 T}^{\perp u}+f_{1 T}^{\perp q} \approx 0$)

Chirally Odd GPDs

$$
\begin{aligned}
\int \frac{d x^{-}}{2 \pi} e^{i x p^{+} x^{-}}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{x^{-}}{2}\right) \sigma^{+j} \gamma_{5} q\left(\frac{x^{-}}{2}\right)|p\rangle= & H_{T} \bar{u} \sigma^{+j} \gamma_{5} u+\tilde{H}_{T} \bar{u} \frac{\varepsilon^{+j \alpha \beta} \Delta_{\alpha} P_{\beta}}{M^{2}} u \\
& +E_{T} \bar{u} \frac{\varepsilon^{+j \alpha \beta} \Delta_{\alpha} \gamma_{\beta}}{2 M} u+\tilde{E}_{T} \bar{u} \frac{\varepsilon^{+j \alpha \beta} P_{\alpha} \gamma_{\beta}}{M} u
\end{aligned}
$$

- See also M.Diehl+P.Hägler, hep-ph/0504175.
- Fourier trafo of $\bar{E}_{T}^{q} \equiv 2 \tilde{H}_{T}^{q}+E_{T}^{q}$ for $\xi=0$ describes distribution of transversity for unpolarized target in \perp plane

$$
q^{i}\left(x, \mathbf{b}_{\perp}\right)=\frac{\varepsilon^{i j}}{2 M} \frac{\partial}{\partial b_{j}} \int \frac{d^{2} \boldsymbol{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}} \bar{E}_{T}^{q}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right)
$$

- origin: correlation between quark spin (i.e. transversity) and angular momentum

Transversity Distribution in Unpolarized Target

$$
\begin{aligned}
& \text {, , , ノ ー ー ー 十 いいい い い , }
\end{aligned}
$$

$$
\begin{aligned}
& 1111 / 7 \rightarrow \rightarrow \backslash \downarrow \backslash \ \backslash 1 \\
& 111111 \rightarrow \rightarrow-\backslash \downarrow \downarrow \backslash \downarrow 1 \\
& \begin{array}{cccccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \\
& 111 \backslash 11>-1 / 1111
\end{aligned}
$$

Chirally Odd GPDs

- $J^{i}=\frac{1}{2} \varepsilon^{i j k} \int d^{3} x\left[T^{0 j} x^{k}-T^{0 k} x^{j}\right]$
- J_{q}^{x} diagonal in transversity, projected with $\frac{1}{2}\left(1 \pm \gamma^{x} \gamma_{5}\right)$, i.e. one can decompose

$$
J_{q}^{x}=J_{q,+\hat{x}}^{x}+J_{q,-\hat{x}}^{x}
$$

where $J_{q, \pm \hat{x}}^{x}$ is the contribution (to J_{q}^{x}) from quarks with positive (negative) transversity
\hookrightarrow derive relation quantifying the correlation between \perp quark spin and angular momentum [M.B., PRD72, 094020 (2006); PLB639, 462 (2006)]

$$
\left\langle J_{q,+\hat{y}}^{y}\right\rangle=\frac{1}{4} \int d x\left[H_{T}^{q}(x, 0,0)+\bar{E}_{T}^{q}(x, 0,0)\right] x
$$

(note: this relation is not a decomposition of J_{q} into transversity and orbital)

Boer-Mulders Function

- SIDIS: attractive FSI expected to convert position space asymmetry into momentum space asymmetry
\hookrightarrow e.g. quarks at negative b_{x} with spin in $+\hat{y}$ get deflected (due to FSI) into $+\hat{x}$ direction
\hookrightarrow (qualitative) connection between Boer-Mulders function $h_{\frac{1}{\perp}}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$ and the chirally odd GPD \bar{E}_{T} that is similar to (qualitative) connection between Sivers function $f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$ and the GPD E.
- Boer-Mulders: distribution of \perp pol. quarks in unpol. proton

$$
f_{q^{\uparrow} / p}\left(x, \mathbf{k}_{\perp}\right)=\frac{1}{2}\left[f_{1}^{q}\left(x, \mathbf{k}_{\perp}^{2}\right)-h_{1}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right) \frac{\left(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}\right) \cdot S_{q}}{M}\right]
$$

- $h_{1}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right)$ can be probed in DY (RHIC, J-PARC, GSI) and tagged SIDIS (JLab, eRHIC), using Collins-fragmentation

Boer-Mulders Function

- Model calculations (bag model, const. quark model, NJL-model) indicate:
- $\bar{E}_{T}>0$ for u and d quarks in nucleon and pion, indicating a "universal" spin-orbit correlation for valence quarks
- $\bar{E}_{T}>E^{u}$, i.e. stronger correlation between L_{q} and quark spin than between L_{q} and the nucleon spin
- confirmed by lattice calculations (P.Hägler et al.)
\hookrightarrow several interesting predictions:
- $h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$ same sign (negative) as $f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}\right)$
- "universal sign" for valence h_{1}^{\perp}
- $\left|h_{1}^{\perp}\right|>\left|f_{1 T}\right|$
\hookrightarrow let's measure h_{1}^{\perp} to learn more about spin-orbit correlations for quarks!

Summary

- GPDs $\xrightarrow{F T}$ PDFs in impact parameter space
- $E\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow \perp$ deformation of PDFs for \perp polarized target
\hookrightarrow origin for deformation: orbital motion of the quarks
\hookrightarrow simple mechanism (attractive FSI) to predict sign of $f_{1 T}^{q}$
- distribution of \perp polarized quarks in unpol. target described by chirally odd GPD $\bar{E}_{T}^{q}=2 \bar{H}_{T}^{q}+\tilde{E}_{T}^{q}$
\hookrightarrow origin: correlation between orbital motion and spin of the quarks
\hookrightarrow attractive $\mathrm{FSI} \Rightarrow$ measurement of h_{1}^{\perp} (DY,SIDIS) provides information on \bar{E}_{T}^{q} and hence on spin-orbit correlations

Intuitive connection with \vec{L}_{q}

- Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates -\hat{z}-axis in direction of the momentum transfer) the virtual photons "see" (in the Bj-limit) only the $j^{+}=j^{0}+j^{z}$ component of the quark current
- If up-quarks have positive orbital angular momentum in the \hat{x}-direction, then j^{z} is positive on the $+\hat{y}$ side, and negative on the - \hat{y} side
\vec{p}_{γ}

Intuitive connection with \vec{L}_{q}

- Electromagnetic interaction couples to vector current. Due to kinematics of the DIS-reaction (and the choice of coordinates -\hat{z}-axis in direction of the momentum transfer) the virtual photons "see" (in the Bj-limit) only the $j^{+}=j^{0}+j^{z}$ component of the quark current
- If up-quarks have positive orbital angular momentum in the \hat{x}-direction, then j^{z} is positive on the $+\hat{y}$ side, and negative on the $-\hat{y}$ side
$\hookrightarrow j^{+}$is deformed not because there are more quarks on one side than on the other but because the DIS-photons (coupling only to j^{+}) "see" the quarks on the $+\hat{y}$ side better than on the $-\hat{y}$ side.
- \perp deformation described by $E_{q}\left(x, 0,-\Delta_{\perp}^{2}\right)$
\hookrightarrow not surprising to find that $E_{q}\left(x, 0,-\Delta_{\perp}^{2}\right)$ enters the Ji relation

$$
\left\langle J_{q}^{i}\right\rangle=S^{i} \int d x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right] x .
$$

\perp Single Spin Asymmetry (Sivers)

- Naive definition of unintegrated parton density

$$
\left.f\left(x, \mathbf{k}_{\perp}\right) \propto \int \frac{d \xi^{-} d^{2} \xi_{\perp}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{q}(0) \gamma^{+} q(\xi)|P, S\rangle\right|_{\xi^{+}=0} .
$$

- Time-reversal invariance $\Rightarrow f\left(x, \mathbf{k}_{\perp}\right)=f\left(x,-\mathbf{k}_{\perp}\right)$
\hookrightarrow Asymmetry $\int d^{2} \mathbf{k}_{\perp} f\left(x, \mathbf{k}_{\perp}\right) \mathbf{k}_{\perp}=0$
- Same conclusion for gauge invariant definition with straight Wilson line $U_{[0, \xi]}=P \exp \left(i g \int_{0}^{1} d s \xi_{\mu} A^{\mu}(s \xi)\right)$

\perp Single Spin Asymmetry (Sivers)

- Naively (time-reversal invariance) $f\left(x, \mathbf{k}_{\perp}\right)=f\left(x,-\mathbf{k}_{\perp}\right)$
- However, including the final state interaction (FSI) results in nonzero asymmetry of the ejected quark! (Brodsky, Hwang, Schmidt)
- Gauge invariant definition requires quark to be connected by gauge link. Choice of path not arbitrary but must be chosen along path of outgoing quark to incorporate FSI

$$
\begin{aligned}
& \left.f\left(x, \mathbf{k}_{\perp}\right) \propto \int \frac{d \xi^{-} d^{2} \xi_{\perp}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{q}(0) U_{[0, \infty]} \gamma^{+} U_{[\infty, \xi]} q(\xi)|P, S\rangle\right|_{\xi^{+}=0} \\
& \quad \text { with } U_{[0, \infty]}=P \exp \left(i g \int_{0}^{\infty} d \eta^{-} A^{+}(\eta)\right)
\end{aligned}
$$

Sivers Mechanism in $A^{+}=0$ gauge

- Gauge link along light-cone trivial in light-cone gauge

$$
U_{[0, \infty]}=P \exp \left(i g \int_{0}^{\infty} d \eta^{-} A^{+}(\eta)\right)=1
$$

\hookrightarrow Puzzle: Sivers asymmetry seems to vanish in LC gauge (time-reversal invariance)!

- X.Ji: fully gauge invariant definition for $P\left(x, \mathbf{k}_{\perp}\right)$ requires additional gauge link at $x^{-}=\infty$

$$
\begin{aligned}
f\left(x, \mathbf{k}_{\perp}\right) & =\int \frac{d y^{-} d^{2} \mathbf{y}_{\perp}}{16 \pi^{3}} e^{-i x p^{+} y^{-}+i \mathbf{k}_{\perp} \cdot \mathbf{y}_{\perp}} \\
& \times\langle p, s| \bar{q}(y) \gamma^{+} U_{\left[y^{-}, \mathbf{y}_{\perp} ; \infty^{-}, \mathbf{y}_{\perp}\right]} U_{\left[\infty^{-}, \mathbf{y}_{\perp}, \infty^{-}, \mathbf{0}_{\perp}\right]} U_{\left[\infty^{-}, \mathbf{0}_{\perp} ; 0^{-}, \mathbf{0}_{\perp}\right]} q(0)|p, s\rangle
\end{aligned}
$$

