Perspective of Spin-Observable Measurements in Semi-Inclusive DIS Strangeness Production with an 11 GeV Beam at Jefferson Lab

Xiaodong Jiang, Rutgers University.

Spin-2006, Kyoto, Japan. Oct 3rd, 2006.

With the planned energy upgrade to 11 GeV and a large acceptance CLAS12 detector operated at the high luminosity of 10^{35} cm⁻²s⁻¹, Jefferson Lab will provide unique opportunities to study strangeness productions (ϕ meson and Λ^0 hyperon in particular) in semi-inclusive DIS reactions in the current fragmentation regime ($x_F > 0, z > 0.5$).

- Accessing strangeness through SIDIS. Sensitivity of charged Kaon production to s(x).
- An alternative method of accessing $(\Delta s + \Delta \bar{s})/(s + \bar{s})$. SIDIS ϕ production.
- Event rates in current fragmentation region with CLAS12 detector and 11 GeV beam.
- Spin-observables in SIDIS Λ production. Rate estimation.
- Summary and conclusions.

Can We Access Δs through SIDIS ?

Contribution to SIDIS cross-section from parton $q_f(x)$ ("purity"):

$$\sigma_q / \sigma_{all} = e_f^2 q_f(x) \cdot D_f^h(z) / \sum_i e_i^2 q_i(x) \cdot D_i^h(z).$$

Sensitivity to PDFs in Unpolarized Cross-Sections σ_{1N}^{h}

CTEQ5 PDFs, KKP fragmentation functions.

 $\sigma_q / \sigma_{all} = e_f^2 q_f \cdot D_f^h / \sum_i e_i^2 q_i \cdot D_i^h \quad (@z_h = 0.5)$

Sensitivity to PDFs: on Deuteron and ³He Targets

Strange quarks contribute less than 3% to total SIDIS Kaon cross section at x > 0.03.

 $\sigma_q / \sigma_{all} = e_f^2 q_f \cdot D_f^h / \sum_i e_i^2 q_i \cdot D_i^h$

SIDIS ϕ production: strong contributions of s and \overline{s} to the cross section.

$$\phi = (s \bar{s}). \ \phi \to K^+ K^-$$
 , $M = 1.020$ GeV. Full width $\Gamma = 4.43$ MeV.

Two types of fragmentation function under SU(2) and charge conjugation:

Favored: $D_s^{\phi} = D_{\bar{s}}^{\phi}$, unfavored: $D_u^{\phi} = D_{\bar{u}}^{\phi} = D_d^{\phi} = D_{\bar{d}}^{\phi}$, and one expects $D_u^{\phi} \ll D_s^{\phi}$. Leading order cross sections:

$$\sigma_p^{\phi}(x,z) = [4u(x) + d(x)] \cdot D_u^{\phi}(z) + [s(x) + \bar{s}(x)] \cdot D_s^{\phi}(z),$$

$$\sigma_n^{\phi}(x,z) = [4d(x) + u(x)] \cdot D_u^{\phi}(z) + [s(x) + \bar{s}(x)] \cdot D_s^{\phi}(z).$$

 $s+ar{s}$ contribute to $10\sim~20\%$ of the cross section.

Measurements on unpolarized Proton and Deuteron targets:

$$\sigma_p^{\phi} = (4u+d) \cdot D_u^{\phi} + (s+\bar{s}) \cdot D_s^{\phi},$$

$$\sigma_{p+n}^{\phi} = 5(u+d) \cdot D_u^{\phi} + 2(s+\bar{s}) \cdot D_s^{\phi}.$$

$$(s+\bar{s})\cdot D_s^{\phi} = \frac{4u+d}{3(u-d)}\cdot \sigma_{p+n}^{\phi} - \frac{5(u+d)}{3(u-d)}\cdot \sigma_p^{\phi}$$

Measurements of double-spin asymmetries on polarized Proton and Deuteron targets:

$$\frac{\Delta s + \Delta \bar{s}}{s + \bar{s}} = \frac{A^{\phi}_{1p+n} - \frac{5(u+d)}{4u+d} \cdot \frac{\sigma^{\phi}_p}{\sigma^{\phi}_{p+n}} \cdot A^{\phi}_{1p}}{1 - \frac{5(u+d)}{4u+d} \cdot \frac{\sigma^{\phi}_p}{\sigma^{\phi}_{p+n}}}$$

If we determine measure cross section ratio to 1% level, asymmetries to 0.3%. $\Rightarrow \pm 10\%$ uncertainty on $\frac{\Delta s + \Delta \bar{s}}{s + \bar{s}}$. Don't even care F.F.-ratio in this method. Or, use the well-known inclusive asymmetries A_{1p} and A_{1d} as extra inputs to solve for $\Delta s + \Delta \bar{s}$ in the over-constrained relations:

$$\frac{\sigma_p^{\phi}}{\sigma_{p+n}^{\phi}} = \frac{\frac{4u+d}{5(u+d)} \cdot \frac{D_u^{\phi}}{D_s^{\phi}} + \frac{s+\bar{s}}{5(u+d)}}{\frac{D_u^{\phi}}{D_s^{\phi}} + \frac{2(s+\bar{s})}{5(u+d)}}$$

$$A_{1p}^{\phi} = \frac{A_{1p} \cdot \frac{D_u^{\phi}}{D_s^{\phi}} + \frac{\Delta s + \Delta \bar{s}}{4u + d}}{\frac{D_u^{\phi}}{D_s^{\phi}} + \frac{s + \bar{s}}{4u + d}}$$

$$A_{1p+n}^{\phi} = \frac{A_{1d} \cdot \frac{D_u^{\phi}}{D_s^{\phi}} + \frac{2(\Delta s + \Delta \bar{s})}{5(u+d)}}{\frac{D_u^{\phi}}{D_s^{\phi}} + \frac{2(s+\bar{s})}{5(u+d)}}$$

JLab 12 GeV upgrade: the Large Acceptance Hall (CLAS12)

A large acceptance detector for multi-particle detection, cover up to 30° .

- Luminosity (unpolarized target): $10^{35} \text{ cm}^{-2} \text{s}^{-1}$.
- Luminosity (polarized proton NH₃): $2^{34} \vec{p} \text{ cm}^{-2} \text{s}^{-1}$. 80% polarization.

Momentum resolution $\sim 1\%,$ angular resolution 2.0 mrad.

We performed LUND Monte Carlo simulations and compared CLAS12 with HERMES 1996-2000 event sample.

Monet Carlo event selection:

- DIS: $Q^2 > 1.0 \text{ GeV}^2$, W > 2.0, access 0.12 < x < 0.5.
- SIDIS: W' > 2.0 GeV, $z_{\phi} > 0.5$. Current fragmentation: $x_F > 0$.
- Reconstructed ϕ mass.

About $\sim 20\%$ of ϕ come from the struck strange-quark.

4 hours of CLAS12 run \approx HERMES 1996-2000 data sample (\sim 3k SIDIS ϕ).

100 days of CLAS12 (unpol. p) \Rightarrow 2 million SIDIS ϕ events.

Assuming CLAS12 will run:

100 days on unpolarized proton. 100 days on unpolarized deuteron.

> 150 days on polarized proton. > 150 days on polarized deuteron.

 \Rightarrow better than 1% statistical accuracies on A^{ϕ}_{1p} and A^{ϕ}_{1p+n} over 4-x bins in 0.12 < x < 0.5.

Issues to be Addressed Further

Interpretation:

- Physics background: gluon fusion.
- Physics background: target fragmentation v.s current fragmentation.

Quark to ϕ fragmentation functions D_u^{ϕ} and D_s^{ϕ} :

- Data from existing e^+e^- measurements (BELLE) ?
- Models to predict fragmentation function ratios D_u^ϕ/D_s^ϕ ?
- SU(2) and charge conjugation for fragmentation functions ?

A detailed experiment proposal to be submitted in 2007 to JLab's 12 GeV PAC.

SIDIS Λ^0 production with CLAS12

 Λ hyperons have the peculiar feature of revealing their polarization through the angular distribution of their weak decay $\Lambda \rightarrow p\pi$ with an analyzing power of 0.642 ± 0.013 ; such a self-analyzing feature allowed the spin components of the final state Λ to be extracted (see HERMES, COMPASS and RHIC talks of this conference). Many measurements were made in the history, and the results often turned out to be very surprising.

Quark configuration $\Lambda^0 = (uds)$. $m_{\Lambda} = 1115.68$ MeV, very narrow, $c\tau = 7.89$ cm. \Rightarrow Very relaxed requirements on PID precision and background rates.

We performed LUND Monte Carlo studies of SIDIS Λ production with an 11 GeV beam and the large acceptance CLAS12 detector, and compared rates with HERMES 1996-2000 events sample. Monet Carlo event selection:

- DIS: $Q^2 > 1.0 \, {\rm GeV^2}$, W > 2.0, access 0.12 < x < 0.5.
- SIDIS: W' > 2.0 GeV, $z_{\Lambda} > 0.5$. Current fragmentation: $x_F > 0$.
- Reconstructed Λ mass 10 MeV cut. 5 cm decay length cut.

 $2\sim 3$ hours of CLAS12 run \approx HERMES 1996-2000 data sample (\sim 10k SIDIS Λ). 100 days of CLAS12 (unpol. p) \Rightarrow 10 million SIDIS Λ events.

To get 1% precision on Λ polarization one only needs \sim 20k events.

Can afford to cut on $x_F > 0.2$.

Spin observables in Λ production: long. double-spin asymmetries

Following M. Anselmino et. al (hep-ph/0302008), we define:

$$d\sigma^{\Lambda h}_{\lambda\mu} \equiv \frac{d\sigma^{l(\lambda)p(\mu) \to \Lambda(h)X}}{dx dy dz}$$

Neglecting weak interaction contribution, there are 4 independent helicity observables involve longitudinal double-spin.

The spin-averaged (unpolarized) cross section is:

$$d\sigma^{\Lambda} = \frac{2\pi\alpha^2}{sx} \frac{1 + (1 - y)^2}{y^2} \sum_{q} e_q^2 q(x) \cdot D_{\Lambda/q}(z),$$

Beam-target longitudinal double-spin asymmetry:

$$A_{\parallel} \equiv \frac{d\sigma_{++}^{\lambda} - d\sigma_{+-}^{\lambda}}{2d\sigma^{\Lambda}} = \frac{y(2-y)}{1 + (1-y)^2} \frac{\sum_q e_q^2 \,\Delta q(x) \cdot D_{\Lambda/q}(z)}{\sum_q e_q^2 \,q(x) \cdot D_{\Lambda/q}(z)},$$

Beam to Λ longitudinal spin transfer with an unpolarized nucleon:

$$P_{+0} \equiv \frac{d\sigma_{+0}^{\lambda+} - d\sigma_{+0}^{\lambda-}}{2d\sigma^{\Lambda}} = \frac{y(2-y)}{1 + (1-y)^2} \frac{\sum_{q} e_q^2 q(x) \cdot \Delta D_{\Lambda/q}(z)}{\sum_{q} e_q^2 q(x) \cdot D_{\Lambda/q}(z)}$$

• Check-1: at high enough-x, when s-quark contribution to the cross section can be neglected, one expects

$$P_{+0}(p) = P_{+0}(n) = P_{+0}(p+n) = D(y) \cdot \frac{\Delta D_{\Lambda/u}(z)}{D_{\Lambda/u}(z)}.$$

• Check-2: ${\Delta D_{\Lambda/q}(z)\over D_{\Lambda/q}(z)}$ agrees with neutrino scattering data on longitudinal $\vec{\Lambda}$.

Target to Λ longitudinal spin transfer with an unpolarized lepton beam:

$$P_{0+} \equiv \frac{d\sigma_{0+}^{\lambda+} - d\sigma_{0+}^{\lambda-}}{2d\sigma^{\Lambda}} = \frac{\sum_{q} e_q^2 \,\Delta q(x) \cdot \Delta D_{\Lambda/q}(z)}{\sum_{q} e_q^2 \,q(x) \cdot D_{\Lambda/q}(z)}.$$

Check-3: a well-defined relation between three observables.

$$P_{o+} = A_{\parallel} \cdot P_{+0} / D^2(y).$$

Spin observables in Λ production: transverse target spin transfer to Λ^{\uparrow}

 $lp^{\uparrow} \to \Lambda^{\uparrow} X$ with an unpolarized lepton, a transversely polarized nucleon (S_N) and measure the Λ transverse polarization P_N which is orthogonal to the $\gamma^{\star} - \Lambda$ plane:

$$P_N^{[0S_N]} = \frac{2(1-y)}{1+(1-y)^2} \frac{\sum_q e_q^2 h_{1q}(x) \cdot \Delta_T D_{\Lambda/q}(z)}{\sum_q e_q^2 q(x) \cdot D_{\Lambda/q}(z)}$$

Access transversity without involving quark transverse momentum k_T . No complications of Sivers function.

When neglecting sea quarks, on a proton:

$$P_N^{[0S_N]}(p) = \frac{2(1-y)}{1+(1-y)^2} \frac{4h_{1u} + h_{1d}}{4u+d} \cdot \frac{\Delta_T D_{\Lambda/u}(z)}{D_{\Lambda/u}(z)}$$

On a deuteron:

$$P_N^{[0S_N]}(p+n) = \frac{2(1-y)}{1+(1-y)^2} \frac{h_{1u} + h_{1d}}{u+d} \cdot \frac{\Delta_T D_{\Lambda/u}(z)}{D_{\Lambda/u}(z)}$$

Single-spin asymmetry: induced polarization Λ^{\uparrow}

Unpolarized beam, measure the Λ transverse polarization P_N which is orthogonal to the $\gamma^\star - \Lambda$ plane:

$$P_N(\Lambda, p_T) = \frac{\sum_q e_q^2 q(x) \cdot \Delta^N D_{\Lambda^{\uparrow}/q}(z, p_T)}{\sum_q e_q^2 q(x) \cdot D_{\Lambda/q}(z, p_T)}.$$

At large enough x, neglecting s-quark:

$$P_N(\Lambda) = rac{\Delta^N D_{\Lambda^\uparrow/u}}{D_{\Lambda/u}}$$

• Check-4: $P_N(\Lambda, p) = P_N(\Lambda, p+n).$

The same quantity shows up in neutrino charge current reaction $\nu p \rightarrow l \Lambda^{\uparrow} X$.

• Check-5:
$$P_N^{[
u l]} = P_N(\Lambda).$$

Summary

- SIDIS charged Kaon production measurements have limited sensitivity to Δs .
- ϕ production in SIDIS offers an alternative probe to access Δs . I presented two methods to obtaining Δs :
 - Use A^{ϕ}_{1p} , A^{ϕ}_{1p+n} and cross section ratio $\sigma^{\phi}_p/\sigma^{\phi}_{p+n}$.
 - Use A_{1p}^{ϕ} , A_{1p+n}^{ϕ} , cross section ratio $\sigma_p^{\phi}/\sigma_{p+n}^{\phi}$, as well as inclusive DIS asymmetries A_{1p} and A_{1d} .
- With 11 GeV beam and the large acceptance CLAS12 spectrometer operated at $\mathcal{L} = 10^{35}$ cm⁻² s⁻¹, \sim 1.0 million SIDIS ϕ events are expected for each targets, providing an opportunity to determine Δs .
- ~ 10.0 million SIDIS Λ (1 million $\overline{\Lambda}$) events are expected for each targets, providing access to many new spin observables, fragmentation functions and quark transversity distributions.
- Many build-in cross checks.