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Abstract

Strength distributions in excitation-energy spectra of atomic nuclei provide insights

into the nuclear structure because they directly reflect nuclear wave functions. The

multipole decomposition analysis (MDA) for the inelastic alpha scattering is very useful

to determine the strength distribution in excitation-energy region where several states

overlap each other, and widely used to study the nuclear incompressibility and the cluster

structures in nuclei. However, the reliability of the MDA was shaken by the puzzle of

the missing monopole strength in 12C.

Therefore, it is very important to examine and solve this puzzle of the inelastic alpha

scattering, but no systematic measurement of the inelastic alpha scattering to examine

the reliability of the theoretical calculation used in the MDA has been carried out until

now. In the present work, we systematically measured the cross sections of the inelastic

alpha scattering at Eα = 130 and 386 MeV exciting low-lying discrete states in 12C,
16O, 20Ne, 24Mg, 28Si and 40Ca for the first time. In addition, the comparison of the

measured cross sections with the “parameter-free” distorted-wave Born-approximation

(DWBA) calculation was carried out. All of the adjustable parameters in the DWBA

calculation were determined by the electromagnetic transition strengths and the elastic

alpha scattering, therefore there is no room for so-called “the puzzle of missing monopole

strength” if the consistency between the measured cross sections and the present DWBA

calculations is confirmed.

It was found that the DWBA calculation with the density-independent effective αN

interaction at Eα = 386 MeV was better than that with the density-dependent effective

αN interaction, and thus the inadequate density dependence in the effective αN interac-

tion caused so-called “puzzle of missing monopole strength” by overestimating the cross

sections for the ∆L = 0 transition. This puzzle was not specific to the Hoyle state in 12C

but universally observed in all of the ∆L = 0 transitions. We also studied ambiguities

of the DWBA calculation from the distorting potentials, phenomenological interaction,

transition densities, and coupled-channel effects.

The present results should provide the unique and important information for theoret-

ical studies to develop a new reliable αN interaction.
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Chapter 1

Introduction

1.1 Inelastic alpha scattering as an useful probe to

examine nuclear structures

Strength distributions in excitation-energy spectra of atomic nuclei provide insights into

the nuclear structure because they directly reflect nuclear wave functions. An excitation

strength is fundamentally the overlap between wave functions of ground and excited

states, and an energy is an eigenvalue of a nuclear Hamiltonian associated with the wave

function. The excitation strength and energy are experimental observables, and can be

directly compared with theoretical calculations of the nuclear structures. Therefore, the

determination of the strength distribution is important to study the nuclear structure.

For example, the strength distributions of the isoscalar monopole transition in which

the transferred angular momentum (∆L), spin (∆S), and isospin (∆T ) are zero provide

important information on the incompressibility of the nuclear matter [1–10] and the

nuclear cluster structures [11–13].

In order to deduce the strength distribution in atomic nuclei, several experimental

probes are proposed and utilized. Inelastic electron scattering is one of the useful probes

to determine the excitation strength distribution [14]. Since there is little theoretical

ambiguity in the interpretation of the experimental data obtained by electromagnetic

probes due to the well-known property of the electromagnetic interaction, the inelastic

electron scattering is very useful for measuring the excitation energies and strengths to

the discrete states. However, the inelastic electron scattering induces transitions with

various spin, parity, and isospin transfers, and thus this feature makes difficult to explore
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excited states and to determine their spins, parities, and isospins in excitation-energy

region where several states overlap each other. The typical excitation energies of low-

lying discrete states are less than 10 MeV below particle-decay thresholds. The isoscalar

giant monopole resonances (see Sec. 1.2.1) are known to appear around 80A−1/3 MeV

with a width of several MeV [15], and the alpha condensed states (see Sec. 1.2.2) are

predicted to appear at a few-MeV above the nα decay threshold in the self-conjugate

A = 4n nuclei, for example around 33 MeV in 24Mg.

In contrast to the inelastic electron scattering, inelastic alpha scattering is useful in

such excitation-energy region. The inelastic alpha scattering has selectivity to isoscalar

natural-parity transitions where transferred spin and isospin are ∆S = 0 and ∆T = 0

since both spin and isospin of the alpha particle are zero. Therefore, the inelastic

alpha scattering at Eα > 100 MeV has been extensively measured to extract the

strength distribution of the isoscalar natural-parity transitions at KVI in the Nether-

lands (Eα = 120 MeV) [1, 2], at Texus A&M University in the United States (Eα = 96–

240 MeV) [3–5], and at the Research Center for Nuclear Physics (RCNP), Osaka Univer-

sity in Japan (Eα = 386 MeV) [6–13, 16, 17]. The reaction mechanism of the inelastic

alpha scattering is relatively simple, and the cross sections are reasonably reproduced

by a simple folding-model calculation, and approximately proportional to the relevant

nuclear transition strengths. The angular distribution of the cross sections depends on

the transferred angular momentum, but is not sensitive to details of nuclear wave func-

tions. Therefore, the multipole decomposition analysis (MDA) works well to obtain the

strength distribution of the isoscalar natural-parity excitations even from continuous

excitation-energy spectra where many states with large widths overlap each other if the

theoretical calculation correctly describes the measured cross sections.

Figure 1.1 shows the cross sections for the 208Pb(α, α′) reaction at Eα = 386 MeV

calculated by the distorted-wave Born-approximation (DWBA) calculation with the sin-

gle folding-model potential assuming that a single state at Ex = 14.5 MeV exhausts

the total energy-weighted sum-rule (EWSR) strength. Experimental double differential

cross sections [d2σ/dΩdEx]
exp are fitted by the calculated cross sections of transitions

with various transferred angular momenta [d2σ/dΩdEx]
DWBA
∆L to search for the best pa-

rameters a∆L(Ex) in the MDA as,

[
d2σ(θc.m., Ex)

dΩdEx

]exp
=

∑
∆L

a∆L(Ex)

[
d2σ(θc.m., Ex)

dΩdEx

]DWBA

∆L

. (1.1)
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Figure 1.1: The DWBA calculations of the differential cross sections for various tran-
sitions in 208Pb(α, α′) reaction at Eα = 386 MeV. Taken from Fig. 1.3 in
Ref. [18]. The blue, red, green, and yellow lines show the angular distribu-
tion of the cross sections with different transferred angular momentum ∆L
and transferred isospin ∆T , respectively. Note that ∆L and ∆T are denoted
by L and T .
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The determined a∆L(Ex) corresponds to the fraction of the EWSR strength for each

transferred angular momentum ∆L, and thus the strength distribution is obtained as

a function of the excitation energy. Figure 1.2 shows examples of the MDA for the

208Pb(α, α′) reaction in Ref. [18]. The differential cross section at each excitation energy
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Figure 1.2: Examples of the MDA for the 208Pb(α, α′) reaction at Eα = 386 MeV. Taken
from Fig. 4.5 in Ref. [18]. The solid circles show the experimental cross
sections. The solid lines near the measured cross sections are the sum of
the calculated DWBA cross sections. The thick and thin-solid, dotted, and
dashed curves are the DWBA cross sections for ∆L = 1, ∆L = 0, ∆L = 2,
and ∆L = 3, whereas the sum of the cross sections for ∆L > 3 is shown by
the dot-dashed line. (a) The result of the MDA at Ex = 13.5 MeV. (b) The
result of the MDA at Ex = 22.5 MeV.
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was well reproduced by the sum of the calculated cross sections, and the strength dis-

tributions of the isoscalar natural-parity transitions were successfully obtained as shown

in Fig. 1.3.

Figure 1.3: Strength distributions for the ∆L = 0, 1, 2 and 3 transitions in 208Pb by the
inelastic alpha scattering at Eα = 400 MeV. Taken from Fig. 3 in Ref. [19].
Note that ∆L is denoted by L. The lines in (b) show the fit to the strength
distribution.

In Secs. 1.2.1 and 1.2.2 we briefly describe several examples of the application of the

inelastic alpha scattering to the giant resonances and the cluster structures in nuclei.
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1.2 Application of inelastic alpha scattering

1.2.1 Giant resonances in nuclei

The isoscalar giant monopole resonances (ISGMR) and the isoscalar giant dipole reso-

nances (ISGDR) are extensively examined by means of the MDA for the inelastic alpha

scattering [3–13, 17, 20]. The strength distributions of the ISGMR and the ISGDR were

successfully extracted from the continuous excitation-energy spectra by the MDA, and

these analyses precisely determined the nuclear incompressibility of the symmetric nu-

clear matter [5–7]. Incompressibility of the nuclear matter is of fundamental importance

in nuclear physics to define the equation of state for the nuclear matter, which describes

a number of interesting phenomena from collective excitations of nuclei to supernova

explosions and radii of neutron stars.

The infinite nuclear matter incompressibility K∞ is defined by the second derivative

of the energy per particle E/A with respect to the density ρ at the saturation point ρnm,

K∞ = 9ρ2
d2

dρ2

(
h

ρ

)
ρ=ρnm

, (1.2)

where h is the isoscalar part of the Hamiltonian density for the nuclear matter [21].

The infinite nuclear matter does not exist on earth, therefore K∞ can not be measured

directly. However, the centroid energy of the ISGMR EISGMR is related to the incom-

pressibility of the finite nucleus KA as

EISGMR =

√
ℏ2KA

m⟨r2⟩m
, (1.3)

where m is the nucleon mass and ⟨r2⟩m is the mean square mass radius of the ground

state, and the incompressibility of the finite nucleus can be parameterized using KA as

follows [22],

KA = K∞ +KsurfA
−1/3 +Kτ [(N − Z)/A]2 +KCoulZ

2A−4/3. (1.4)

The nuclear matter incompressibility K∞ was previously deduced from the systematic

measurements of the KA values in various medium-heavy nuclei. For example, KA in

208Pb was determined from EISGMR according to Eq. (1.3), and EISGMR in 208Pb was ob-

tained as the averaged excitation energy of the isoscalar monopole-strength distribution
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shown in Fig. 1.3(a) which exhausted most of the EWSR strength.

Nowadays, the K∞ is theoretically estimated from various energy functionals of the

nuclear matter with different parameters, and the ISGMR strength distributions are also

calculated for different energy functionals with a self-consistent RPA framework [23,

24]. The energy functional which gives the best description of the ISGMR strength

distribution is considered to be the most appropriate, and it gives the reliable value of

K∞. The presently accepted value of K∞ is 240 ± 10 MeV [25–27] as introduced in

Ref. [28].

The asymmetry term Kτ in Eq. (1.4) is also important in addition to K∞ because

Kτ is crucial for the asymmetric nuclear matter like neutron stars. The inelastic alpha

scattering off the Sn isotopes provides information for Kτ [7]. Figure 1.4 shows the

strength distributions of the isoscalar monopole transition obtained for the Sn isotopes

with the MDA. The difference KA −KCoulZ
2A−4/3 for the Sn isotopes as a function of

Figure 1.4: Strength distributions obtained by inelastic alpha scattering of the Sn iso-
topes at Eα = 400 MeV. Taken from Fig. 2 in Ref. [7]. Error bars represent
the uncertainty in the MDA. The solid lines show Lorentzian fits to the data.

the asymmetry parameter [(N − Z)/A] are shown in Fig. 1.5. The values of KA was

7



Figure 1.5: Systematics of the difference KA − KCoulZ
2A−4/3 in the Sn isotopes as

a function of “asymmetry parameter” [(N − Z)/A]. KCoul was fixed at
−5.2 MeV [21]. Taken from Fig. 4 in Ref. [7].

derived from the strength distribution of the isoscalar monopole transition, and KCoul

was fixed at −5.2 MeV. As expressed in Eq. (1.4), the term with K∞ is independent

from the mass number A, and the surface term with Ksurf is also almost independent

from A because the mass range of the measured Sn isotopes is as narrow as A = 114–

124. Therefore, KA − KCoulZ
2A−4/3 approximately has a quadratic relationship with

the asymmetry parameter. Finally, the value of Kτ = −550± 100 MeV was obtained in

Ref. [7].

In addition to the stable nuclei, inelastic alpha scattering off unstable nuclei comes

to be measured recently [29, 30] because the ISGMR in unstable nuclei attracts interest

in nuclear physics to examine the nuclear incompressibility of the asymmetric nuclear

matter.

As described above, the reliable determination of the strength distribution of the

isoscalar monopole transition in stable and unstable nuclei by the MDA of the inelastic

alpha scattering is crucial to establish the equation of state for the nuclear matter.
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1.2.2 Cluster structure in nuclei

Alpha clustering phenomena in atomic nuclei have been studied for long time as an

interesting research field in nuclear physics since the Gamow’s α-decay theory [31, 32].

Many theoretical and experimental efforts have been devoted since 1930, although there

still remain many hot topics to be discussed from both the experimental and theoretical

sides.

The Bloch-Brink model developed in 1950s and 1960s is one of the famous microscopic

theories to describe the cluster structures [33]. This model was originated from the

consideration for the 2α cluster system in Ref. [34], and is generalized for the multi-α

system. The multi-α system is described as an antisymmetrized wave function consisting

of wave functions of alpha clusters at different position, and each alpha -cluster wave

function consists of four Gaussian single-particle wave functions at the same position.

Moreover, Ikeda et al. proposed that the cluster structures would appear near alpha-

decay threshold energies. This is known as “threshold rule” [35] and schematically

represented by Ikeda diagram as shown in Fig. 1.6.

One of the most famous alpha cluster states is the 0+2 state at Ex = 7.65 MeV in

12C. This excitation energy of 7.65 MeV is only 0.38 MeV above the 3α decay threshold

energy in 12C. This state is called as the Hoyle state, and plays a very important role

in the nucleosynthesis in the universe [37]. 12C is the doorway nucleus in the heavy-

elements synthesis, and 12C is synthesized by the triple α reaction via the Hoyle state.

The Hoyle state is formed by the alpha capture reaction following the 8Be formation

due to the collision of two alpha particles. 12C is synthesized by the radiative decay of

the Hoyle state with a probability of (Γγ + Γπ)/(Γα + Γγ + Γπ) ∼ 4×10−4. The level

diagram in 12C is shown in Fig. 1.7

Recently, the MDA for the inelastic alpha scattering is extensively carried out to

search for the α cluster states. For example, the missing 2+2 state in 12C was found at

Ex = 9.84 ± 0.04 MeV in 12C with a width of 1.01 ± 0.15 MeV by the MDA of the

12C(α, α′) reaction as shown in Fig. 1.8. Although this 2+2 state in 12C was incontrovert-

ibly predicted by the 3α cluster model as an excited state of the Hoyle state [38–40], no

experimental attempts to search for this state had been successful for a long time [41–43].

The MDA of the inelastic alpha scattering worked well to extract the ∆L = 2 transition

strength in the broad bump around Ex = 10 MeV in 12C as seen in Figs. 1.8(c) and (d)

and to find the missing 2+2 state for the first time.
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Figure 1.6: Ikeda diagram showing the relation between threshold energy to each decay
mode and the cluster structure. Taken from Fig. 1 in Ref. [36]. The small
circles without alphabets show alpha particles. The threshold energy to
decay to each configuration from the ground state is shown in the unit of
MeV below the drawing.
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Figure 1.7: Level diagram in 12C related to the triple α reaction. Taken from Fig. 2 in
Ref. [36].
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It was pointed out that large isoscalar monopole transition strengths are a signature

of cluster excitation in atomic nuclei [44]. This was theoretically explained by using

the Bayman-Bohr theorem [45] in Ref. [46]. The clustering degrees of freedom are

inherently possessed even by simple shell-model wave functions and can be activated

by the monopole excitation. As an example, the Hoyle state, which has a spatially

developed 3α cluster structure, is excited with a large isoscalar monopole strength of

B(E0; IS) = 121 ± 9 fm4 [47]. This strength is about three times larger than the

single-particle limit in 12C [47]. For 24Mg, several 0+ states are strongly excited by

isoscalar monopole transitions in the inelastic alpha scattering as reported in Ref. [11].

The strength distribution of the isoscalar monopole transition was extracted as shown

in Fig. 1.9. Several discrete peaks due to the 0+ state near the threshold energies for

20Ne+α, 12C+12C, and 16O+2α were observed in the ∆L = 0 strength distribution.

Actually, the theoretical calculation suggests these 0+ states have spatially developed

cluster structures [48]. Figure 1.10 shows the theoretical calculation for the strength

functions of the isoscalar monopole excitations in 24Mg. The β and γ deformations, the

isoscalar transitions, and the many particle-hole configurations in 24Mg are taken into

account in the basis set (c) of the wave function. The gray thick line in the right panel

shows the strength function smeared by a Lorentzian with a width of 0.8 MeV. The

vertical dashed lines indicate cluster decay threshold energies. The smeared strength

function shows similar structure to the measured ∆L = 0 strength distribution in the

top panel of Fig. 1.9.

Recently it is suggested that the Hoyle state is a 3α condensed state, where the 3

alpha particles are condensed into the lowest s orbit [49]. The authors claimed that this

state is a gas-like state of alpha clusters and is akin to the Bose-Einstein condensate.

Figure 1.11 shows the theoretically calculated occupation of the alpha-particle orbitals

associated with the Hoyle state in 12C compared with the ground state. The occupation

probability of the 0s (S1) orbital is more than 70% in the Hoyle state.

It is expected that such alpha condensed states exist not only in 12C but also in other

self-conjugate A = 4n nuclei. It was predicted in Ref. [51] that the nα condensed states

with Jπ = 0+ appear above nα decay threshold energies in the heavier self-conjugate

A = 4n nuclei up to n = 10. Figure 1.12 shows the predicted excited energies and

root-mean-square radii of the nα condensed states with Jπ = 0+ in the self-conjugate

A = 4n nuclei.

At present, the candidates of the alpha condensed states are proposed and widely
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Figure 1.12: The theoretically predicted excited energies (left) and root-mean-square
radii (right) of the nα condensed states with Jπ = 0+ in the self-conjugate
A = 4n nuclei. Taken from Fig. 2 in Ref. [51]. The excited energies are
measured from the nα decay threshold energies.

accepted in 8Be and 12C only. The ground state in 8Be and the Hoyle state in 12C

are successfully described by the alpha condensed wave functions [51, 52]. The alpha

condensed states in other nuclei are still being experimentally searched for and much

effort is devoted to find out these states [11, 12]. We recently proposed to search for

α condensed states in heavier self-conjugate A = 4n nuclei by measuring the isoscalar

monopole transition to the highly excited states above the nα decay threshold in the

inelastic alpha scattering. The reliable determination of the transition strength of the

isoscalar monopole transition for the highly excited states is crucial to search for the α

condensed states.

In addition to the alpha condensed states, there are theoretical predictions of the

cluster states called “molecular states” to exist, and these states are experimentally

searched for. A typical example is reported in 10Be. Several excited states in 10Be are

suggested to have a unique α-2n-α configuration. Two excess neutrons play a role of

covalent particles in molecular orbits among the two alpha clusters and behave like a

valence electron pair bonding two atoms [53–55]. The density distributions of the single-

particle wave functions for valence neutrons in the 0+1 and 0+2 states in 10B are shown

in Fig. 1.13. From the experimental point of view, the measurement of the transition

strength of the isoscalar monopole transition in 10Be is strongly desired to compare the

theoretical prediction with the experiment. However, the inelastic electron scattering off

10Be cannot be measured because 10Be is unstable. A new measurement of the inelastic

alpha scattering off 10Be and the MDA of the measured data should be done.
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Figure 1.13: Density distributions of the single-particle wave functions for valence neu-
trons in 10B(0+1 ) and 10B(0+2 ). Schematic figure of the molecular orbitals;
π and σ orbitals around the 2α core are also shown at the bottom. Taken
from Fig. 3(a) in Ref. [55].

1.3 Missing monopole strength of the Hoyle state

The MDA is established on the assumption that the cross sections of the inelastic alpha

scattering are reasonably well described by the DWBA calculation and are approximately

proportional to the relevant transition strengths. However, a result contradictory to the

linear dependence was reported in the monopole excitation to the Hoyle state from

the ground state in 12C. The isoscalar monopole strength determined from the inelas-

tic electron scattering exhausts about 15% of the energy-weighted sum-rule (EWSR)

strength [47, 56, 57], but that from the inelastic alpha scattering exhausts as small as

7.6% [20]. This discrepancy is called as “missing monopole strength of the Hoyle state”.

The cross sections of the inelastic electron scattering for the Hoyle state was measured

over a wide range of the momentum transfer q [56, 57]. From Fig. 1.14, the electromag-

netic transition matrix element between the ground state and the Hoyle state in 12C

was determined as Mπ = 5.37± 0.22 fm2 [56]. Recently, the cross sections for the Hoyle

state were measured at a very small q region, and the matrix element was updated to

be Mπ = 5.29 ± 0.14 fm2 as shown in Fig. 1.15 [57]. The black circles and the solid

line show the previous experimental data and the global fit to the data. The red solid
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Figure 1.14: The square root of the reduced transition probability B(C0, q) multiplied
by

√
4π/q2 as a function of the square of the momentum transfer q [56].

The experimental data were obtained by the inelastic electron scattering at
E = 28–60 MeV and the scattering angles θlab = 105◦–165◦. The exper-
imental data and the theoretical calculation fitted to the data are shown
by the points and solid line, respectively. Note that the intercept at q = 0
corresponds to the electromagnetic matrix element Mπ divided by 6.
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squares and the dashed line show the new experimental data taken in Ref. [57] and the

new fit to the data. The theoretical predictions by different cluster models are shown

by the dotted and dash-dotted lines.
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Figure 1.15: The charge transition form factor Ftr(q) multiplied by 6Z/q2 as a function
of the square of the momentum transfer q. Taken from Fig. 4 in Ref. [57].
The experimental data were obtained by the inelastic electron scattering at
E = 29–78 MeV and the scattering angles θlab = 69◦–141◦. See text and
Ref. [57] for more details. Note that the intercept at q = 0 corresponds to
the matrix element.

If one state at an excitation energy Ex exhausts 100% of the EWSR strength for

the isoscalar monopole transition, the matrix element Mπ for the transition follows the

relation,

Ex|Mπ|2 =
ℏ2

2m
A⟨r2⟩, (1.5)

wherem, A, and ⟨r2⟩ denotes the mass of the nucleon, the mass number of the considered

nucleus, and the square of the charge root-mean-square radius of the nucleus. Therefore,

the matrix element Mπ = 5.29 fm2 corresponds to 14% of the EWSR strength.

The inelastic alpha scattering from 12C at Eα = 240 MeV was measured in Ref. [20].

The authors of Ref. [20] performed the DWBA analysis using a macroscopic transition

density, and compared the experimental data with the DWBA calculation as shown in
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Fig. 1.16. They deduced the Hoyle state exhausts 7.6% of the EWSR strength.
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Figure 1.16: The differential cross sections for the 12C(α, α′) reaction at Eα = 240
MeV compared with the DWBA calculations [20]. Taken from Fig. 8 in
Ref. [20]. (b) The solid circles and line represent the experimental data and
the DWBA calculation for the Hoyle state at Ex = 7.65 MeV, respectively.
(a) and (c) for the transition to the 0+ state at Ex = 10.3 MeV and 1−

state at Ex = 10.84 MeV, respectively.

In Ref. [58], the authors performed a double folding-model analysis of the inelastic

α + 12C scattering at Eα = 104, 139, 172.5, and 240 MeV using a complex density-

dependent interaction (CDJLM interaction, which was constructed on the M3Y-Paris

interaction [59]) and the reliable wave functions of the ground and Hoyle states in 12C

from 3α resonating group method (RGM) calculation [40]. The monopole excitation

strength to the Hoyle state predicted by the 3α RGM calculations is 22.8% of the EWSR

strength and close to the strength reported from the inelastic electron scattering [56, 57].

Nevertheless, the calculated cross sections of the inelastic alpha scattering for the Hoyle

state using the 3α RGM wave functions were significantly larger than the measured cross

section at Eα = 104–240 MeV as shown in Figs. 1.17 and 1.18. The authors of Ref. [58]

performed both the DWBA and the coupled-channel (CC) calculations at Eα = 104, 139,

172.5, and 240 MeV. The dashed and dotted lines in Figs. 1.17 and 1.18 represent the

DWBA and CC calculations with 22.8% of the EWSR strength, whereas the solid and
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dash-dotted lines represent the DWBA calculation with 6.9% of the EWSR strength and

the CC calculation in which the imaginary part of the optical potential was increased to

reproduce the experimental data.

Figure 1.17: The DWBA and CC calculations for the cross section of the 12C(α, α′)
reaction exciting the Hoyle state at Eα = 104 and 139 MeV. The solid
circles are the experimental data, whereas the dash, dotted, solid, dash-
dotted lines are the theoretical calculations. Taken from Fig. 3 in Ref. [58].

This discrepancy is consistent with the previous results [20] that the excitation strength

for the Hoyle state determined by the inelastic alpha scattering is much smaller than

that determined by the inelastic electron scattering. In contrast to the Hoyle state, the

cross sections to the 2+1 state in 12C were well reproduced by the CC calculation at the

intermediate energies as shown in Fig. 1.19.

It was claimed in Ref. [58] that this problem is due to the weakly bound structure of the

Hoyle state which significantly enhances the absorption in the exit α+12C∗(0+2 ) channel,

and the reaction mechanism of inelastic alpha scattering might strongly couple to the

nuclear structure. Therefore, the approximate linear proportional relation between cross

sections and relevant transition strengths might not be valid in the analysis of the in-

elastic alpha scattering. It is a serious problem suggesting that the strength distribution

determined by the MDA of the inelastic alpha scattering might not be reliable.
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Figure 1.18: Same as Fig. 1.17, but at Eα = 172.5 and 240 MeV. Taken from Fig. 4 in
Ref. [58].

Figure 1.19: The DWBA and CC calculations for the cross section of the 12C(α, α′)
reaction exciting the 2+1 state at Eα = 104, 139, 172.5, and 240 MeV. The
solid circles are the experimental data, whereas the dotted and solid lines
are the theoretical calculations. Taken from Fig. 5 in Ref. [58].
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1.4 Systematic measurements of inelastic alpha scattering

The MDA of the inelastic alpha scattering at Eα = 96–386 MeV has been extensively

performed to examine the nuclear structure as described in Sec. 1.2, however, the relia-

bility of the MDA was shaken by the puzzle of the missing monopole strength discussed

in Sec. 1.3. It is very important to examine and to solve this puzzle of the inelastic

alpha scattering, otherwise, it leads us to serious situation where we cannot reliably

examine the nuclear structure by means of the inelastic alpha scattering. Nevertheless,

the systematic measurement of the inelastic alpha scattering to examine the reliability

of the theoretical calculations has never been carried out until now.

In the present work, we measured the cross sections of the inelastic alpha scattering at

Eα = 130 and 386 MeV, exciting low-lying discrete states in 12C, 16O, 20Ne, 24Mg, 28Si

and 40Ca, and systematically compared the measured cross sections with the DWBA

calculation for the first time. These targets were selected because the ambiguity of the

nuclear structure in the DWBA calculation becomes small in the self-conjugate even-even

nuclei.

Transition-density distributions used in the present DWBA calculations were obtained

by the macroscopic models [60, 61], and the amplitudes of the transition-density distribu-

tions are determined from the electromagnetic transition strengths. The electromagnetic

transition strengths for the discrete states were reliably determined by the electromag-

netic probes like the inelastic electron scattering. Since the natural-parity transitions

induced by the electromagnetic interaction are the “electric” transitions, their electro-

magnetic transition strengths are sensitive to protons only. On the other hand, the

isoscalar natural-parity transitions induced by the inelastic alpha scattering are sensi-

tive to both of protons and neutrons. Because the proton distribution in self-conjugate

nuclei can be assumed to be same with the neutron distribution due to the isospin

symmetry, the isoscalar transition strengths in such nuclei can be estimated from the

electromagnetic transition strengths. Moreover, the spin and parity of the ground states

in even-even nuclei are 0+, therefore the transferred angular momentum is uniquely

identified from the spin and parity of the final state.

A reliable calculation of cross sections is necessary to extract the transition strength

from the experimental data in the MDA. We performed the “parameter-free” DWBA

calculation in which all of the adjustable parameters are determined by the electromag-

netic transition strengths and elastic scattering, and systematically compared with the
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measured cross sections to test the applicability of the conventional DWBA calcula-

tion to the inelastic alpha scattering, for the first time. We also studied ambiguities

of the DWBA calculations from the distorting potentials, phenomenological interaction,

transition densities, and coupled-channel effects.
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Chapter 2

Experiment

2.1 Overview

We systematically measured the cross sections of the inelastic alpha scattering at forward

angles including 0◦ at Eα = 130 and 386 MeV, exciting low-lying states in 12C, 16O,

20Ne, 24Mg, 28Si, and 40Ca.

A series of the measurements (E253, E308, E369, and E402) was performed at Re-

search Center for Nuclear Physics (RCNP), Osaka University. The incident alpha beam

was accelerated by the coupled cyclotrons at RCNP, and transported to the target. Mo-

menta of scattered alpha particles from the target were analyzed with the high-resolution

magnetic spectrometer Grand Raiden (GR) [62]. The scattered particles are detected

with the focal plane detectors of GR.

2.2 Beam line

A 4He2+ beam was accelerated to 130 MeV by the AVF cyclotron. The accelerated

beam was transported to the West experimental hall using the bypass beam line. For

the measurements with the 386-MeV 4He2+ beam, 4He2+ beam accelerated up to 87.1

MeV by the AVF cyclotron was next injected into the ring cyclotron and accelerated

again to 386 MeV. After the acceleration, the 386-MeV beam were transported to the

West experimental hall. The accelerated beam was transported to the target through

the WS beam line in the West experimental hall. Figure 2.1 shows the AVF cyclotron,

the ring cyclotron, the bypass beam line, the West experimental hall, the WS beam line,

and the target position.
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Figure 2.1: Overview of the AVF cyclotron and the ring cyclotron in RCNP. West ex-
perimental hall and the WS beam line are also shown. “WS” means the WS
beam line.
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The 130-MeV 4He2+ beam was achromatically transported to the target, whereas the

386-MeV 4He2+ beam was dispersively transported to the target in the measurements.

The excitation-energy resolution at Eα = 386 MeV was improved with the dispersive

beam transport [63–65]. However, the dispersive beam transport for the 20Ne gas target

could not be done because the energy spread of the 4He2
+
beam from the ring cyclotron

(∆E = 250 keV) was wider than the usual (∆E = 100 keV) when the 20Ne gas target

was used. This wider energy spread caused by the condition of the accelerators. The

dispersive transport of such a beam with a wide energy spread results in unacceptably

large beam size on the target.

2.3 Targets

We used self-supporting foil targets for 12C, 24Mg, 28Si, and 40Ca. The SiO2 foil was

used as the 16O target. The contribution from natSi was subtracted using a natSi target.

For the 20Ne target, a cooling gas target system was used [66, 67].

Table 2.1 summarizes the target nuclei, thicknesses, and isotope enrichment.

Table 2.1: Thicknesses and isotope enrichment of the targets used in the present mea-
surements with the 4He2+ beams at Eα = 130 and 386 MeV. All the foil
targets are self-supporting.

Nucleus State Thickness Enrichment 4He2+ energy
130 386

(mg/cm2) (%) (MeV)
12C foil 2.2 98.9a ✓ ✓
SiO2

b foil 2.2 99.8c ✓ ✓
20Ne gasd 2.4 99.95 ✓
24Mg foil 1.2 99.92 ✓
24Mg foil 2.5 > 99.9 ✓
28Si foil 1.72 92.2a ✓
28Si foil 2.16 92.2a ✓
40Ca foil 1.63 > 99.9 ✓ ✓

a Natural abundance.
b The SiO2 foil was used as the 16O target.
c Natural abundance of 16O.
d See the text for more details
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2.3.1 Gas target

The isotopically enriched 20Ne gas with a purity of 99.95% was filled into the gas cell and

cooled by liquid N2 in order to increase the target density. The entrance and exit windows

were sealed with aramid films with a thickness of 4 µm. The pressure and temperature

of the 20Ne gas were monitored using the diaphragm pressure gauge (KM31, Nagano

Keiki Co., Ltd.) and the platinum resistance thermometer (R610-3, Chino Co., Ltd.)

during the measurements. The gas pressure and temperature were at 78.0 ± 1.2 kPa

and 86.5 ± 0.4 K, respectively. The effective thickness of the 20Ne gas target along the

beam axis was calibrated by filling the gas cell with the CO2 gas at the pressure close

to that of the 20Ne gas. We determined the thickness of the 20Ne gas as 11.2± 1.7 mm

by comparing the measured cross section of the elastic alpha scattering from 12C with

the known value. This thickness corresponded to 2.4± 0.4 mg/cm2.

2.4 Magnetic spectrometer Grand Raiden

Scattered alpha particles were analyzed using the magnetic spectrometer Grand Raiden

(GR) [62]. Figure 2.3(a) shows an overview of GR and its related instruments for the

experimental setup at θlab = 0◦.

The GR has a magnet configuration of QSQD(M)D(+D). Here, the characters Q, S,

D, M represents the quadrupole, sextupole, dipole, and multipole magnets, respectively.

The QSQD(M)D(+D) are typically denoted as Q1, SX, Q2, D1, MP, D2, and DSR

in order. The design specification of GR are listed in Table 2.2. The MP are mainly

used to correct ion-optical aberrations, whereas the DSR is an auxiliary magnet for

measurements of the spin-rotation parameters. The MP and DSR, which are denoted by

the characters enclosed in parentheses, were not used to analyze the momenta of scattered

particles in the present measurements. The DSR was used during the measurement at

θlab = 0◦ as a steering magnet to guide the incident 4He2+ beam to Faraday cups.

2.5 Focal plane detectors

The two multi-wire drift chambers (MWDC1 and 2) and two plastic scintillation coun-

ters (PS1 and 2) were installed at the focal plane of GR. The detector system was

aligned along the focal plane at 45◦ with respect to the central ray of the spectrom-

eter. Figs. 2.3(b) and 2.4 show the focal plane detectors, although the focal plane
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Figure 2.2: Schematic view of the gas target system, which is install on top of the scat-
tering chamber [67]. 20Ne gas was filled in the target gas cell and cooled by
the liquid N2.
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Figure 2.3: (a) Overview of the Grand Raiden spectrometer and its related instruments.
The experimental setup at θlab = 0◦ is shown [68]. The solid lines with arrow
heads in the spectrometer show the trajectories of primary beam particles,
and dashed and dotted lines show those of scattered particle. The primary
beam was guided to the Faraday cup, which was located at the downstream
of the spectrometer (0 deg. FC). (b) A schematic view around the focal
plane. In case of the spectrum measurements for low-lying excited states,
the primary beam was stopped at the focal plane Faraday cup (FP-FC),
which was placed at the upstream of the focal plane.
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Table 2.2: Design specification of the magnetic spectrometer Grand Raiden

Grand Raiden

Configuration QSQD(M)D(+D)
Mean orbit radius 3 m
Total deflection angle 162◦

Focal plane length 150 cm
Tilting angle of focal plane 45◦

Maximum magnetic field strength 1.8 T
Maximum magnetic rigidity 5.4 T·m
Horizontal magnification (x|x) −0.417
Vertical magnification (y|y) 5.98
Momentum dispersion 15.451 m
Momentum range 5%
Momentum resolution 37, 076
Acceptance of horizontal angle ±20 mr
Acceptance of vertical angle ±70 mr
Solid angle ∼ 5.6 msr

polarimeters were not used in the present measurements. The MWDCs have holes at

their high-momentum sides of the sensitive area, and the holes enable us to conduct the

primary beam particles to the downstream for the 0◦ measurements.

The MWDCs were used to determine the three-dimensional trajectories of scattered

particles at the focal plane, and the PS1 and PS2 which were placed at just the down-

stream of the MWDCs were used to generate the data-acquisition trigger. The plastic

scintillators with a thickness of 10 mm were used as the PS1 and PS2, and the scintil-

lation light was detected by the photo-multiplier tubes (PMTs) on the both sides of the

PS1 and PS2.

2.5.1 Multi-wire drift chambers

Design specification of the MWDCs are shown in Table. 2.3. Each MWDC consists of

two anode planes, namely horizontal (X) plane and the 48.2◦-tiled (U) plane, and the

anode wires are placed with the 2 mm spacing in the anode plane. The anode wires

consists of the sense wires and the potential wires, and the spacing of sense wires are

6 mm in X-plane and 4 mm in U-plane as shown for X-plane in Fig. 2.5. High voltage

of −4.8 kV was applied to the cathode planes of the MWDCs, and of −400 V was

applied to the potential wires for the 20Ne measurements. The wire configuration of the
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Figure 2.4: Schematic view of the focal plane detectors and downstream instruments of
GR for the θlab = 0◦ measurement.

Table 2.3: Design specification of the MWDCs for GR placed at the focal plane. Supplied
voltages are for the 20Ne measurements.

MWDC

Wire configuration X(0◦ =vertical), U(−48.2◦)
Active area 1150Wmm× 120Hmm
Number of sense wires 192(X), 208(U)
Cathode-anode gap 10 mm
Anode wire spacing 2 mm
Sense wire spacing 6 mm (X), 4 mm (U)
Sense wire material 20µm ϕ Au-W
Potential wire material 50µm ϕ Au-Cu/Be
Supplied voltage −4.8 kV (cathode)

−400 V (potential)
0 V (sense)

Gas mixture Argon(71.4%)+Iso-butane(28.6%)+Iso-propyl-alcohol
Gas seal 12.5µm aramid film
Pre-amplifier LeCroy 2735DC
Digitizer LeCroy 3377 drift chamber TDC
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MWDCs for GR are shown in Fig. 2.6. The MWDCs were filled with a mixed gas which

consists of argon, iso-butane, and iso-propyl-alcohol. Iso-propyl-alcohol was mixed at

2 ◦C vapor pressure into argon gas, and the argon and iso-butane gases were mixed with

71.4% and 28.6%. The MWDCs are placed at 45◦ with respect to the central ray of the

spectrometer as shown in Fig. 2.4, therefore several sense wires typically generate the

signal per plane for one trajectory of a scattered charged particle as shown in Fig. 2.5.

d
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Figure 2.5: Schematic view for an X-plane of the MWDC. Typical trajectory of a scat-
tered particle is also shown by an arrow.
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Figure 2.6: Wire configuration for the sense wires of the MWDCs. The wire numbering
order are shown by arrows.
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2.6 Faraday cups

The incident 4He2+ beam was stopped by the four Faraday cups, and beam currents

during the measurements were monitored. The zero-degree Faraday cup (0 deg. FC),

which was located at the downstream of the focal plane, was used for the measurements

at θlab = 0◦, and the primary beam was transported to the 0 deg. FC through GR. When

the 0 deg. FC was used, the low-lying excited states at Ex < 2.5 MeV for Eα = 130 MeV

and at Ex < 7.5 MeV for Eα = 386 MeV could not be measured due to the geometrical

limitation of the MWDCs. The lateral distances between trajectories of the primary

beam and scattered alpha particles exciting such low-lying states at the focal plane were

too short for the MWDCs to detect the scattered alpha particles separately from the

primary beam. To measure the (α, α′) spectra for such low-lying states at θlab = 0◦, an

alternative Faraday cup called as the focal plane Faraday cup (FP-FC) was used. The

FP-FC was installed at the front of the MWDCs as shown in Fig. 2.3(b). Since the

FP-FC was placed very close to the sensitive area of the MWDCs, the FP-FC enabled

us to detect the scattered alpha particles exciting the low-lying states by the MWDCs.

However, huge background γ rays from the FP-FC hit both the MWDCs and the trigger

plastic scintillators, therefore the beam intensity was limited lower than 1.0 nA when

the FP-FC was used.

For the measurements at θlab = 2.5◦–5.0◦, the primary beam was stopped at the

Faraday cup behind the Q1 magnet of GR (Q1-FC) as shown in Fig. 2.3(a). The Faraday

cup installed in the scattering chamber (SC-FC) was used in the measurements at the

backward angles θlab ≥ 6.0◦.

Charge collection efficiencies of the four Faraday cups were calibrated within 3% un-

certainties by using a beam monitor (BLP-1) consisting of plastic scintillators located

on the beam line.

2.6.1 Beam-line polarimeter

The beam-line polarimeters (BLP-1 and BLP-2) are located at the WS beam line as

shown in Fig. 2.1. The BLP-1 was used to calibrate the charge collection efficiencies of

the four Faraday cups in the present measurements. Each BLP consists of four sets of

plastic scintillation detectors as shown in Fig. 2.7.

The scintillation detectors were placed at the angles of 14.4◦ and 40.0◦. An aramid

film with a thickness of 4 µm was used as the analyzer target to calibrate the charge
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Figure 2.7: Schematic top view of the BLP setup. The plastic scintillation detectors
labeled by “L” and “L′” are one set of the detectors. Similar to the horizontal
(x-z) plane, there are also two pairs of the detector in the vertical (y-z)
plane, but the detectors in the vertical plane were not used in the present
measurements.

collection efficiency. An alpha particle flies to the detector at 14.4◦ when it is elastically

scattered by a proton in the analyzer target, and the recoiling proton flies to the detector

at 40.0◦. α+p elastic scattering was identified by detecting scattered alpha particle and

recoiling proton by a set of detectors in coincidence. The charge collection efficiencies of

the four Faraday cups are calibrated by comparing the output of the four Faraday cups

with the counting rate of the coincidence signals from the BLP detectors.

2.7 Data acquisition system

The data-acquisition triggering system was constructed with LeCroy 2366 universal logic

modules (ULM), which were equipped with field programmable gate-array (FPGA)

chips [69], and the trigger signals were generated by the coincidence of the PS1 and

PS2 signals. A schematic view of the trigger circuit is shown in Fig. 2.8. Since the focal

plane scintillators had the PMTs on both left and right edges, the PS1 and PS2 signals

were generated with the coincidence of both PMTs signals.

The overview of the data acquisition (DAQ) system was shown in Fig. 2.9. Each
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event was constructed of the drift-time data from the MWDCs digitized by LeCroy

3377 TDC, the charge and timing signals from the trigger scintillators encoded with

FERA and FERET system, and the input register. The Flow Controlling Event Tagger

(FCET) [70] attached the event header, event number, and input register words to the

data from LeCroy FERA and FERET systems, and the attached data was used to check

the consistency of data in the subsequent event reconstruction.
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Figure 2.9: Overview of the data acquisition system.

The digitized data were transferred in parallel via ECL bus lines to the High Speed

Memory (HSM) modules in the VME crate. The stored data in the HSMs were trans-

ferred via gigabit Ethernet to the Linux-based DAQ server (saho-a). The data recording

to the storage, event building, online analysis were performed on the DAQ server.
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2.8 Summary of the measurements

Table 2.4 summarizes the angular ranges for the cross-section measurements of the elastic

alpha scattering at Eα = 130 and 386 MeV, respectively. The cross sections at Eα = 130

MeV were measured for all the targets except 20Ne. The cross sections at backward

angles between θc.m. = 41.9◦ and 70.3◦ were measured using different experimental setup

with the Si and CsI(Tl) detectors. The cross sections at Eα = 386 MeV were measured

for 12C and 20Ne only, although the cross sections for 24Mg and 16O were taken from

Refs. [11] and [12], respectively. Since the cross sections for 28Si and 40Ca at Eα = 386

MeV were not measured in the present experiment nor taken from previous works, a

special treatment was done in the analysis of 28Si and 40Ca as described in Sec. 5.1.

Similarly, Table 2.5 summarizes the angular ranges for the cross-section measurements

of the inelastic alpha scattering at Eα = 130 and 386 MeV, respectively. The cross

sections at Eα = 130 MeV were measured for all the targets except 20Ne.
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Table 2.4: Angular ranges for the cross section measurements of the elastic alpha scat-
tering at Eα = 130 and 386 MeV.

Elastic scattering
Nucleus Eα = 130 MeV Eα = 386 MeV

θc.m. (deg) θc.m. (deg)
12C 5.0◦–70.3◦ 2.7◦–34.2◦
16O 4.7◦–58.1◦ 2.5◦–28.5◦ a

20Ne Not measured 5.1◦–27.4◦
24Mg 5.4◦–70.4◦ 5.3◦–28.8◦ b

28Si 8.0◦–48.8◦ Not measured
40Ca 4.1◦–59.3◦ Not measured

a Ref. [12].
b Ref. [11].

Table 2.5: Angular ranges for the cross section measurements of the inelastic alpha scat-
tering at Eα = 130 and 386 MeV.

Inelastic scattering
Nucleus Eα = 130 MeV Eα = 386 MeV

θc.m. (deg) θc.m. (deg)
12C 0.5◦–18.2◦ 0.4◦–29.5◦
16O 0.5◦–17.0◦ 2.4◦– 7.0◦
20Ne Not measured 0.5◦–13.9◦
24Mg 0.5◦–15.8◦ 0.8◦–12.0◦
28Si 0.5◦–15.5◦ 2.2◦– 6.4◦
40Ca 0.4◦–14.8◦ 2.1◦– 6.2◦
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Chapter 3

Data Analysis

3.1 Particle identification

Particle identification was performed applying two gates on the data. One was the gate

for the time difference between the data-acquisition trigger and the signal synchronized

to the acceleration by the AVF cyclotron (RF signal), which corresponds to the time of

flight from the target to the focal plane. The other was the gate for the energy deposit

in the PS1.

Since the flight path of the scattered particle from the target to the focal plane depends

on the scattering angle and the momentum of the particle, the correction to the time

difference was performed to remove the dependence on the position at the focal plane

(xfp) related to the momentum and the scattering angle at the target (θtgt) as shown in

Fig. 3.1. The raw and corrected time difference are shown in the left and right panels in

Fig. 3.2, respectively. Since the RF signal was downscaled by a rate divider circuit, two

prominent peaks due to the alpha particles were observed as shown in Fig. 3.2.

Particle identification by the energy deposit in the PS1 was performed using the signals

from the the PMTs attached to both edges of the PS1. Considering that the emitted

light in the scintillators is attenuated exponentially during the transmission to the PMT,

the geometric mean of the ADC values of the two PMTs on the left and right edges of the

PS1 is approximately independent from the position where the scattered particle hits,

and is proportional to the energy deposit. Figures 3.3(a) and (b) show the correlation

between the ADC values from the left and right PMT and the horizontal positions,

whereas Fig. 3.3(c) is the correlation between the geometrical mean of the ADC values
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Figure 3.1: Two demensional scatter plot of the time difference between the data-
acquisition trigger and the RF signal versus the horizontal position at the
focal plane (xfp) and the horizontal scattering angle (θtgt). The data for the
measurement of highly excited region in 12C from the inelastic alpha scat-
tering at Eα = 386 MeV are shown. (a) and (b) show the time difference
before the correction, whereas (c) and (d) show after the correction.
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Figure 3.2: Example of the particle identification using the time difference. The regions
shown by the arrows correspond to the alpha particles. The left panel shows
the time difference before the correction, whereas the right shows that after
the correction.

from the left and right PMTs. The geometrical mean is almost independent from the

particle position although the signals from the PMTs attenuate with increasing the

distance between the particle position and the PMTs.

The loci with the higher ADC values in Fig. 3.3 were attributed to the alpha particles,

whereas those with the lower ADC values were due to the low energy-loss particles. These

low energy-loss particles were eliminated as seen in Fig. 3.4 by limiting the time difference

between the data-acquisition trigger and the RF signal (see Fig. 3.2). Figure 3.5 shows

the spectra of the geometric mean of the ADC values from left and right PMTs. The

small peak due to the low energy-loss particles in Fig. 3.5(a) disappears in Fig. 3.5(b)

in similar to Fig. 3.4. The alpha particles were identified by selecting the region shown

by the arrow in Fig. 3.5(b).
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Figure 3.3: Example of the ADCs of the scattered particle at the PS1 for the mea-
surement of the elastic and inelastic scattering from aramid films at Eα =
386 MeV at θlab = 8.0◦. (a) and (b) Two-dimensional scatter plots for the
ADC values from the left or right PMT versus the horizontal positions (xfp).
(c) Two-dimensional scatter plot of the geometrical mean of the ADC values
from the left and right PMTs versus the horizontal position.
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Figure 3.4: Same as Fig. 3.3, but gated by the time difference between the data-
acquisition trigger and the RF signals.
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Figure 3.5: Example of the particle identification using the energy deposit in the PS1.
The region shown by the arrows correspond to the alpha particles. (a) The
geometric mean of ADCs without the gate of the time difference. (b) With
the gate of the time difference.
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3.2 Track reconstruction

The three-dimensional trajectories of the particles were reconstructed by using the posi-

tion information from the two sets of the MWDCs at the focal plane of GR. The position

parallel to the anode wires in each anode plane was determined from the vertical drift

lengths di−1, di, · · · at hit wires as shown in Fig. 2.5. The positions on the X-plane of the

MWDC1 (X1) and the X-plane of the MWDC2 (X2) defined an X-tracking plane, and

those on the U-planes (U1 and U2) defined a U-tracking plane, and thus the trajectory

of the detected particles was determined as in Fig. 3.6.

rear-U rear-X

front-X
front-U

U-tracking plane

X-trac
king plane

x

y
z

z = beam direction

track

Figure 3.6: Schematic view of the determination of the particle trajectory.

Since only the drift time to each sense wire can be directly measured, the calibration

of the drift time to the drift length was performed using the measurement of a continuum

spectrum in a highly excited region in 12C. Schematic histograms which represents the

conversion from the drift time to the drift length are show in Fig. 3.7.

As already discussed in Sec. 2.5.1, a typical scattered particle induces the signals at

two or more sense wires as shown in Fig. 2.5. We define a group of such adjacent sense

wires as a “cluster”. In the present analysis, all the anode planes were required to have

only one cluster which contains not less than two hit wires. The cluster which contains

only one wire was ignored because the background events such as X- and γ-rays usually
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Figure 3.7: Conversion from the drift times to the drift lengths of the MWDCs

cause the single hit wire.

3.2.1 Efficiency

The efficiency of each plane of the MWDCs is estimated as follows,

ϵX1 =
NX1∩U1∩X2∩U2

NU1∩X2∩U2
, (3.1)

ϵU1 =
NX1∩U1∩X2∩U2

NX1∩X2∩U2
, (3.2)

ϵX2 =
NX1∩U1∩X2∩U2

NX1∩U1∩U2
, (3.3)

ϵU2 =
NX1∩U1∩X2∩U2

NX1∩U1∩X2
, (3.4)

where NX1∩U1∩X2∩U2 denotes the number of events in which the tracks of the par-

ticles were reconstructed by all of the four planes of the MWDCs, and NU1∩X2∩U2,

(NX1∩X2∩U2, NX1∩U1∩U2, and NX1∩U1∩X2) in the denominator denotes the number of

events in which the tracks were reconstructed by the three planes except the X1 (U1,

X2, and U2) plane. The overall tracking efficiency ϵMWDC of the MWDCs was calculated
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by ϵMWDC = ϵX1 × ϵU1 × ϵX2 × ϵU2.

The position dependence of the tracking efficiency was examined. Since the position at

the focal plane could be related to the excitation energy in the inelastic alpha scattering,

the efficiency of each plane of the MWDCs for α particles inelastically scattered from

the 12C target at Eα = 386 MeV and θlab = 8.0◦ was obtained as a function of excitation

energy. As shown in Fig. 3.8, the tracking efficiency of the MWDCs was almost constant

to the excitation energy.
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Figure 3.8: Example of the detection efficiency of each plane of the MWDCs for alpha
particles inelastically scattered from the target at Eα = 386 MeV and θlab =
8.0◦ as a function of excitation energy. The black, red, green, and blue
lines show the efficiencies for X1, U1, X2, and U2 planes, respectively. The
histogram with error bars shows the total tracking efficiency.

3.3 Calibration of the excitation energy and the scattering

angle

The excitation energy was calculated from the momentum and scattering angle of the

detected particle assuming the two-body scattering at the incident energy of Eα = 386
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or 130 MeV. Since only the momentum deviation from the central ray can be measured

with the magnetic spectrometer, the energy scale of the calculated excitation energy was

calibrated using the peak position for the known discrete excited states in the measured

spectra.

Scattering angles within the angular acceptance of GR were calibrated using the sieve

slit as reported in Ref. [68]. Figure 3.9 shows the sieve slit used for the 20Ne measure-

ments. The large hole at the center of the slit is designed to be placed on the incident

beam axis. The upstream side of the slit was at the 577.5 mm downstream from the tar-

get. The hole spacings in the horizontal and vertical directions corresponded to 0.496◦

and 1.190◦ from the target, respectively.

Beam

5 mm

12 mm

Figure 3.9: Drawing of the sieve slit used for the calibration in the 20Ne measurements.
The large hole at the center of slit is designed to be placed on the incident
beam axis. The dash-dotted lines are drawn to guide the eyes.

Figures 3.10 and 3.11 show the data from five measurements with different magnetic

field strengths using the sieve slit to calibrate the scattering angle for the 20Ne measure-

ments. The field strength of GR was set at five different values with the steo of 0.8%.

The particles which were scattered at the target and passed through a hole of the sieve

slit were detected at the focal plane. The two dimensional scatter plot of the measured

angle at the focal plane (θfp) versus the horizontal position (xfp) is shown in Fig. 3.10.

The particles passed through the holes at the same horizontal angle form one locus as

seen in Fig. 3.10. The measured angle (θfp) and the position (xfp) were converted to the
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scattering angle at the target (θtgt) and the momentum difference from the central ray

using the optical properties of GR, and calibrated using the geometrical information of

the sieve slit. The two dimensional scatter plot of the calibrated scattering angle at the

target (θlab) versus the momentum difference from the central ray is shown in Fig. 3.11.

The angular acceptance of GR was limited to |θtgt| ≤ 0.8◦ and was divided into four
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Figure 3.10: Two dimensional scatter plot of the measured horizontal angles at the focal
plane of GR (θfp) versus the position at the focal plane (xfp). The data from
five measurements with different magnetic field strengths are superimposed.
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Figure 3.11: Two dimensional scatter plot of the scattering angles at the target (θtgt)
versus the momentum difference from the central ray. The data from five
measurements with different magnetic field strength are superimposed. The
dashed lines are drawn at |θtgt| = 0.8◦, and the data in the region between
the two lines were analyzed to obtain the cross sections.

angular bins with a width of 0.4◦ to obtain the cross sections.
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3.4 Background subtraction

Beam particles passing through the target spread out due to multiple Coulomb scattering

and hit beam ducts. These particles caused continuous background in excitation-energy

spectra at forward angles. These background events were removed using the vertical

position information of scattered particles at the focal plane because alpha particles

scattered from the target were vertically focused near the focal plane whereas background

particles scattered at different positions were not focused [71].

An (α, α′) spectrum measured using the 20Ne gas target is shown in Fig. 3.12(a).

Several discrete peaks for the ground and excited states in 12C, 14N, 16O, and 35Cl were
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Figure 3.12: Excitation-energy spectra for the 20Ne(α, α′) reaction at Eα = 386 MeV
measured at θlab = 10.8◦. (a) The open histogram represents the excitation-
energy spectrum obtained using the gas cell filled with 20Ne. The hatched
histogram represents the normalized spectrum obtained using the empty gas
cell. (b) A background-free 20Ne(α, α′) spectrum obtained by subtracting
the background events originated from aramid films.

observed. These nuclei are contained in the aramid films at the entrance and exit win-

dows of the gas cell. In order to subtract the background events due to the aramid
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windows, the background measurements with the empty gas cell was carried out. The

pressure of the empty gas cell was kept at the order of 10−2 Pa. The measured back-

ground spectrum is shown by the hatched histogram in Fig. 3.12(a). The background-

free spectra were successfully obtained by subtracting background spectra as seen in

Fig. 3.12(b). The normalization factor for the background subtraction was calculated

by taking into account the beam intensities, target thicknesses, tracking efficiencies, and

data-acquisition efficiencies. Similarly, the background-free excitation energy spectra for

16O were obtained by subtracting the excitation energy spectra for natSi from those for

natSiO2.

3.5 Cross sections for the (α, α) and (α, α′) reactions

The obtained excitation-energy spectra for the (α, α′) reactions at Eα = 130 MeV at

θlab = 0.0◦ are shown in Fig. 3.13. The typical energy resolution of the (α, α′) spectra
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Figure 3.13: Excitation-energy spectra for the (α, α′) reactions at Eα = 130 MeV mea-
sured at θlab = 0.0◦.
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at Eα = 130 MeV and 386 MeV was about 85 keV and 95 keV at the full width at half

maximum (FWHM) for the solid targets except 20Ne, respectively. On the other hand,

the energy resolution of the 20Ne(α, α′) reaction at Eα = 386 MeV was about 250 keV

at FWHM. This wider energy spread was caused by the condition of the accelerators.

From these excitation energy spectra, the cross sections of the (α, α) reaction at Eα =

130 and 386 MeV were obtained as follows.

The number of the scattered alpha particles exciting an excited state was counted in

the excitation energy spectrum. The cross section at the scattering angle θlab in the

laboratory frame [dσ/dΩ(θ)]lab was determined from the number of the detected alpha

particles Y , the number of the target nucleus Ntgt, the number of the incident alpha

particles Nbeam, the solid angles for the spectrum ∆Ω, the tracking efficiency ϵtrack, the

charge-collection efficiency ϵFC, and the data-acquisition efficiency ϵDAQ.[
dσ

dΩ
(θlab)

]
lab

=
Y

Ntgt ·Nbeam ·∆Ω
· 1

ϵtrack · ϵFC · ϵDAQ
. (3.5)

The cross section in the laboratory frame [dσ/dΩ(θlab)]lab was converted to that in the

center-of-mass frame [dσ/dΩ(θc.m.)]c.m. using the relation between the laboratory and

center-of-mass frames as follows,[
dσ

dΩ
(θc.m.)

]
c.m.

= g(θlab)

[
dσ

dΩ
(θlab)

]
lab

, (3.6)

where g(θlab) is the conversion factor. g(θlab) and θc.m. are calculated from the relativistic

kinematics using the masses of the target nucleus and the alpha particle, the excitation

energy of the state, and the scattering angle in the laboratory frame θlab. The errors

were estimated from uncertainties of all the quantities in Eq. (3.6).

The measured cross sections of the elastic (α, α) reactions at Eα = 386 and 130 MeV

relative to the Rutherford cross sections (Rutherford ratio) are presented in Figs. 3.14

and 3.15, respectively. Similarly, the cross sections of the inelastic (α, α′) reactions at

Eα = 386 and 130 MeV were obtained as presented in the next chapter.
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Figure 3.14: Measured cross sections of the elastic alpha scattering off 12C and 20Ne at
Eα = 386 MeV relative to the Rutherford cross sections (Rutherford ratio)
compared with the theoretical calculation. The solid circles with error bars
show the measured cross sections. The solid and dashed lines represent
the results of calculation with the density-independent (DI) and density-
dependent (DD) αN interactions, respectively. For the details about the
theoretical calculations, see Chap. 5.

Figure 3.15: Same as Fig. 3.15, but for 12C, 16O, 24Mg, 28Si, and 40Ca at Eα = 130 MeV.
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Chapter 4

Results

The measured (α, α′) cross sections for the ∆L = 0, ∆L = 2, and ∆L = 3 transitions at

Eα = 386 and 130 MeV are shown in Figs. 4.1 and 4.2, Figs. 4.3 and 4.4, and Figs. 4.5

and 4.6, respectively. The excited states of which the cross sections were measured in

the present work are listed in Table 4.1. Figures 4.7 and 4.8 show those for ∆L = 4

and ∆L = 1, respectively. In Figs. 4.2–4.8, the cross sections of the excited states

whose electromagnetic excitation strengths from the ground states were reported in the

previous studies [47, 72–76] are presented, whereas the measured cross sections of the

excited states whose electromagnetic transition strengths are unknown are shown in

Fig. 4.9.
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Table 4.1: List of the excited states identified in the present work.

Nucleus Jπ Ex Eα Nucleus Jπ Ex Eα

130 386 130 386
(MeV) (MeV) (MeV) (MeV)

12C 0+1 0.00 ✓ ✓ 24Mg 2+5 9.00 ✓ ✓b

12C 2+1 4.44 ✓ ✓ 24Mg 1−1 9.15 ✓ ✓b

12C 0+2 7.65 ✓ ✓ 24Mg 0+3 9.31 ✓ ✓b

12C 3−1 9.64 ✓ ✓ 24Mg 2+7 10.36 ✓
12C 1−1 10.84 ✓ 28Si 0+1 0.00 ✓
16O 0+1 0.00 ✓ ✓a 28Si 2+1 1.78 ✓ ✓
16O 0+2 6.05 ✓ 28Si 4+1 4.62 ✓
16O 3−1 6.13 ✓ ✓ 28Si 0+2 4.98 ✓ ✓
16O 2+1 6.92 ✓ ✓ 28Si 0+3 6.69 ✓
16O 1−1 7.12 ✓ 28Si 3−1 6.88 ✓
16O 2+2 9.84 ✓ 28Si 2+2 7.93 ✓
16O 4+1 10.36 ✓ 28Si 2+3 8.26 ✓
16O 2+3 11.52 ✓ ✓ 28Si 1−1 8.90 ✓
16O 0+3 12.05 ✓ ✓ 28Si 2+4 9.48 ✓
20Ne 0+1 0.00 ✓ 28Si 1−2 9.93 ✓
20Ne 2+1 1.63 ✓ 28Si 3−2 10.18 ✓
20Ne 4+1 4.25 ✓ 28Si 2+5 10.51 ✓
20Ne 3−1 5.62 ✓ 40Ca 0+1 0.00 ✓
20Ne 0+2 6.73 ✓ 40Ca 0+2 3.35 ✓
24Mg 0+1 0.00 ✓ ✓b 40Ca 3−1 3.74 ✓ ✓
24Mg 2+1 1.37 ✓ ✓b 40Ca 2+1 3.90 ✓ ✓
24Mg 4+1 4.12 ✓ 40Ca 5−1 4.49 ✓
24Mg 2+2 4.24 ✓ 40Ca 1−1 5.90 ✓
24Mg 4+2 6.01 ✓ 40Ca 3−2 6.29 ✓
24Mg 0+2 6.43 ✓ ✓b 40Ca 2+2 8.09 ✓
24Mg 2+3 7.35 ✓ ✓b 40Ca 0+3 8.28 ✓
24Mg 3−1 7.62 ✓ ✓b 40Ca 4+1 8.37 ✓
24Mg 3−2 8.36 ✓ ✓b 40Ca 2+3 8.58 ✓
a Ref. [12]
b Ref. [11]
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Figure 4.1: Measured cross sections of the (α, α′) reaction at Eα = 386 MeV for the
∆L = 0 transitions whose electromagnetic transition strengths are known
from the previous studies [47, 72–76]. The solid circles with error bars show
the measured cross sections. The solid lines with error bands and dashed
lines are the theoretical calculations with the density-independent (DI) and
density-dependent (DD) αN interactions, respectively. The error bands are
shown for the theoretical calculations with DI interactions only. For details
about the theoretical calculations, see Chap. 5.

Figure 4.2: Same as Fig. 4.1, but the cross sections for the ∆L = 0 transitions at Eα =
130 MeV.
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Figure 4.3: Same as Fig. 4.1, but the cross sections for the ∆L = 2 transitions at Eα =
386 MeV.
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Figure 4.4: Same as Fig. 4.1, but the cross sections for the ∆L = 2 transitions at Eα =
130 MeV.
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Figure 4.5: Same as Fig. 4.1, but the cross sections for the ∆L = 3 transitions at Eα =
386 MeV.

Figure 4.6: Same as Fig. 4.1, but the cross sections for the ∆L = 3 transitions at Eα =
130 MeV.
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Figure 4.7: Same as Fig. 4.1, but the cross sections for the ∆L = 4 transitions at Eα =
130 and 386 MeV.
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Figure 4.8: Same as Fig. 4.1, but the cross sections for the ∆L = 1 transitions at
Eα = 130 and 386 MeV. Note that the calculated cross sections are nor-
malized to exhaust 1%, 6%, 0.3%, 1%, 2%, and 7% of the EWSR strengths
of the isoscalar dipole transitions in 12C(1−1 ),

16O(1−1 ),
24Mg(1−1 ),

28Si(1−1 ),
28Si(1−2 ), and

40Ca(1−1 ), respectively. For details about the theoretical cal-
culations, see Chap. 5 and Sec. 6.4.
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Figure 4.9: Same as Fig. 4.1, but the cross sections for the inelastic alpha scatterings at
Eα = 130 and 386 MeV where the corresponding electromagnetic transition
strengths are not reported in the previous studies [47, 72–76]. Note that the
calculated cross sections with the DI interactions (solid lines) are fitted to
the experimental data.
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Chapter 5

DWBA analysis

The theoretical model calculation is necessary to extract the transition strength from the

obtained cross sections, and we performed the DWBA analyses using the computer code

ECIS-95 [77]. The measured cross sections were compared with the DWBA calculations

using the known values of the electromagnetic transition strengths in order to check

the reliability of the theoretical calculation, which are widely used in the previous [3–

13, 16, 17]. In this chapter, the formalism of the present calculations are explained.

In the present DWBA calculation, the optical-model potentials for the elastic alpha

scattering were used as the distorting potentials. The same distorting potential was used

in the entrance and exit channels for each nucleus. The optical-model potentials and the

transition potentials between the ground and excited states were calculated by folding

the macroscopic densities with the effective αN interaction.

5.1 Optical-model potential and the effective αN

interaction

An optical-model potential U(r) for elastic alpha scattering is obtained by folding the

ground-state density distribution of the target nucleus with effective αN interaction

u [|r − r′|, ρ0(r′)] as follows,

U(r) =

∫
dr′ρ0(r

′) u
[
|r − r′|, ρ0(r′)

]
, (5.1)
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where r′ and r denote the position of a point-like nucleon in the target and an incident

alpha particle, respectively. ρ0(r
′) is the ground-state density distribution of a target

nucleus. Figure 5.1 shows the definition of the spacial coordinates r and r′.

α Target

r
r'

Figure 5.1: Definition of the spacial coordinates in Eq. (5.1).

u [|r − r′|, ρ0(r′)] is empirically parameterized by five adjustable parameters [78] as

u
[
|r − r′|, ρ0(r′)

]
= −v

[
1 + βρ

2/3
0 (r′)

]
e−|r−r′|2/α2

v

−iw
[
1 + βρ

2/3
0 (r′)

]
e−|r−r′|2/α2

w , (5.2)

where v and w are the depth parameters, β is the density-dependence parameter, and

αv and αw are the range parameters for real and imaginary parts of the αN interaction,

respectively.

5.1.1 Density distribution of nucleus

The density distributions of the ground states of the target nuclei were calculated from

the charge distributions obtained by the electron scattering measurements. The charge

distributions of 12C, 16O, 24Mg, 28Si, and 40Ca were parameterized in the form of the

sum of Gaussian functions [79], while that of 20Ne was in the form of the two-parameter

Fermi model [80]. In the form of the sum of Gaussian function, the charge distribution

ρ̃c0(r) is expressed as follows [79],

ρ̃c0(r) =
∑
i

Ai

{
exp

[
−r −Ri

γ

2]
+ exp

[
−r +Ri

γ

2]}
, (5.3)

with

Ai = ZeQi

[
2π3/2γ3

(
1 +

2R2
i

γ2

)]−1

, (5.4)
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where Ri and Qi are the position and the amplitude of the Gaussians and the values

of Qi are normalized such that
∑

iQi = 1. Ri, Qi, and γ in Eq. (5.3) were determined

to reproduce the cross sections of the elastic electron scattering. In the form of the

two-parameter Fermi model, the charge distribution ρ̃c0(r) is expressed as follows [80],

ρ̃c0(r) =
ρ0

1 + exp [4.4(r − c)/t]
, (5.5)

where ρ0 is the saturation density, and c and t are determined to reproduce the cross

sections of the elastic electron scattering. The calculated charge distributions are nor-

malized to satisfy

4π

∫
ρ̃c0(r

′)r′2dr′ = Ze. (5.6)

We calculated the point-proton distributions of the target nuclei by unfolding their

charge distributions with the proton charge form factor [81–83]. The charge distribution

is expressed using the point-proton distribution ρp and the charge distribution of proton

ρ̃c,proton0 as follows,

ρ̃c0(r) =

∫
ρp(r

′)ρ̃c,proton0 (r − r′)dr′. (5.7)

The Fourier transform of Eq. (5.7) is given by,

Fc(q) = Gp
c(q) · Fp(q), (5.8)

where q, Fc(q), Fp(q), and Gp
c(q) are the momentum transfer, the charge form factor

of nucleus (Fourier transform of charge distribution), the form factor of point-proton

(Fourier transform of point-proton distribution), and the charge form factor of proton

(Fourier transform of proton charge distribution), respectively. Gp
c(q) is also called as

Sachs electric form factor of proton [84], and parameterized in Ref. [82] as follows,

Gp
c(q) =

1− 0.24τ

1 + 10.98τ + 12.82τ2 + 21.97τ3
, (5.9)

where τ = q2/4m2
nucleon and mnucleon is the mass of the nucleon. The point-proton distri-

butions are obtained by performing the inverse Fourier transformation of Fc(q)·[Gp
c(q)]

−1
.

Since Eq. (5.9) has a node at τ = 1/0.24, it is inappropriate to use Eq. (5.9) directly

for the calculation. In the present analysis, another parameterization was utilized in the
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calculations as follows [85],

Gp
c(q) =

0.312

1 + q2/6.0
+

1.312

1 + q2/15.02
− 0.709

1 + q2/44.08
+

0.085

1 + q2/154.2
. (5.10)

Figure 5.2 shows the experimental data compared with Eq. (5.9), whereas Fig. 5.3 shows

the comparison of Eqs. (5.9) and (5.10). As seen in Fig. 5.3, Eqs. 5.9 and 5.10 were satis-

factory consistent each other. The point-neutron distributions were assumed to be same

with the point-proton distributions for the self-conjugate A = 4n nuclei. The calculated

density distribution of the nuclei are shown in Fig. 5.4. The density distributions of

58Ni, 90Zr, 116Sn, 144Sm, and 208Pb were calculated by assuming that the point-proton

and point-neutron distributions have the same shape and normalizing ρ0(r
′) to satisfy

4π
∫
ρ0(r

′)r′2dr′ = A. A is the mass number of the nucleus. The density distribution

heavier than 40Ca were used to determine the interactions for 28Si and 40Ca in Sec. 5.1.2.

5.1.2 Determination of the effective αN interaction

The parameters in Eq. (5.2) were determined so as to reproduce the cross sections

of the elastic alpha scattering. We assumed the same range parameters for real and

imaginary parts of the interaction (αv = αw). The density-dependence parameter β was

fixed at −1.9 or 0.0. The parameter value of β = −1.9 was proposed in Ref. [78], and

widely used for the analysis of inelastic alpha scattering [4, 6–13, 16–18, 44, 71]. On the

other hand, the parameter value of β = 0.0 means that the interaction is independent

of the density of the target nucleus. For comparison between density-dependent and

independent interactions, we determined two different sets of the interaction parameters

with β = −1.9 and 0.0 for each nucleus. In this work, the αN interactions with β = 0.0

are denoted by “DI” (density independent), whereas those with β = −1.9 are denoted

by “DD” (density dependent).

The calculated cross sections with the best-fit parameter values to the elastic alpha

scattering data at Eα = 386 and 130 MeV are shown in Figs. 3.14 and 3.15, respectively.

The cross sections calculated with the DI and DD interactions are almost the same.

Tables 5.1 and 5.2 list the best-fit parameters for the DI and DD interactions at Eα = 130

and 386 MeV, respectively. The mass dependence of these parameters are shown in

Figs. 5.5–5.8.

As described in Sec. 2.8, there are no available data of the elastic alpha scattering off
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Figure 5.2: Charge form factor of proton (Gp
ch) [86–88] compared with Eq. (5.9). Taken

from Fig. 4.7 in Ref. [82].
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Figure 5.3: Charge form factor of proton (Gp
ch) parameterized by Eqs. (5.9) and (5.10).

The red solid line and the blue dashed line show Eqs. (5.10) and (5.9), re-
spectively.
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Figure 5.4: Calculated density distributions of the nuclei which are used to analyze the
present data.
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Table 5.1: Parameterization for the density-independent (DI) and density-dependent
(DD) αN interaction at Eα = 130 MeV.

Nucleus Int. type v w αv = αw β
(MeV) (MeV) (fm) (fm2)

12C DI 22.35 9.90 2.16 0.0
16O DI 18.48 7.34 2.26 0.0
24Mg DI 26.61 14.21 2.06 0.0
28Si DI 39.73 17.82 1.93 0.0
40Ca DI 36.72 19.25 1.97 0.0
12C DD 47.65 21.56 1.99 −1.9
16O DD 48.67 19.56 2.04 −1.9
24Mg DD 57.85 31.64 1.86 −1.9
28Si DD 74.36 34.24 1.79 −1.9
40Ca DD 71.14 37.69 1.81 −1.9

28Si and 40Ca at Eα = 386 MeV. Therefore, we could not determine the parameters of

the interactions for these nuclei by fitting the cross sections of elastic alpha scattering.

We fitted the elastic alpha scattering data of 58Ni, 90Zr, 116Sn, 144Sm, and 208Pb at

Eα = 386 MeV taken from Refs. [6, 18, 19] and determined the parameters for these

nuclei as shown in Figs. 5.5 and 5.6. Although the parameters scattered for the lighter

nuclei than 24Mg, we could see the approximate linear relation between the parameters

and A1/3 for the heavier nuclei. We interpolated the parameters for the heavier nuclei

as drawn by the solid lines in Figs. 5.5 and 5.6, and estimated the parameters for 28Si

and 40Ca at Eα = 386 MeV.
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Table 5.2: Parameterization for the density-independent (DI) and density-dependent
(DD) αN interaction at Eα = 386 MeV.

Nucleus Int. type v w αv = αw β
(MeV) (MeV) (fm) (fm2)

12C DI 18.89 13.39 2.01 0.0
16O DI 20.54 11.07 1.99 0.0
20Ne DI 20.96 19.69 1.89 0.0
24Mg DI 14.37 9.05 2.15 0.0
28Sia DI 12.63 8.94 2.11 0.0
40Caa DI 11.99 8.63 2.13 0.0
58Ni DI 13.99 8.51 2.11 0.0
90Zr DI 13.22 7.74 2.17 0.0
116Sn DI 12.24 7.33 2.21 0.0
144Sm DI 11.78 6.84 2.23 0.0
208Pb DI 11.62 6.97 2.29 0.0
12C DD 41.29 28.24 1.81 −1.9
16O DD 45.84 24.21 1.78 −1.9
20Ne DD 46.19 43.00 1.65 −1.9
24Mg DD 32.41 20.53 1.91 −1.9
28Sia DD 33.99 21.15 1.87 −1.9
40Caa DD 33.24 20.54 1.89 −1.9
58Ni DD 34.53 21.05 1.85 −1.9
90Zr DD 32.93 19.51 1.91 −1.9
116Sn DD 30.09 18.20 1.96 −1.9
144Sm DD 28.32 16.49 1.99 −1.9
208Pb DD 28.00 16.75 2.08 −1.9

a The interaction parameters were determined from the
global trend. See text for details.
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Figure 5.5: Depth and range parameters of the phenomenological density-independent
(DI) αN interaction at Eα = 386 MeV as a function of A1/3. The solid circles
show the range parameters αv = αw, whereas the upward and downward
triangles show the real and imaginary depth parameters v and w, respectively.
The solid lines are the results of the linear fitting to the parameters at A =
24–208. The dotted lines connect each parameter points to guide the eyes.
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Figure 5.6: Same as Fig. 5.5, but for the DD interaction at Eα = 386 MeV.
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Figure 5.7: Same as Fig. 5.5, but for the DI interaction at Eα = 130 MeV.
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Figure 5.8: Same as Fig. 5.5, but for the DD interaction at Eα = 130 MeV.
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5.2 Macroscopic transition densities and potentials

5.2.1 Transition densities

We used the macroscopic charge transition densities for isoscalar transitions calculated

from the standard macroscopic models [60, 61]. The charge transition density ρ̃
(λ)
Jf ,Ji

(r′)

for a transferred angular momentum λ with the initial-state spin Ji and the final-state

spin Jf is given as follows,

ρ̃
(0)
Jf ,Ji

(r′) = −α0

(
3 + r′

d

dr′

)
ρ̃0(r

′), (λ = 0)

(5.11)

ρ̃
(1)
Jf ,Ji

(r′) = − β1√
3R

[
3r′2

d

dr′
+ 10r − 5

3
⟨r′2⟩ d

dr′
+ ϵ

(
r
d2

dr′2
+ 4

d

dr′

)]
ρ̃0(r

′), (λ = 1)

(5.12)

ρ̃
(λ)
Jf ,Ji

(r′) = −δλ
d

dr′
ρ̃0(r

′), (λ ≥ 2)

(5.13)

where α0 is the dimensionless deformation parameter and δλ is the deformation length.

ρ̃0(r
′) is the ground-state charge density distribution. β1, R, and ⟨r′2⟩ are the collective

coupling parameter for the isoscalar dipole resonance, the half-density radius of the

Fermi charge distribution, and the root-mean-square radius of the ground-state charge

distribution, respectively.

If one excited state at the excitation energy Ex with the transferred angular momen-

tum λ exhausts 100% of the EWSR strength, α0, β1, and δλ are calculated from the sum

rule limit in Ref. [60], Ref. [61], and Refs. [89–91] as follows,

α2
0 =

2πℏ2

AmEx ⟨r′2⟩
, (5.14)

β2
1 =

6πℏ2

mAEx

R2

11 ⟨r′4⟩ − 25/3 ⟨r′2⟩2 − 10ϵ ⟨r′2⟩
, (5.15)

δ2λ =
λ(2λ+ 1)2

(λ+ 2)

2πℏ2

AmEx

⟨
r′2λ−2

⟩
⟨r′λ−1⟩2

, (5.16)

where A and m are the mass number of the target and the nucleon mass, respectively,

and ϵ = (4/E2 + 5/E0) ℏ2/3mA. E2 and E0 are the excitation energies of the giant

quadrupole and monopole resonances, respectively.
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The values of α0 and δλ were determined so as to reproduce the known electromag-

netic transition strengths [47, 72–76]. We need to pay attention to the fact that the

electromagnetic probes are sensitive to protons only in electric transitions, therefore the

electric transition strength carried by protons [B(Eλ)] is generally different from the

isoscalar strength [B(Eλ; IS)] carried by both protons and neutrons [44]. B(Eλ) and

B(Eλ; IS) with a multipolarity of λ are described as,

B(Eλ) = e2
2Jf + 1

2Ji + 1
|Mp(Eλ)|2, (5.17)

B(Eλ; IS) =
2Jf + 1

2Ji + 1
|Mp(Eλ) +Mn(Eλ)|2, (5.18)

where Mp and Mn are the proton and neutron transition matrix elements, respectively.

We assumed Mn(Eλ) = Mp(Eλ) = M(Eλ) considering the approximately conserved

charge symmetry in the light self-conjugate nuclei in the present work, and it leads to

be,

B(Eλ; IS) =
4B(Eλ)

e2
. (5.19)

M(Eλ) is calculated from the charge transition density ρ̃
(λ)
Jf ,Ji

(r′) as follows,

M(E0) =
√
4π

∫
ρ̃
(0)
Jf ,Ji

(r′)r′4dr′, (5.20)

M(E1) =

∫
ρ̃
(λ)
Jf ,Ji

(r′)r′5dr′, (5.21)

M(Eλ) =

∫
ρ̃
(λ)
Jf ,Ji

(r′)r′λ+2dr′ (λ ≥ 2). (5.22)

Therefore, we can determine the amplitudes α0, β1, and δλ in Eqs. (5.14)–(5.16) from

the known electromagnetic transition strengths B(Eλ) and monopole transition matrix

elements. Tables 5.3–5.6 show the excited states measured in the present work whose

electromagnetic transition strengths are reported in Refs.[47, 72–76] and the amplitudes

in Eqs. (5.14) and (5.16) which were determined to reproduce the B(Eλ) values.

5.2.2 Transition potentials

Considering the density dependence of the interaction u [|r − r′|, ρ0(r′)] to the lowest

order, the transition potential δUλ(r) was obtained by folding the transition density
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Table 5.3: Electromagnetic transition strengths B(E0) [47, 72–76] and the deformation
parameters α0 for the λ = 0 transitions. α0 is determined to reproduce B(E0)
for each transition.

Nucleus Ex Jπ B(E0) α0

(MeV) (e2fm4)
12C 7.65 0+2 30.3± 2.2 0.27± 0.01
16O 6.05 0+2 11.4± 0.8 0.102± 0.004
16O 12.05 0+3 16.2± 0.7 0.121± 0.003
20Ne 6.73 0+2 55± 30 0.15± 0.04
24Mg 6.43 0+2 44.9± 5.4 0.108± 0.006
28Si 4.98 0+2 46.2± 5.4 0.089± 0.005
40Ca 3.35 0+2 7.3± 0.2 0.0199± 0.003

Table 5.4: Electromagnetic transition strengths B(E2) [47, 72–76] and the deformation
lengths δ2 for the λ = 2 transitions. δ2 is determined to reproduce B(E2) for
each transition.

Nucleus Ex Jπ B(E2) δ2
(MeV) (e2fm4) (fm)

12C 4.44 2+1 38± 2 1.42± 0.04
16O 6.92 2+1 37± 1 1.02± 0.01
16O 9.84 2+2 0.67± 0.06 0.127± 0.006
16O 11.52 2+3 18.2± 0.8 0.67± 0.01
20Ne 1.63 2+1 330± 16 2.04± 0.05
24Mg 1.37 2+1 426± 9 1.93± 0.02
24Mg 4.24 2+2 33± 2 0.53± 0.02
24Mg 7.35 2+3 11.6± 4.6 0.31± 0.06
24Mg 9.00 2+5 3.2± 0.7 0.17± 0.02
24Mg 10.36 2+7 6.5± 1.6 0.24± 0.03
28Si 1.78 2+1 327± 6 1.38± 0.01
28Si 7.93 2+2 7.6± 1.1 0.19± 0.01
28Si 8.26 2+3 6.9± 2.7 0.20± 0.04
28Si 9.48 2+4 3.4± 1.6 0.178± 0.04
40Ca 3.90 2+1 90± 6 0.46± 0.02
40Ca 8.09 2+2 26.2± 1.8 0.250± 0.009
40Ca 8.58 2+3 12.3± 1.6 0.17± 0.01
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Table 5.5: Electromagnetic transition strengths B(E3) [47, 72–76] and the deformation
lengths δ3 for the λ = 3 transitions. δ3 is determined to reproduce B(E3) for
each transition.

Nucleus Ex Jπ B(E3) δ3
(MeV) (e2fm6) (fm)

12C 9.64 3−1 (7.2± 0.4)× 102 1.84± 0.05
16O 6.13 3−1 (1.38± 0.04)× 103 1.59± 0.02
20Ne 5.62 3−1 (1.8± 0.3)× 103 1.2± 0.1
24Mg 7.62 3−1 (1.5± 0.3)× 103 0.90± 0.097
24Mg 8.36 3−2 (2.6± 0.7)× 103 1.19± 0.16
28Si 6.88 3−1 (4.4± 0.7)× 103 1.25± 0.10
40Ca 3.74 3−1 (1.72± 0.08)× 103 1.35± 0.03
40Ca 6.29 3−2 (2.0± 0.4)× 103 0.46± 0.05

Table 5.6: Electromagnetic transition strengths B(E4) [47, 72–76] and the deformation
lengths δ4 for the λ = 4 transitions. δ4 is determined to reproduce B(E4) for
each transition.

Nucleus Ex Jπ B(E4) δ4
(MeV) (e2fm8) (fm)

16O 10.36 4+1 (3.4± 1.2)× 103 0.64± 0.11
20Ne 4.25 4+1 (3.8± 0.8)× 104 1.28± 0.13
24Mg 4.12 4+1 (2.6± 0.4)× 103 0.28± 0.02
24Mg 6.01 4+2 (3.5± 0.8)× 104 1.01± 0.12
28Si 4.62 4+1 (1.8± 0.2)× 104 0.56± 0.03
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ρ
(λ)
Jf ,Ji

(r′) with u [|r − r′|, ρ0(r′)] as follows,

δUλ(r) =

∫
dr′ρ

(λ)
Jf ,ji

(r′)

×
[
u
[
|r − r′|, ρ0(r′)

]
+ ρ0(r

′)
∂u [|r − r′|, ρ0(r′)]

∂ρ0(r′)

]
. (5.23)

The transition density ρ
(λ)
Jf ,Ji

(r′) is given by unfolding the charge transition density

ρ̃
(λ)
Jf ,Ji

(r′) with the proton-charge form factor.

5.3 The DWBA calculation

From the formalism described in Secs. 5.1 and 5.2, we calculated the optical-model

potential for the entrance channel U(r) and the transition potential δUλ(r). The optical-

model potential for the exit channel were assumed to be same as that of the entrance

channel in the present calculation. Thus, we performed the DWBA calculations for

the transitions whose strengths are known using the computer code ECIS-95 [77], and

the calculated cross sections are shown by the solid and dashed lines in Figs. 4.1–4.8.

The solid and dashed lines in the figures show the calculated cross sections using the

DI and DD interactions, respectively. The errors of the cross sections arose from the

uncertainties of the electromagnetic transition strengths are drawn for the DI interaction

only for simplicity.

It should be noted that there is no adjustable parameter in the present DWBA calcu-

lation because the αN interaction and transition densities are already adjusted by the

elastic alpha scattering data and the known B(Eλ) values.
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Chapter 6

Discussion

6.1 Comparison between experimental data and DWBA

calculations

The measured cross sections of the inelastic alpha scattering are compared with the

calculation using the DI and DD interactions in Fig. 4.1–4.7. Since the experimental

cross sections were obtained for the angular bins with a width of 0.4◦, the calculated

cross sections at each angle are averaged over the angular range of ±0.2◦.

As shown for the ∆L = 0 transitions in Figs. 4.1 and 4.2, the calculated cross sections

with the DD interactions are systematically larger than the measured cross sections.

This discrepancy is consistent with the previous results in Refs. [20, 58]. However, it

should be noted that the DWBA calculations using the DD interaction overestimate the

cross sections for not only the Hoyle state but also most of the 0+ states in 16O, 20Ne,

24Mg, 28Si, and 40Ca. This result suggests that the “missing monopole strength” is not

specific to the Hoyle state but universal for the ∆L = 0 transitions. On the other hand,

the calculated cross sections with the DI interactions are systematically smaller than

those with the DD interactions, and are close to the measured cross sections. Especially,

the calculation at Eα = 386 MeV reasonably well reproduces the experimental data,

and does not exhibit the puzzling situation about the missing monopole strength for the

Hoyle state.

The measured cross sections of the 0+2 states in 16O and 40Ca are much smaller than

the calculations as seen in Fig. 4.2. The angular distributions of the measured cross

sections for the 0+2 states are quite different from the calculations. The reason of the
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discrepancy is still unclear. Note that both of these states are the first excited states in

the double closed nuclei.

For the ∆L = 2 transitions shown in Figs. 4.3 and 4.4, the DWBA calculations using

the DI and DD interactions give almost the same results, and reasonably reproduce the

angular distributions of the cross sections except for the several states. For the 2+2 state

in 16O and the 2+3 state in 28Si, the calculated angular distributions of the cross sections

are considerably different from the experimental data. The measured cross sections

for these 2+ states are smaller than 1 mb/sr. Since the direct couplings between the

ground states and these states are weak, the multi-step processes would be important

to reproduce the cross sections for these states.

For the 2+3 and 2+5 states in 24Mg, the angular distributions of the measured cross

sections slightly shift to forward angles compared with the DWBA calculations. This

shift would be understandable if we assume that the radii of these states are larger than

those of the usual states. In Refs. [92, 93], it was theoretically shown that the angular

distribution of inelastic cross sections for the ∆L = 0 transition is not sensitive to the

radial expansion of the excited states. However, the recent theoretical study suggests

that the situation in the ∆L = 2 transition is different from the ∆L = 0 transition [94].

The shift of the angular distribution due to the radial expansion of the excited states is

more visible in the ∆L = 2 transition than in the ∆L = 0 transition, and is more visible

at lower reaction energies than at higher reaction energies. This is consistent with the

present results that the shift in the angular distribution is more visible at Eα = 130

MeV than at Eα = 386 MeV.

For the ∆L = 3 and 4 transitions shown in Figs. 4.5–4.7, the differences between the

calculations with the DI and DD interactions are small, although the DI interaction gives

slightly smaller cross sections.

6.1.1 Normalization factor for the calculated cross sections to fit the

experimental data

The calculated cross sections for the (α, α′) reactions at Eα = 386 MeV are fitted to the

experimental data by applying the normalization factor R. If the present DWBA calcu-

lation is correct, R should be unity. The normalization factor R is shown in Fig. 6.1 for

the ∆L = 0, 2, and 3 transitions. The R values for the DI interaction are systematically

closer to the unity than those for the DD interaction, although the R values for the 0+3
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Figure 6.1: Normalization factors for the calculated cross sections for the (α, α′) reactions
at Eα = 386 MeV to fit the experimental data. The solid squares and
circles are the normalization factors for the calculations with the DI and
DD interactions. The errors arise from the known electromagnetic transition
transitions [47, 57, 72–76]
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state in 16O and, the 0+2 states in 20Ne and in 28Si significantly deviate from the unity.

The cross section for the 0+2 states in 20Ne calculated with the DI interaction is con-

sistent with the experimental data at 0◦ within the error due to the uncertainty from the

electromagnetic transition strength. However, the disagreement between the calculation

and the experiment around the diffraction minimum causes the deviation of R from the

unity.

The cross section of the 0+2 state in 28Si was not measured at 0◦. Since the cross

sections near 0◦ are crucial for the reliable determination of the isoscalar monopole

transition strength, further measurements for these states should be done.

As discussed above, the DWBA calculation with the DI interaction gives a better de-

scription for inelastic alpha scattering than those with the DD interaction. Furthermore,

the DI interaction at Eα = 386 MeV is more applicable to fit the experimental data than

that at Eα = 130 MeV. This situations is naturally understood from the well-known fact

that direct processes are dominant and the reaction mechanism becomes simple above

E ∼ 100 MeV/u.

6.2 Characteristics of the macroscopic transition densities

and potentials

The transition densities and potentials in the present folding-model analyses should be

examined in order to clarify the reason why the DI and DD interactions give the different

results for the ∆L = 0 transitions (see Figs. 4.1 and 4.2). Figure 6.2 shows the transition

densities and potentials calculated based on the macroscopic model for the transitions

between the ground and excited states in 12C at Eα = 386 MeV.

The DI and DD interactions give similar potentials for the 2+1 state, whereas these

two interactions give significantly different transition potentials for the 0+2 state. The

transition density for the ∆L = 0 transition has sizable values around the center of

a nucleus (r = 0). Since the DD interaction is much weaker than the DI interaction

around the origin due to the density effect, the DD transition potential for the ∆L = 0

transition is much shallower than the DI transition potential in the inner region. On

the other hand, the transition density for the ∆L = 2 transition is almost zero at the

origin. Therefore, the DI and DD transition potentials are almost same for the ∆L = 2

transition.
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with the DD interaction.
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Historically, the density dependence of the phenomenological αN interaction was in-

troduced to obtain better description of elastic alpha scattering at backward angles [78].

Although the depth and range parameters used for the DI and DD interactions are

determined to fit elastic alpha scattering, cross sections of elastic alpha scattering are

sensitive to the nuclear wave functions at the surface only because of the strong absorp-

tion [95]. Since the interaction parameters are basically tuned at the surface where the

nuclear density is relatively low, in the present work, the DD interaction gives a good

description for the ∆L = 2 transition whose transition density enhances near the surface,

but does not for the ∆L = 0 transition in which the interior transition density gives a

sizable contribution to the transition potential. The weak absorption by the DD tran-

sition potential for the ∆L = 0 transitions causes the systematic overestimation of the

cross sections and “missing monopole strengths”. However, the R values for the ∆L = 0

transitions in Fig. 6.1 shows that the DWBA calculation with the DI interaction is still

unsatisfactory, and this fact suggests that the treatment of the density dependence in

the present effective αN interaction given in Eq. (5.2) is not suitable to describe the

inelastic alpha scattering.

It is noteworthy that the transition potential for the 0+1 –0
+
2 transition from the recent

full microscopic calculation using the realistic NN interaction [96] is similar to the

DI transition potential for the ∆L = 0 transition as shown in Fig. 6.3. Note that

the sign of the potential in Fig. 6.3 is different from that in the present calculation in

Fig. 6.2 due to the different definition of the sign. This fact suggests that a sophisticated

effective αN interaction could be constructed from the realistic NN interaction, and

such an interaction might give better description than the present empirical effective

αN interaction.

6.2.1 Dependence on the nuclear size

We found that the DI interaction at Eα = 386 MeV is better than the DD interaction

to reproduce the experimental cross sections, but the DD interaction was widely used to

analyze the alpha scattering data, especially for the study of the ISGMRs [3–9, 17]. The

difference between the DI and DD interactions should be checked by calculating the cross

sections to the 0+2 and 2+1 states in 40Ca, 90Zr, 116Sn, and 208Pb. All the procedures to

calculate the cross sections are same as in Sect. 5.3, but the transition strengths are set

at 100% of the EWSR strength. The calculated cross sections and transition potentials

81



-16

-14

-12

-10

-8

-6

-4

-2

0

2

0 1 2 3 4 5 6 7 8

co
u

p
li

n
g

 p
o

te
n

ti
al

 (
M

eV
)

radius (fm)

Real part
Imaginary part

Figure 6.3: The transition potential for the 0+1 –0
+
2 transition in the 12C(α, α′) reaction

at Eα = 172.5 MeV in Ref. [96]. Taken from Fig. 4 in Ref. [96].

are shown in Fig. 6.4 for the 0+2 states and in Fig. 6.5 for the 2+1 states. We can find that

the difference between the cross sections calculated with the DI and DD interactions is

smaller for heavier nuclei as shown by the values denoted as “ratio” in Fig. 6.4 which

are the ratios of the calculated cross sections at 0◦ with the DD interaction to those

with the DI interaction. We can understand this result from the fact that the inelastic

alpha scattering comes to less sensitive to the inner region with increasing nuclear radii

because the alpha particles are absorbed before they reach the inner region.

Eventually, the difference between the DI and DD interactions decreases with in-

creasing nuclear size, however, it is not negligible for the determination of the nuclear

incompressibility. Although the shapes of the angular distribution of the cross section

calculated with the DD interaction is quite similar to those with the DI interaction, the

absolute values of the cross sections with the DD interaction are larger than those with

the DI interaction. Thus, the shape of the strength distribution of the isoscalar monopole

transition estimated by the MDA with the DD interaction are similar to those with the

DI interaction, but the isoscalar monopole transition strengths estimated with the DD

interaction are much smaller than those with the DI interaction. For the determination

of the nuclear incompressibility, we need to reliably determine the averaged energy over
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the isoscalar monopole transitions exhausting most of the EWSR strengths as discussed

in Sec. 1.2.1. If the observed EWSR fraction is much smaller than the EWSR limit due

to the puzzle of the missing monopole strengths, the estimated KA values must be re-

considered. Therefore, the density dependence of the phenomenological αN interaction

should be treated carefully even for the heavy nuclei such as 208Pb.
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Figure 6.4: (a),(b),(e), and (f); Calculated cross sections of the inelastic alpha reaction to
the 0+2 states in 40Ca, 90Zr, 116Sn, and 208Pb at Eα = 386 MeV. The solid and
dashed lines are the results with the DI and DD interactions, respectively.
Each transition strength is set at 100% of the EWSR strength.
(c),(d),(g), and (h); The transition potentials for the reactions of (a),(b),(e),
and (f), respectively.
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Figure 6.5: Same as Fig. 6.4, but for the 2+1 states.
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6.3 Ambiguity in the DWBA calculations

Several approximations are introduced to the present DWBA analyses. (i) The macro-

scopic transition densities are used instead of the realistic microscopic transition densi-

ties. (ii) The distorting potentials for the exit channels are assumed to be the same with

the entrance channels. (iii) The interactions are approximated by the Gaussian-type

phenomenological αN interaction. (iv) The coupled-channel effects are ignored.

These approximations might cause errors in the present analyses. Ambiguities from

these approximations are discussed in the following by comparing the present DWBA

calculations with the reliable microscopic calculations. However, such reliable macro-

scopic calculations are available only for several nuclei such as 12C and 16O, therefore,

the ambiguities in 12C are discussed in this section.

Only the calculations with the DI interaction at Eα = 386 MeV are shown because

the situation does not essentially change even for other cases; for example, the DD

interaction or at Eα = 130 MeV.

6.3.1 Transition densities

The macroscopic transition densities for the 2+1 , 0
+
2 , and 3−1 states given by Eqs. (5.11)

and (5.13) are shown by the solid lines in the bottom panels of Fig. 6.6. In addi-

tion, the dashed lines represent the microscopic transition densities for the 0+1 –2
+
1 and

0+1 –0
+
2 transitions from the α-particle condensate wave functions (so-called THSR wave

functions) [97, 98] and the transition density for the 0+1 –3
−
1 transition from 3α RGM

calculations [40]. The amplitudes of the microscopic transition densities are normalized

to reproduce the known electromagnetic transition strengths [47, 57, 72–76]. The mi-

croscopic transition densities are considerable different from the macroscopic transitions

densities.

The cross sections for the 2+1 , 0
+
2 , and 3−1 states at Eα = 386 MeV obtained from

the DWBA calculations using the microscopic and macroscopic transition densities are

compared in the top panels of Fig. 6.6. The solid lines are the same calculations as

described in Sect. 5.3 using the DI interaction and the macroscopic transition densities.

The dashed lines are the calculations using the DI interaction and the microscopic tran-

sition densities. The differences between the solid and dashed lines are very small for

all of the 2+1 , 0
+
2 and 3−1 states in spite of the differences in the transition densities.

although the macroscopic transition densities shown by the solid lines in the bottom
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Figure 6.6: Calculated cross sections and transition densities for the 2+1 , 0+2 , and 3−1
states in 12C at Eα = 386 MeV. The solid circles with error bars are the
experimental data. The solid lines show the DWBA calculations using the
DI interaction and macroscopic transition densities which are same with the
solid lines in Figs. 4.1, 4.3, and 4.5. The dashed lines show the DWBA
calculations using the DI interaction and the microscopic transition densities
from Ref. [40, 97, 98]. The dotted lines are the same DWBA calculations
shown by the dashed lines except that the distorting potentials for the exit
channels are calculated by folding the density distributions of the excited
states with the DI interaction. The dashed and dotted lines are almost the
same for the 2+1 and 3−1 states. In the bottom panels, the solid lines show the
macroscopic transition densities given by unfolding the macroscopic charge
transition densities [Eqs. (5.11) and (5.13)] with the proton charge form
factor, whereas the dashed lines are the microscopic transition densities (See
text).
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panels are considerably different from the microscopic transition densities. These results

show that the ambiguities due to differences in transition densities are negligibly small

in the present DWBA calculation.

6.3.2 Distorting potentials

In order to examine ambiguities from the distorting potentials, we replace the distorting

potentials for the exit channels with the diagonal potentials for the excited states. The

diagonal optical-model potentials are calculated by folding the density distributions of

the excited states from Refs. [40, 97, 98] with the DI interaction. The calculated cross

sections are represented by the dotted lines in the top panels of Fig. 6.6. The cross

sections for the 2+1 and 3−1 states do not change even if the distorting potentials are

replaced. For the 0+2 state, on the other hand, the cross sections slightly change when

the distorting potentials are replaced. This result is explained from the fact that the

radius of the 0+2 state is much larger than that of the ground state [40, 97, 98] and thus,

the distorting potential for the exit channel is very different from that for the entrance

channel. However, the variation of the cross sections due to the distorting potential is

acceptably small.

6.3.3 Phenomenological αN interaction

The present DWBA calculation using the single-folding potentials assumes the α particle

is point particle, and the phenomenological αN interaction is empirically determined to

reproduce elastic alpha scattering. This interaction is really phenomenological, and

hence it does not established on the realistic NN interaction. The present DWBA

calculation should be compared with the calculation using the realistic NN interaction.

In the following calculations, we used the diagonal potentials for the excited states as

the distorting potential for the exit channels as performed in Sec. 6.3.2.

For comparison, we carried out the DWBA calculation using the NN G-matrix inter-

action by the Melbourne group [99]. The transition potentials were calculated by doubly

folding the projectile density distribution and the target transition-density distribution

with the NN G-matrix interaction. The density distributions used with the NN G-

matrix interaction are taken from the 3α RGM calculation [40] as the same prescription

with Ref. [96]. The calculated cross sections for the 2+1 , 0
+
2 , and 3−1 states in 12C with

the Melbourne and DI interactions are shown by the solid and dashed lines in Fig. 6.7,
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respectively. The dashed lines calculated with the DI interaction are same with the

dotted lines in the top panels of Fig. 6.6. Both the calculations reasonably reproduce

the diffraction pattern of the measured cross sections. The cross sections with the DI

interaction are systematically smaller than those with the Melbourne interaction, and

are close to the experiment.
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Figure 6.7: Calculated cross sections of the inelastic alpha scattering at Eα = 386 MeV
exciting the 2+1 , 0

+
2 , and 3−1 states in 12C. The solid and dashed lines show

the DWBA calculations with the Melbourne [99] and DI interactions, respec-
tively. The solid circles with error bars are the experimental data.

6.3.4 Coupled-channel effect

The coupled-channel (CC) effect is ignored in the present DWBA calculation, but it

might not be negligible. Especially, it is pointed out that the coupling between the

0+2 and 2+2 states in 12C is very strong [40, 100]. The CC calculation for the inelastic

alpha scattering exciting the 2+1 , 0
+
2 , and 3−1 states in 12C using the DI interaction at

Eα = 386 MeV was compared with the DWBA calculation in the top panels of Fig. 6.8.

The distorting and transition potentials are calculated by using the wave functions from

the 3α RGM calculation for the 3−1 state [40] and the THSR wave functions for the 0+1 ,

2+1 , 0
+
2 , 2

+
2 , and 4+1 states [97, 98].

The dotted lines show the CC calculation taking into account the coupled-channel

effects between the 6 states (0+1 , 2
+
1 , 0

+
2 , 3

−
1 , 2

+
2 , and 4+1 ), while the dashed lines show

the CC calculation taking into account the coupled-channel effects between the 5 states

except the 2+2 state. The solid lines show the DWBA calculation, which is the same

with the dashed lines in Fig. 6.7. The CC effects for the 2+1 and 3−1 states are negligibly

small, and the DWBA and CC calculations give similar results except for the 0+2 state.

The DWBA and 5-state CC calculations give similar results even for the 0+2 state, but

the 6-state CC calculation gives smaller cross section at forward angles than the other
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Figure 6.8: Calculated cross sections of inelastic alpha scattering at Eα = 386 MeV
exciting the 2+1 , 0

+
2 , and 3−1 states in 12C. The top panels are the DWBA

and CC calculations with the DI interaction, and the bottom panels are the
calculations with the Melbourne interaction [96]. The solid lines show the
DWBA calculation. The dotted and dashed lines respectively show the 6-
state and 5-state CC calculations (see text). The dotted and dashed lines
are almost the same for the 2+1 and 3−1 states. The solid circles with error
bars are the experimental data.
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calculations. In addition, the diffraction pattern of the angular distribution in the 6-

state CC calculation slightly shifts to forward angles. This result reflects the fact that

the coupling between the 0+2 and 2+2 states is strong.

The reduction of the cross section for the 0+2 state is essentially the same phenomenon

with the enhanced absorption in the α+12C(0+2 ) channel proposed in Ref. [58]. It should

be noted that the DWBA calculations are better to reproduce the experimental data than

the 6-state CC calculation. One possible explanation is that the coupling between the

0+2 and 2+2 states in the present CC calculation is too strong. The transition strength

between the 0+2 and 2+2 states has never been measured, therefore the experimental study

is strongly desired.

Recently, a full microscopic calculation of the inelastic alpha scattering from 12C

using the Melbourne NN G-matrix interaction was performed [96]. The CC calculations

reported in Ref. [96] are shown in the bottom panels of Fig. 6.8. The dotted and dashed

lines show the 6-state and 5-state CC calculations, respectively. On the other hand,

the solid lines show the DWBA calculations same with the solid lines in Fig. 6.7. The

situation is quite similar to the calculation with the DI interactions. The coupling to

the 2+2 state is negligibly small for the 2+1 and 3−1 states but not for the 0+2 state. The

6-state CC calculation gives smaller cross sections of the 0+2 state than the 5-state CC

calculations at forward angles, and the diffraction pattern of the angular distribution

in the 6-state CC calculation slightly shifts to forward angles. The full microscopic CC

calculation slightly underestimates the experimental cross sections for the 0+2 state at

forward angles and overestimates at backward angles. The three-nucleon force possibly

decreases the cross section at backward angles and improves the calculation as discussed

in Ref. [96].

As discussed above, the CC effects are negligibly small in most cases of the inelastic

alpha scattering although the CC effects sometimes give sizable modification to cross

sections. The DWBA calculation using the DI interaction at Eα = 386 MeV reasonably

reproduces the experimental results even for the 0+2 state in 12C.

6.4 Determination of the transition strengths

Among the excited states observed in the present work listed in Table 4.1, there are

the excited states whose electromagnetic transition strengths are not reported in the

previous studies. As discussed in Sect. 6.1 that the DWBA calculation with the DI
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interaction gives a better description for the inelastic alpha scattering than that with

the DD interaction for the excited states whose transition strengths are known. Thus,

we should determine the transition strengths for those states from the present data with

the DI interaction assuming the linear proportionality between the (α, α′) cross section

and the relevant transition strength.

The DWBA calculations using the DI interaction were performed and fitted to the

measured cross sections by changing the amplitudes of the transition densities (α0 and

δλ) in Eqs. (5.14) and (5.16). The fitted results are shown by the solid lines in Fig. 4.9,

whereas the calculated cross section using the DD interactions with the same amplitudes

with the DI interaction are shown by the dashed lines.

The obtained transition strengths are summarized in Table. 6.1. The errors for the

strengths originate from the uncertainty of the fitting. The multipolarity λ in Table 6.1

is equal to the spin of the excited state because the spin of the ground state in the

self-conjugate A = 4n nuclei is zero.

Table 6.1: Measured transition strengths between the ground and excited states in 24Mg,
28Si, and 40Ca.

Nucleus Eα Ex Jπ B(Eλ; IS) EWSR fraction
(MeV) (MeV) (fm2λ)a (%)

24Mg 130 9.31 0+3 46± 31 2.3± 1.6
24Mg 386 9.31 0+3 64± 48 3.2± 2.4
28Si 130 6.69 0+3 27± 13 0.77± 0.36
28Si 130 10.18 3−2 (6.0± 0.5)× 103 6.8± 0.5
28Si 130 10.51 2+5 12± 3 0.60± 0.17
40Ca 130 8.28 0+3 91± 28 1.8± 0.6
40Ca 130 8.37 4+1 (2.0± 0.4)× 105 1.2± 0.2

a The unit is fm4 for λ = 0.

The calculated cross sections fitted to the experiment reproduce the experimental

data reasonably well over all measured angles except for the 0+3 state in 24Mg at both

Eα = 130 and 386 MeV. The third diffraction maxima of the calculated cross sections

for this state are about four times smaller than those of the measured cross sections, and

this is one reason why the errors in the deduced B(Eλ; IS) are quite large. However, the

calculated cross sections for the 0+3 state in 24Mg reproduce the experiment at forward

angles including 0◦.

In contrast to the cases of λ = 0 and λ ≥ 2 transitions, the situation for the λ = 1
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transitions is not simple. Since the E1 transition between isoscalar states is forbidden to

the first order, the observed E1 transitions between the isoscalar states are competitive

processes between isovector transitions allowed by the isospin symmetry breaking and

higher-order isoscalar transitions as squeezing oscillation. We can not directly compare

the absolute values of the calculated cross sections with the experimental data. because

these two types of E1 transitions have different transition densities and the known

electromagnetic transition strengths B(E1) can not be related to the collective coupling

parameter of the transition density in Eq. (5.12).

Therefore, we determined the collective coupling parameter β1 in Eq. (5.12) to fit

the first diffraction maxima of the cross sections assuming that these E1 transitions are

purely higher-order isoscalar transitions. As discussed in Sec. 6.1, the diffraction pattern

of the cross sections are reproduced well by the DWBA calculations using both the DI

and DD interactions, and the DI interactions gives systematically smaller cross sections

than the DD interactions as in the other multipole transitions.

The deduced coupling parameter β1 is compared with βEWSR
1 given by Eq. (5.15)

which corresponds to 100% of the EWSR strengths in Table 6.2. The EWSR fractions

for β1 are also shown.

Table 6.2: Deduced collective coupling parameters β1 and that for the transition with
100% of the EWSR strength (βEWSR

1 ). The experimental data and calculated
cross sections are shown in Fig. 4.8.

Nucleus Eα Ex Jπ β1 EWSR fraction βEWSR
1

(MeV) (MeV) (%)
12C 130 10.84 1−1 1.45× 10−2 1 1.45× 10−1

16O 130 7.12 1−1 3.02× 10−2 6 1.27× 10−1

24Mg 130 9.15 1−1 4.11× 10−2 0.3 7.51× 10−1

28Si 130 8.90 1−1 6.47× 10−3 1 6.55× 10−2

28Si 130 9.93 1−2 9.03× 10−3 2 6.20× 10−2

40Ca 130 5.90 1−1 4.11× 10−3 7 1.56× 10−2
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Chapter 7

Summary

Strength distributions in excitation-energy spectra of atomic nuclei provide insights into

the nuclear structure because they directly reflect nuclear wave functions. Excitation

strength is fundamentally the overlap between wave functions of ground and excited

states, and energy is an eigenvalue of a nuclear Hamiltonian associated with the wave

function. The excitation strength and energy are experimental observables, and can be

directly compared with theoretical calculations of the nuclear structures. Therefore, the

determination of the strength distribution is important to study the nuclear structure,

for example, the cluster structures in nuclei.

The inelastic alpha scattering has selectivity to isoscalar natural-parity transitions

where transferred spin and isospin are ∆S = 0 and ∆T = 0 since both spin and isospin of

the alpha particle are zero. Therefore, the inelastic alpha scattering is useful to determine

the strength distribution in excitation-energy region where several states overlap each

other. In addition, the MDA works well to separate the strength distributions of the

different transferred angular momenta ∆L, and it enables us to obtain the strength

distribution of the isoscalar natural-parity excitations even from continuous excitation-

energy spectra where many states with large widths overlap each other.

The MDA is established on the assumption that the cross sections of the inelastic alpha

scattering are reasonably well described by the DWBA calculation and are approximately

proportional to the relevant transition strength. However, a result contradictory to this

linear proportional relation was reported in the monopole excitation to the Hoyle state

from the ground state in 12C. It was claimed in Ref. [58] that this problem was due to the

reaction mechanism of the inelastic alpha scattering, and the inelastic alpha scattering
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might strongly couple to the nuclear structure.

Therefore, it had been very urgent to confirm whether this puzzle of the inelastic alpha

scattering really exists or not. If it exists, the puzzle should be solved, otherwise the

strength distribution determined by the MDA of the inelastic alpha scattering might not

be reliable. Nevertheless, the systematic measurement of the inelastic alpha scattering

had not been performed nor examined to check the reliability of the theoretical calcula-

tion used in the MDA until now. In the present work, we systematically measured the

cross sections of the inelastic alpha scattering at Eα = 130 and 386 MeV exciting low-

lying discrete states in 12C, 16O, 20Ne, 24Mg, 28Si and 40Ca for the first time. In addition,

the comparison of the measured cross sections with the “parameter-free” DWBA calcu-

lation was carried out. All of the adjustable parameters in the DWBA calculation were

determined by the electromagnetic transition strengths and the elastic alpha scattering,

therefore there is no room for so-called “the puzzle of missing monopole strength” if the

consistency between the measured cross sections and the present DWBA calculations is

confirmed.

It was found that the DWBA calculation with the DI interaction at Eα = 386 MeV

was better than with the DD interaction and the calculation with the DI interaction at

Eα = 386 MeV was better than that at Eα = 130 MeV, and thus the inadequate density

dependence in the effective αN interaction caused the “puzzle of missing monopole

strength” by overestimating the cross sections for the ∆L = 0 transitions. This puzzle

was not specific to the Hoyle state in 12C but universally observed in all of the ∆L = 0

transitions.

We also studied ambiguities of the DWBA calculation from the distorting potentials,

phenomenological interaction, transition densities, and coupled-channel effects. The

ambiguities originating from these factors in the present calculations were negligibly

small in most cases of the inelastic scattering, although the CC effects sometimes gave

sizable modification to cross sections.

It was also shown that there were still some uncertainties even for the DWBA calcu-

lations with the DI interaction to determine the strength distribution. Therefore, a new

effective αN interaction with a more sophisticated formula is necessary. The present

results should provide the unique and important information for theoretical studies to

develop a new reliable αN interaction.
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Appendix A

Data tables of cross sections

A.1 Elastic scattering

A.1.1 Eα = 130 MeV

Table A.1: 12C(α, α) elastic,
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

5.0 9.74×103 5.3×102

6.0 6.97×103 3.9×102

6.2 6.40×103 3.4×102

7.3 3.92×103 2.1×102

8.3 1.81×103 9.9×101

9.4 7.72×102 4.4×101

10.5 2.06×102 1.1×101

11.5 6.59×101 3.9
12.6 1.02×102 5.9
13.7 1.93×102 1.1×101

14.7 2.48×102 1.3×101

15.8 2.65×102 1.3×101

16.9 2.17×102 1.2×101

18.0 1.70×102 9.1
19.0 1.10×102 5.9
20.1 7.24×101 3.9
21.1 4.82×101 2.7
22.2 4.46×101 2.5
23.3 4.79×101 2.6

Table A.1: (Continued)

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

24.3 5.53×101 3.0
25.4 5.73×101 3.1
26.5 5.87×101 3.2
27.5 5.29×101 3.1
28.6 4.75×101 2.8
29.6 3.78×101 2.2
30.7 3.20×101 1.9
31.7 2.60×101 1.5
32.8 2.26×101 1.3
33.8 1.93×101 1.1
34.9 1.79×101 1.1
35.9 1.62×101 9.5×10−1

37.0 1.51×101 8.9×10−1

38.0 1.24×101 7.2×10−1

39.1 1.14×101 6.7×10−1

40.1 9.43 5.5×10−1

41.1 8.11 4.8×10−1

41.9 7.00 5.1×10−1

43.7 4.77 3.5×10−1
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Table A.2: 16O(α, α) elastic,
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

4.7 1.53×104 8.4×102

5.7 1.00×104 5.6×102

5.8 9.82×103 5.2×102

6.8 5.35×103 2.9×102

7.8 1.91×103 1.0×102

8.8 6.23×102 3.5×101

9.8 9.41×101 5.5
10.8 8.55×101 5.0
11.8 2.34×102 1.4×101

12.8 3.54×102 2.0×101

13.8 3.68×102 1.9×101

14.8 3.14×102 1.7×101

15.8 1.95×102 1.1×101

16.8 1.14×102 6.6
17.8 5.38×101 3.1
18.8 3.72×101 2.2
19.8 4.31×101 2.5
20.8 6.27×101 3.6
21.8 7.37×101 4.2
22.8 8.04×101 4.5
23.8 6.97×101 3.8
24.8 6.25×101 3.4
25.8 4.61×101 2.7
26.8 4.09×101 2.4
27.8 3.47×101 2.0
28.8 3.39×101 2.0
29.8 3.26×101 1.9

Table A.2: (Continued)

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

30.7 3.35×101 2.0
31.7 3.14×101 1.9
32.7 3.05×101 1.8
33.7 2.59×101 1.5
34.7 2.36×101 1.4
35.7 1.91×101 1.1
36.6 1.62×101 9.7×10−1

37.6 1.30×101 7.8×10−1

38.6 1.11×101 6.7×10−1

39.3 9.05 6.8×10−1

41.0 7.83 4.9×10−1
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Table A.3: 24Mg(α, α) elastic,
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

5.4 2.17×104 1.2×103

6.3 1.06×104 5.8×102

7.3 1.79×103 9.5×101

8.2 3.04×102 1.8×101

9.1 6.50×101 3.9
10.1 3.46×102 1.9×101

11.0 5.97×102 3.5×101

11.9 6.50×102 3.8×101

12.9 4.82×102 2.7×101

13.8 2.99×102 1.8×101

14.8 1.19×102 6.6
15.7 4.29×101 2.5
16.6 3.07×101 1.8
17.6 5.49×101 3.1
18.5 7.82×101 4.6
19.4 8.67×101 5.0
20.3 7.49×101 4.3
21.3 5.68×101 3.4
22.2 3.51×101 2.0
23.1 2.49×101 1.5
24.1 1.95×101 1.2
25.0 2.12×101 1.3
25.9 2.34×101 1.4
26.9 2.55×101 1.5
27.8 2.36×101 1.4
28.7 2.13×101 1.3
29.6 1.68×101 1.0
30.6 1.38×101 8.5×10−1

31.5 1.07×101 6.8×10−1

32.4 9.56 6.1×10−1

33.3 8.57 5.6×10−1

34.2 8.29 5.4×10−1

35.2 7.22 4.8×10−1

36.1 6.65 4.5×10−1

Table A.3: (Continued)

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

36.3 6.26 4.4×10−1

37.4 5.17 3.6×10−1

38.7 4.36 3.1×10−1

39.8 3.69 2.6×10−1

42.1 2.51 1.8×10−1

44.4 1.51 1.1×10−1

46.4 1.13 7.9×10−2

48.6 7.17×10−1 5.0×10−2

51.0 4.99×10−1 3.5×10−2

52.9 3.40×10−1 2.4×10−2

55.6 2.37×10−1 1.7×10−2

57.4 1.57×10−1 1.1×10−2

59.5 1.02×10−1 7.1×10−3

61.2 6.77×10−2 4.7×10−3

64.3 3.53×10−2 2.5×10−3

67.5 2.08×10−2 1.5×10−3

70.4 1.11×10−2 7.8×10−4
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Table A.4: 28Si(α, α) elastic,
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

8.0 2.96×102 1.7×101

9.0 2.07×102 1.2×101

9.9 6.99×102 3.8×101

10.8 9.78×102 5.5×101

11.7 9.55×102 5.4×101

12.6 6.04×102 3.2×101

13.5 3.19×102 1.7×101

14.4 1.09×102 6.0
15.4 4.06×101 2.4
16.3 5.82×101 3.4
17.2 1.07×102 6.0
18.1 1.23×102 6.9
19.0 1.21×102 6.8
19.9 8.94×101 5.1
20.8 5.85×101 3.4
21.8 3.32×101 2.0
22.7 2.43×101 1.5
23.6 2.63×101 1.6
24.5 3.31×101 1.9
25.4 3.60×101 2.1
26.3 3.66×101 2.2
27.2 3.13×101 1.8
28.1 2.60×101 1.5
29.0 1.97×101 1.2
29.9 1.69×101 1.0
30.8 1.48×101 9.0×10−1

31.7 1.49×101 9.0×10−1

32.6 1.41×101 8.4×10−1

33.6 1.38×101 8.3×10−1

34.5 1.30×101 8.0×10−1

35.4 1.17×101 7.3×10−1

34.5 1.30×101 7.9×10−1

36.1 1.06×101 6.7×10−1

37.7 8.84 5.6×10−1

39.3 7.66 4.9×10−1

40.9 5.65 3.5×10−1

Table A.4: (Continued)

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

42.5 3.37 2.4×10−1

44.1 2.77 2.1×10−1

45.6 2.10 1.7×10−1

47.2 1.44 1.3×10−1

48.8 9.29×10−1 9.2×10−2
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Table A.5: 40Ca(α, α) elastic,
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

4.1 6.59×104 3.5×103

5.0 3.28×104 1.8×103

5.1 2.83×104 1.5×103

6.0 1.08×104 5.9×102

6.8 2.05×103 1.1×102

7.7 5.86×102 3.3×101

8.6 1.00×103 5.6×101

9.5 1.54×103 8.4×101

10.4 1.39×103 7.9×101

11.3 9.16×102 5.3×101

12.1 3.38×102 1.8×101

13.0 7.17×101 4.2
13.9 3.17×101 1.9
14.8 1.23×102 6.8
15.7 2.02×102 1.2×101

16.5 2.19×102 1.3×101

17.4 1.60×102 8.9
18.3 9.42×101 5.4
19.2 3.62×101 2.1
20.1 1.96×101 1.2
20.9 2.52×101 1.5
21.8 3.72×101 2.2
22.7 4.10×101 2.4
23.6 3.63×101 2.2
24.4 2.37×101 1.4
25.3 1.47×101 9.3×10−1

26.2 9.24 6.2×10−1

27.1 9.22 6.2×10−1

27.9 1.14×101 7.4×10−1

28.8 1.36×101 8.7×10−1

29.7 1.35×101 8.6×10−1

30.6 1.25×101 8.1×10−1

31.4 9.99 6.6×10−1

32.3 8.69 5.9×10−1

33.2 7.53 5.2×10−1

34.1 7.39 5.1×10−1

Table A.5: (Continued)

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

34.8 7.00 6.6×10−1

36.3 7.37 4.7×10−1

37.9 6.29 4.2×10−1

39.4 3.87 4.3×10−1

41.0 3.45 3.2×10−1

42.5 3.17 4.0×10−1

44.0 2.76 2.7×10−1

45.6 1.72 1.4×10−1

47.1 1.26 1.1×10−1

48.6 8.94×10−1 6.5×10−2

50.2 6.69×10−1 6.0×10−2

51.7 4.27×10−1 5.4×10−2

53.2 3.76×10−1 5.4×10−2

54.7 3.02×10−1 4.8×10−2

56.2 1.97×10−1 4.3×10−2

57.8 1.65×10−1 3.9×10−2

59.3 1.05×10−1 1.4×10−2
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A.1.2 Eα = 386 MeV

Table A.6: 12C(α, α) elastic,
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.7 2.03×104 1.0×103

3.3 1.73×104 8.7×102

3.8 1.35×104 6.8×102

4.3 1.02×104 5.1×102

4.3 1.15×104 5.8×102

4.8 7.52×103 3.8×102

5.4 5.06×103 2.6×102

5.9 3.05×103 1.5×102

6.2 2.13×103 1.1×102

6.7 1.19×103 6.0×101

7.3 6.15×102 3.1×101

7.8 3.69×102 1.9×101

8.1 3.04×102 9.2
8.6 3.02×102 9.1
9.2 3.20×102 9.6
9.7 3.26×102 9.8
9.0 3.09×102 9.4
9.6 3.25×102 9.8

10.1 3.19×102 9.6
10.6 2.89×102 8.8
11.2 2.25×102 6.8
11.7 1.83×102 5.5
12.3 1.38×102 4.2
12.8 9.83×101 3.0
13.3 5.74×101 1.7
13.9 4.04×101 1.2
14.4 2.83×101 8.7×10−1

15.0 2.06×101 6.4×10−1

15.5 1.52×101 4.7×10−1

16.0 1.37×101 4.2×10−1

16.6 1.25×101 3.9×10−1

17.1 1.13×101 3.5×10−1

17.7 9.08 2.8×10−1

18.2 7.83 2.4×10−1

Table A.6: (Continued)

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

18.7 6.45 2.0×10−1

19.3 4.98 1.5×10−1

19.8 3.00 9.1×10−2

20.4 2.26 6.8×10−2

20.9 1.64 5.0×10−2

21.4 1.18 3.6×10−2

22.0 7.36×10−1 2.3×10−2

22.5 5.80×10−1 1.8×10−2

23.0 4.63×10−1 1.4×10−2

23.6 3.85×10−1 1.2×10−2

24.1 2.99×10−1 9.2×10−3

24.7 2.59×10−1 8.0×10−3

25.2 2.16×10−1 6.7×10−3

25.7 1.79×10−1 5.6×10−3

26.3 1.26×10−1 3.9×10−3

26.8 1.04×10−1 3.2×10−3

27.3 7.93×10−2 2.5×10−3

27.9 6.10×10−2 1.9×10−3

28.4 3.96×10−2 1.3×10−3

28.9 3.20×10−2 1.0×10−3

29.5 2.50×10−2 8.2×10−4

30.0 1.99×10−2 6.7×10−4

30.5 1.47×10−2 5.2×10−4

31.1 1.25×10−2 4.6×10−4

31.6 1.01×10−2 3.8×10−4

32.1 8.38×10−3 3.3×10−4

32.7 5.81×10−3 2.2×10−4

33.2 4.82×10−3 1.9×10−4

33.7 3.99×10−3 1.7×10−4

34.3 3.01×10−3 1.3×10−4
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Table A.7: 20Ne(α, α) elastic,
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

5.1 9.44×102 5.6×101

5.6 3.57×102 2.7×101

7.3 5.19×102 2.5×101

7.8 5.35×102 2.6×101

8.3 4.77×102 2.3×101

8.8 3.84×102 1.9×101

9.0 3.40×102 1.6×101

9.5 2.39×102 1.1×101

10.0 1.56×102 7.7
10.5 9.72×101 5.0
10.7 6.75×101 3.4
11.2 4.73×101 2.4
11.7 3.98×101 2.1
12.2 3.47×101 1.8
12.4 3.50×101 1.7
12.9 3.24×101 1.6
13.4 2.84×101 1.4
13.9 2.36×101 1.2
14.1 2.10×101 1.1
14.6 1.64×101 8.5×10−1

15.1 1.18×101 6.3×10−1

15.6 8.18 4.6×10−1

15.8 6.55 3.8×10−1

16.3 4.56 2.8×10−1

16.8 3.30 2.1×10−1

17.3 2.46 1.7×10−1

17.5 2.06 1.2×10−1

18.0 1.66 1.0×10−1

18.5 1.43 9.0×10−2

19.0 1.24 8.0×10−2

19.2 1.09 6.5×10−2

19.7 8.48×10−1 5.2×10−2

20.2 7.01×10−1 4.5×10−2

20.7 5.18×10−1 3.5×10−2

21.0 4.47×10−1 3.0×10−2

21.4 3.34×10−1 2.4×10−2

21.9 2.43×10−1 1.9×10−2

22.3 1.71×10−1 1.4×10−2

Table A.7: (Continued)

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

22.6 1.50×10−1 1.3×10−2

23.1 1.05×10−1 9.8×10−3

23.6 8.39×10−2 8.3×10−3

24.0 7.11×10−2 7.4×10−3

24.3 6.90×10−2 7.3×10−3

24.8 4.73×10−2 5.6×10−3

25.2 4.06×10−2 5.1×10−3

25.7 2.86×10−2 4.0×10−3

26.0 3.31×10−2 3.4×10−3

26.4 2.13×10−2 2.5×10−3

26.9 1.87×10−2 2.3×10−3

27.4 1.38×10−2 1.9×10−3
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Table A.8: 24Mg(α, α) elastic,
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

5.3 8.78×102 5.3×101

5.7 5.00×102 3.9×101

6.2 6.96×102 4.6×101

6.7 9.11×102 5.4×101

7.0 1.09×103 4.5×101

7.5 1.10×103 4.4×101

8.0 9.65×102 4.1×101

8.4 7.40×102 3.7×101

9.4 3.28×102 1.4×101

9.8 1.91×102 1.1×101

10.3 1.22×102 8.4
10.8 8.48×101 7.2
11.7 7.60×101 8.5
12.2 7.69×101 8.4
12.7 7.10×101 8.1
13.1 5.74×101 7.4
14.1 3.11×101 1.4
14.5 2.18×101 1.1
15.0 1.44×101 9.3×10−1

15.5 9.56 7.6×10−1

16.4 5.58 6.6×10−1

16.9 4.80 6.1×10−1

17.4 4.05 5.7×10−1

17.8 3.56 5.2×10−1

18.8 2.20 2.8×10−1

19.2 1.67 2.4×10−1

19.7 1.14 2.0×10−1

20.2 8.5×10−1 1.7×10−1

21.1 4.49×10−1 9.8×10−2

21.6 3.67×10−1 8.4×10−2

22.1 2.37×10−1 6.9×10−2

22.5 1.96×10−1 6.3×10−2

23.5 1.28×10−1 3.1×10−2

23.9 1.04×10−1 2.8×10−2

24.4 7.85×10−2 2.4×10−2

24.9 6.18×10−2 2.2×10−2

25.8 2.84×10−2 1.3×10−2

26.3 2.52×10−2 1.2×10−2

Table A.8: (Continued)

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

26.7 1.68×10−2 8.9×10−3

27.2 1.17×10−2 7.7×10−3

28.8 2.7×10−3 1.3×10−3
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A.2 Inelastic scattering

A.2.1 Eα = 130 MeV

Table A.9: 12C(α, α′) inelastic,
Ex = 4.44 MeV (2+1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 1.86×101 9.7×10−1

2.8 2.33×101 1.4
3.9 1.91×101 1.1
5.0 2.08×101 1.2
6.1 3.20×101 1.8
6.2 3.39×101 1.9
7.3 4.94×101 2.9
8.4 6.20×101 3.3
9.4 7.32×101 3.8

10.5 6.61×101 3.5
11.6 6.14×101 3.2
12.7 4.49×101 2.4
13.8 3.37×101 1.8
14.8 2.18×101 1.2
15.9 1.73×101 9.4×10−1

17.0 1.47×101 8.0×10−1

18.1 1.73×101 9.3×10−1

Table A.10: 12C(α, α′) inelastic,
Ex = 7.65 MeV (0+2 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 2.76×101 1.4
2.9 1.89×101 1.1
3.9 1.01×101 6.3n×10−1

5.0 3.69 2.4×10−1

6.1 1.33 1.0×10−1

6.2 1.19 8.8×10−2

7.3 2.16 1.5×10−1

8.4 4.20 2.5×10−1

9.5 5.97 4.1×10−1

10.6 6.30 3.7×10−1

11.7 5.78 3.4×10−1

12.7 3.84 2.3×10−1

13.8 2.35 1.5×10−1

14.9 1.35 8.9×10−2

16.0 1.25 8.3×10−2

17.1 1.45 9.1×10−2

18.1 1.89 1.2×10−1
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Table A.11: 12C(α, α′) inelastic,
Ex = 9.64 MeV (3−1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 1.88 1.5×10−1

2.9 2.71 2.8×10−1

3.9 3.06 3.1×10−1

5.0 3.64 3.1×10−1

6.1 4.40 3.5×10−1

6.3 4.47 3.4×10−1

7.3 5.32 4.0×10−1

8.4 7.19 4.8×10−1

9.5 9.49 6.1×10−1

10.6 1.06×101 6.8×10−1

11.7 1.13×101 7.1×10−1

12.8 1.01×101 6.5×10−1

13.9 9.20 6.0×10−1

14.9 6.73 4.4×10−1

16.0 4.98 3.4×10−1

17.1 3.18 2.2×10−1

18.2 2.76 2.0×10−1

Table A.12: 12C(α, α′) inelastic,
Ex = 10.84 MeV (1−1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.9 9.81×10−1 1.2×10−1

4.0 8.72×10−1 1.1×10−1

6.3 4.94×10−1 5.8×10−2

7.4 2.54×10−1 4.1×10−2

8.4 1.13×10−1 2.5×10−2

9.5 1.61×10−1 2.9×10−2

10.6 3.44×10−1 4.7×10−2

11.7 5.32×10−1 5.5×10−2

12.8 6.23×10−1 6.2×10−2

13.9 6.51×10−1 6.4×10−2

15.0 5.72×10−1 5.6×10−2

16.1 3.64×10−1 4.3×10−2

17.1 2.02×10−1 2.8×10−2

18.2 1.12×10−1 2.1×10−2
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Table A.13: 16O(α, α′) inelastic,
Ex = 6.05 MeV (0+2 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 3.33 6.6×10−1

2.7 2.38 9.9×10−1

Table A.14: 16O(α, α′) inelastic,
Ex = 6.13 MeV (3−1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 6.8 2.5
2.7 1.13×101 7.9×10−1

3.7 1.40×101 9.5×10−1

4.7 1.52×101 9.2×10−1

5.7 1.77×101 1.1
5.8 1.85×101 1.0
6.8 2.26×101 1.3
7.8 2.57×101 1.5
8.9 3.33×101 1.8
9.9 3.56×101 1.9

10.9 3.89×101 2.1
11.9 3.47×101 1.9
12.9 3.08×101 1.7
13.9 2.18×101 1.2
14.9 1.55×101 8.6×10−1

15.9 9.39 5.25×10−1

16.9 7.47 4.23×10−1

Table A.15: 16O(α, α′) inelastic,
Ex = 6.92 MeV (2+1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 1.10×101 6.4×10−1

2.7 1.30×101 8.9×10−1

3.7 1.27×101 8.7×10−1

4.7 1.54×101 9.3×10−1

5.7 2.21×101 1.3
5.8 2.25×101 1.3
6.8 2.91×101 1.6
7.8 3.08×101 1.7
8.9 3.00×101 1.6
9.9 2.06×101 1.1
10.9 1.39×101 7.7×10−1

11.9 6.99 4.0×10−1

12.9 4.20 2.5×10−1

13.9 3.58 2.6×10−1

14.9 6.02 4.1×10−1

15.9 7.76 4.9×10−1

16.9 9.53 5.9×10−1
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Table A.16: 16O(α, α′) inelastic,
Ex = 7.12 MeV (1−1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 2.10 1.4×10−1

2.7 9.15 8.6×10−1

3.7 1.17×101 1.0
4.7 1.07×101 8.0×10−1

5.7 8.31 6.5×10−1

5.8 8.16 5.6×10−1

6.8 4.63 3.5×10−1

7.9 1.45 1.3×10−1

8.9 4.19×10−1 6.9×10−2

9.9 1.21 1.1×10−1

10.9 2.48 1.9×10−1

11.9 3.62 2.6×10−1

12.9 4.05 2.9×10−1

13.9 3.62 2.6×10−1

14.9 2.87 2.2×10−1

15.9 1.83 1.4×10−1

16.9 1.25 1.1×10−1

Table A.17: 16O(α, α′) inelastic,
Ex = 9.84 MeV (2+2 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 6.70×10−1 8.9×10−2

2.7 5.7×10−1 1.8×10−1

3.7 3.66×10−1 6.9×10−2

4.7 1.83×10−1 6.5×10−2

5.7 1.96×10−1 4.7×10−2

5.8 1.43×10−1 2.4×10−2

6.9 3.14×10−1 6.1×10−2

7.9 4.4×10−1 1.3×10−1

8.9 5.46×10−1 5.2×10−2

9.9 8.39×10−1 8.7×10−2

10.9 6.74×10−1 6.4×10−2

11.9 7.25×10−1 7.9×10−2

12.9 5.76×10−1 8.6×10−2

14.0 4.36×10−1 4.7×10−2

15.0 3.70×10−1 4.2×10−2

16.0 3.34×10−1 3.8×10−2

17.0 3.66×10−1 4.1×10−2
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Table A.18: 16O(α, α′) inelastic,
Ex = 10.36 MeV (4+1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 9.33×10−1 5.8×10−2

2.7 4.14×10−1 7.0×10−2

3.7 1.91×10−1 4.0×10−2

4.7 1.09×10−1 2.3×10−2

5.7 1.50×10−1 2.8×10−2

5.8 1.82×10−1 2.9×10−2

6.9 2.64×10−1 3.8×10−2

7.9 3.39×10−1 4.0×10−2

8.9 4.67×10−1 5.1×10−2

9.9 6.02×10−1 7.9×10−2

10.9 6.56×10−1 6.9×10−2

11.9 6.24×10−1 6.0×10−2

12.9 5.57×10−1 5.5×10−2

14.0 4.19×10−1 4.7×10−2

15.0 3.28×10−1 4.1×10−2

16.0 2.60×10−1 3.4×10−2

17.0 3.29×10−1 3.9×10−2

Table A.19: 16O(α, α′) inelastic,
Ex = 11.52 MeV (2+3 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 8.4 1.7
2.7 7.22 5.6×10−1

3.7 7.21 5.6×10−1

4.7 8.50 5.8×10−1

5.7 1.06×101 7.1×10−1

5.9 1.09×101 7.1×10−1

6.9 1.30×101 8.3×10−1

7.9 1.23×101 7.6×10−1

8.9 1.23×101 7.6×10−1

9.9 9.40 5.9×10−1

10.9 6.58 4.4×10−1

12.0 3.43 2.4×10−1

13.0 2.29 1.7×10−1

14.0 2.12 1.7×10−1

15.0 2.78 2.1×10−1

16.0 3.28 2.4×10−1

17.0 4.16 2.9×10−1

110



Table A.20: 16O(α, α′) inelastic,
Ex = 12.05 MeV (0+3 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 8.9 1.4
2.7 4.75 3.9×10−1

3.7 2.42 2.4×10−1

4.7 7.35×10−1 8.9×10−2

5.7 2.06×10−1 3.9×10−2

5.9 1.92×10−1 3.8×10−2

6.9 5.79×10−1 7.2×10−2

7.9 1.18 1.1×10−1

8.9 1.49 1.3×10−1

9.9 1.54 1.3×10−1

10.9 1.41 1.3×10−1

12.0 1.04 9.2×10−2

13.0 6.29×10−1 6.5×10−2

14.0 1.51×10−1 2.9×10−2

15.0 3.13×10−1 4.2×10−2

16.0 7.80×10−1 7.6×10−2

17.0 8.84×10−1 8.4×10−2

Table A.21: 24Mg(α, α′) inelastic,
Ex = 1.37 MeV (2+1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 1.20×102 6.4
2.5 8.80×101 4.8
3.4 6.71×101 4.1
4.3 9.20×101 4.9
5.3 1.43×102 7.6
5.4 1.49×102 7.9
6.3 1.97×102 1.0×101

7.3 1.93×102 1.0×101

8.2 1.74×102 9.0
9.1 1.08×102 5.6

10.1 5.81×101 3.1
11.0 1.90×101 1.1
12.0 1.19×101 6.7
12.9 2.46×101 1.3
13.8 4.46×101 2.4
14.8 5.48×101 2.9
15.7 5.70×101 3.0
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Table A.22: 24Mg(α, α′) inelastic,
Ex = 4.12 MeV (4+1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

7.3 5.0×10−1 2.1×10−1

8.2 7.00×10−1 7.9×10−2

9.2 8.2×10−1 2.5×10−1

10.1 1.12 2.7×10−1

11.0 1.21 1.2×10−1

12.0 1.32 9.1×10−2

12.9 1.43 1.3×10−1

13.9 1.29 1.2×10−1

14.8 1.20 1.2×10−1

15.7 1.13 1.2×10−1

Table A.23: 24Mg(α, α′) inelastic,
Ex = 4.24 MeV (2+2 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 1.27×101 7.6×10−1

2.5 1.76×101 1.1
3.4 1.18×101 7.3×10−1

4.4 9.69 5.93×10−1

5.3 1.14×101 6.9×10−1

5.4 1.16×101 8.3×10−1

6.3 1.49×101 1.1
7.3 1.50×101 8.8×10−1

8.2 1.50×101 8.7×10−1

9.2 1.05×101 6.3×10−1

10.1 6.57 4.2×10−1

11.0 2.71 1.9×10−1

12.0 1.58 1.2×10−1

12.9 1.87 1.4×10−1

13.9 3.90 2.7×10−1

14.8 5.31 3.5×10−1

15.7 6.59 4.4×10−1

Table A.24: 24Mg(α, α′) inelastic,
Ex = 6.01 MeV (4+2 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 5.99×10−1 5.8×10−2

2.5 7.65×10−1 7.4×10−2

3.4 1.04 9.3×10−2

4.4 1.18 9.6×10−2

5.3 1.64 1.3×10−1

5.4 1.62 1.3×10−1

6.4 2.16 1.6×10−1

7.3 2.98 2.6×10−1

8.2 4.30 2.6×10−1

9.2 5.48 3.3×10−1

10.1 7.12 4.2×10−1

11.1 7.50 4.4×10−1

12.0 7.69 4.5×10−1

12.9 6.11 3.6×10−1

13.9 4.56 2.8×10−1

14.8 2.60 1.7×10−1

15.7 1.60 1.1×10−1
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Table A.25: 24Mg(α, α′) inelastic,
Ex = 6.43 MeV (0+2 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 2.87×101 1.6
2.5 1.63×101 9.8×10−1

3.4 6.57 4.3×10−1

4.4 1.28 1.0×10−1

5.3 5.46×10−1 5.3×10−2

5.4 7.38×10−1 6.7×10−2

6.4 2.81 2.0×10−1

7.3 4.44 3.4×10−1

8.2 4.92 3.5×10−1

9.2 3.54 2.7×10−1

10.1 2.53 1.6×10−1

11.1 1.31 9.1×10−2

12.0 1.31 9.1×10−2

12.9 1.43 1.3×10−1

13.9 2.45 1.6×10−1

14.8 2.59 1.7×10−1

15.8 2.39 1.6×10−1

Table A.26: 24Mg(α, α′) inelastic,
Ex = 7.35 MeV (2+3 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 1.72 1.3×10−1

2.5 2.45 1.8×10−1

3.4 2.79 2.1×10−1

4.4 3.96 2.7×10−1

5.3 5.76 3.7×10−1

5.4 5.85 3.8×10−1

6.4 6.91 4.4×10−1

7.3 5.52 3.9×10−1

8.2 4.11 3.2×10−1

9.2 1.96 1.3×10−1

10.1 9.20×10−1 6.7×10−2

11.1 8.25×10−1 6.1×10−2

12.0 1.66 1.1×10−1

12.9 2.28 1.5×10−1

13.9 2.74 1.7×10−1

14.8 2.18 1.4×10−1

15.8 1.69 1.2×10−1
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Table A.27: 24Mg(α, α′) inelastic,
Ex = 7.62 MeV (3−1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 3.33 2.3×10−1

2.5 7.23 4.7×10−1

3.4 8.32 5.3×10−1

4.4 8.54 5.3×10−1

5.3 8.85 5.5×10−1

5.4 8.60 5.3×10−1

6.4 9.06 5.6×10−1

7.3 9.55 6.2×10−1

8.2 1.16×101 7.5×10−1

9.2 1.17×101 6.6×10−1

10.1 1.12×101 6.4×10−1

11.1 9.92 5.7×10−1

12.0 7.83 4.5×10−1

12.9 4.82 2.9×10−1

13.9 3.32 2.1×10−1

14.8 2.39 1.6×10−1

15.8 2.69 1.7×10−1

Table A.28: 24Mg(α, α′) inelastic,
Ex = 8.36 MeV (3−2 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 3.95 9.3×10−1

2.5 4.60 5.8×10−1

3.4 6.27 7.5×10−1

4.4 6.67 7.5×10−1

5.3 9.3 1.5
5.4 9.0 1.0
6.4 1.23×101 1.5
7.3 1.49×101 9.4×10−1

8.3 1.85×101 1.0
9.2 1.81×101 9.6×10−1

10.1 1.59×101 1.8
11.1 1.09×101 1.3
12.0 6.97 9.4×10−1

13.0 3.24 4.7×10−1

13.9 2.16 1.8×10−1

14.8 2.53 2.9×10−1

15.8 3.66 3.7×10−1
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Table A.29: 24Mg(α, α′) inelastic,
Ex = 9.00 MeV (2+5 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.5 6.78×10−1 6.7×10−2

3.4 6.68×10−1 6.6×10−2

4.4 8.64×10−1 7.5×10−2

5.3 1.18 9.6×10−2

5.4 1.07 9.0×10−2

6.4 1.19 9.8×10−2

7.3 9.74×10−1 7.1×10−2

8.3 5.00×10−1 7.0×10−2

9.2 3.10×10−1 6.4×10−2

10.1 1.98×10−1 2.0×10−2

11.1 1.90×10−1 1.9×10−2

12.0 2.87×10−1 2.6×10−2

13.0 3.32×10−1 3.0×10−2

13.9 2.88×10−1 4.1×10−2

14.8 2.25×10−1 2.2×10−2

15.8 1.93×10−1 2.0×10−2

Table A.30: 24Mg(α, α′) inelastic,
Ex = 9.15 MeV (1−1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.5 6.50×10−1 6.5×10−2

3.4 7.68×10−1 7.4×10−2

4.4 7.99×10−1 7.0×10−2

5.3 8.32×10−1 7.3×10−2

5.4 8.0×10−1 1.1×10−1

6.4 6.23×10−1 9.2×10−2

7.3 4.80×10−1 3.9×10−2

8.3 2.93×10−1 4.9×10−2

9.2 2.39×10−1 6.1×10−2

10.1 1.73×10−1 1.8×10−2

11.1 2.11×10−1 2.1×10−2

12.0 2.82×10−1 4.0×10−2

13.0 3.32×10−1 3.0×10−2

13.9 3.65×10−1 4.9×10−2

14.8 3.32×10−1 3.0×10−2

15.8 2.70×10−1 2.6×10−2
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Table A.31: 24Mg(α, α′) inelastic,
Ex = 9.31 MeV (0+3 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 8.36 5.2×10−1

2.5 4.71 3.2×10−1

3.4 1.60 1.3×10−1

4.4 4.57×10−1 4.6×10−2

5.3 3.62×10−1 3.9×10−2

5.4 4.19×10−1 4.4×10−2

6.4 9.52×10−1 8.2×10−2

7.3 1.36 9.4×10−2

8.3 1.13 1.1×10−1

9.2 7.66×10−1 9.7×10−2

10.1 4.62×10−1 3.8×10−2

11.1 3.60×10−1 3.1×10−2

12.0 6.42×10−1 5.0×10−2

13.0 1.06 7.6×10−2

13.9 1.18 1.1×10−1

14.8 1.32 9.3×10−2

15.8 1.16 8.3×10−2

Table A.32: 24Mg(α, α′) inelastic,
Ex = 10.36 MeV (2+7 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 1.18 9.8×10−2

2.5 1.60 1.3×10−1

3.4 1.52 1.3×10−1

4.4 1.76 1.3×10−1

5.3 2.10 1.5×10−1

5.4 2.13 1.6×10−1

6.4 2.32 1.7×10−1

7.3 2.34 1.5×10−1

8.3 2.13 1.4×10−1

9.2 1.71 1.7×10−1

10.1 1.08 1.1×10−1
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Table A.33: 28Si(α, α′) inelastic,
Ex = 1.78 MeV (2+1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 1.28×102 6.7
2.4 1.30×102 7.4
3.3 9.08×101 5.3
4.3 9.01×101 5.0
5.2 1.32×102 7.2
5.3 1.38×102 7.3
6.2 1.82×102 9.5
7.1 1.82×102 9.4
8.0 1.61×102 8.4
9.0 1.01×102 5.3
9.9 5.20×101 2.8

10.8 1.58×101 8.9×10−1

11.7 1.09×101 6.3×10−1

12.6 2.46×101 1.4
13.5 4.47×101 2.4
14.5 5.45×101 2.9
15.4 5.62×101 3.0

Table A.34: 28Si(α, α′) inelastic,
Ex = 4.62 MeV (4+1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.4 5.94×10−1 9.3×10−2

3.3 7.4×10−1 1.1×10−1

4.3 7.80×10−1 8.4×10−2

5.2 1.07 1.1×10−1

5.3 1.01 8.3×10−2

6.2 1.55 1.7×10−1

7.1 2.06 1.4×10−1

8.1 3.19 2.0×10−1

9.0 3.96 2.5×10−1

9.9 5.09 3.1×10−1

10.8 4.98 3.0×10−1

11.7 4.79 2.9×10−1

12.6 3.37 2.2×10−1

13.6 2.44 1.6×10−1

14.5 1.47 1.0×10−1

15.4 1.24 8.7×10−2
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Table A.35: 28Si(α, α′) inelastic,
Ex = 4.98 MeV (0+2 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 3.18×101 5.6
2.4 2.55×101 1.7
3.3 1.17×101 8.7×10−1

4.3 2.68 2.2×10−1

5.2 9.88×10−1 9.9×10−2

5.3 1.21 9.6×10−2

6.2 4.04 3.4×10−1

7.1 5.97 3.6×10−1

8.1 6.23 3.7×10−1

9.0 4.02 2.5×10−1

9.9 2.21 1.5×10−1

10.8 1.28 9.2×10−2

11.7 2.28 1.5×10−1

12.7 3.76 2.4×10−1

13.6 5.42 3.3×10−1

14.5 5.33 3.2×10−1

15.4 4.81 2.9×10−1

Table A.36: 28Si(α, α′) inelastic,
Ex = 6.69 MeV (0+3 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 3.18 4.9×10−1

2.4 2.56 2.6×10−1

3.3 1.39 1.7×10−1

4.3 6.5×10−1 1.5×10−1

5.2 3.6×10−1 1.4×10−1

5.3 3.84×10−1 3.9×10−2

7.1 9.42×10−1 7.1×10−2

8.1 1.13 2.6×10−1

9.0 8.4×10−1 1.5×10−1

9.9 6.5×10−1 2.1×10−1

10.8 2.56×10−1 2.5×10−2

12.7 1.51×10−1 1.7×10−2

13.6 1.83×10−1 2.0×10−2

14.5 2.14×10−1 2.1×10−2

15.4 1.94×10−1 5.1×10−2
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Table A.37: 28Si(α, α′) inelastic,
Ex = 6.88 MeV (3−1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 4.8 1.5
2.4 1.17×101 8.7×10−1

3.3 1.56×101 1.1
4.3 1.94×101 1.2
5.2 2.41×101 1.5
5.3 2.48×101 1.4
6.2 3.25×101 1.8
7.1 4.08×101 2.2
8.1 4.97×101 2.7
9.0 4.94×101 2.7
9.9 4.63×101 2.5

10.8 3.29×101 1.8
11.7 2.29×101 1.3
12.7 1.23×101 7.0×10−1

13.6 8.84 5.2×10−1

14.5 8.69 5.0×10−1

15.4 1.19×101 6.7×10−1

Table A.38: 28Si(α, α′) inelastic,
Ex = 7.93 MeV (2+2 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 3.4 1.4
2.4 3.30 5.4×10−1

3.3 2.60 2.6×10−1

4.3 2.89 2.3×10−1

5.2 3.81 2.9×10−1

5.3 3.83 2.6×10−1

6.2 4.38 2.9×10−1

7.1 3.82 2.4×10−1

8.1 3.37 2.2×10−1

9.0 1.68 1.2×10−1

9.9 8.44×10−1 6.6×10−2

10.8 3.81×10−1 3.4×10−2

11.8 5.50×10−1 4.6×10−2

12.7 8.56×10−1 6.6×10−2

13.6 1.25 9.1×10−2

14.5 1.10 7.3×10−2

15.4 9.69×10−1 7.1×10−2
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Table A.39: 28Si(α, α′) inelastic,
Ex = 8.26 MeV (2+3 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.4 4.1×10−1 1.6×10−1

4.3 3.05×10−1 4.3×10−2

5.2 2.83×10−1 4.1×10−2

5.3 2.77×10−1 3.1×10−2

6.2 2.69×10−1 3.0×10−2

7.2 4.13×10−1 3.7×10−2

8.1 4.99×10−1 6.5×10−2

9.0 5.49×10−1 4.7×10−2

9.9 5.77×10−1 4.9×10−2

10.8 5.07×10−1 4.3×10−2

11.8 3.74×10−1 3.4×10−2

12.7 2.35×10−1 2.4×10−2

13.6 1.86×10−1 2.0×10−2

14.5 1.99×10−1 2.0×10−2

15.4 3.47×10−1 3.1×10−2

Table A.40: 28Si(α, α′) inelastic,
Ex = 8.90 MeV (1−1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 1.61 2.2×10−1

2.4 3.27 2.6×10−1

3.3 3.31 2.6×10−1

4.3 2.21 1.6×10−1

5.2 1.05 8.4×10−2

5.3 9.08×10−1 7.4×10−2

6.2 2.91×10−1 3.1×10−2

7.2 5.07×10−1 4.2×10−2

8.1 1.40 9.8×10−2

9.0 2.04 1.5×10−1

9.9 2.14 1.5×10−1

10.8 1.68 1.2×10−1

11.8 1.24 9.0×10−2

12.7 8.12×10−1 5.9×10−2

13.6 9.69×10−1 6.8×10−2

14.5 1.27 8.9×10−2

15.4 1.57 1.1×10−1
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Table A.41: 28Si(α, α′) inelastic,
Ex = 9.48 MeV (2+4 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 9.08×10−1 7.1×10−2

2.4 1.04 1.4×10−1

3.4 1.15 1.5×10−1

4.3 1.32 1.2×10−1

5.2 1.73 1.5×10−1

5.3 1.70 1.3×10−1

6.2 1.97 1.4×10−1

7.2 1.74 1.2×10−1

8.1 1.51 1.1×10−1

9.0 1.16 8.6×10−2

9.9 6.29×10−1 5.2×10−2

10.8 4.56×10−1 4.0×10−2

11.8 4.39×10−1 3.8×10−2

12.7 6.64×10−1 5.4×10−2

13.6 7.80×10−1 6.1×10−2

14.5 6.57×10−1 5.1×10−2

15.4 5.42×10−1 4.4×10−2

Table A.42: 28Si(α, α′) inelastic,
Ex = 9.93 MeV (1−2 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 1.48 2.2×10−1

2.4 5.61 4.0×10−1

3.4 7.27 5.0×10−1

4.3 6.69 5.0×10−1

5.2 4.69 3.7×10−1

5.3 4.08 3.3×10−1

6.2 2.01 1.9×10−1

7.2 7.26×10−1 5.6×10−2

8.1 6.27×10−1 5.0×10−2

9.0 1.47 1.1×10−1

9.9 1.85 1.4×10−1

10.8 1.83 1.2×10−1

11.8 1.47 1.0×10−1

12.7 7.75×10−1 5.6×10−2

13.6 3.24×10−1 2.8×10−2

14.5 2.30×10−1 2.3×10−2

15.4 4.02×10−1 3.5×10−2
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Table A.43: 28Si(α, α′) inelastic,
Ex = 10.18 MeV (3−2 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 4.63 3.1×10−1

2.4 6.78 6.1×10−1

3.4 7.91 6.8×10−1

4.3 8.38 6.0×10−1

5.2 8.97 6.4×10−1

5.3 8.59 6.1×10−1

6.2 9.64 6.6×10−1

7.2 1.01×101 6.5×10−1

8.1 1.16×101 7.4×10−1

9.0 1.15×101 7.9×10−1

9.9 1.10×101 7.6×10−1

10.8 7.83 5.2×10−1

11.8 6.08 4.2×10−1

12.7 3.33 2.4×10−1

13.6 2.25 1.7×10−1

14.5 2.06 1.7×10−1

15.5 2.56 2.0×10−1

Table A.44: 28Si(α, α′) inelastic,
Ex = 10.51 MeV (2+5 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 7.7×10−1 4.4×10−1

2.4 3.76×10−1 8.5×10−2

3.4 4.20×10−1 9.3×10−2

4.3 8.2×10−1 1.0×10−1

5.2 1.17 1.3×10−1

5.3 1.27 1.4×10−1

6.2 1.35 1.4×10−1

7.2 1.22 1.1×10−1

8.1 8.20×10−1 8.7×10−2

9.0 4.30×10−1 7.1×10−2

9.9 1.83×10−1 4.2×10−2

10.8 8.9×10−2 2.3×10−2

11.8 2.30×10−1 3.6×10−2

12.7 2.69×10−1 3.8×10−2

13.6 3.57×10−1 4.4×10−2

14.5 3.60×10−1 4.7×10−2

15.5 2.67×10−1 4.0×10−2
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Table A.45: 40Ca(α, α′) inelastic,
Ex = 3.35 MeV (0+2 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.4 2.8×10−1 1.5×10−1

4.1 1.80×10−1 2.6×10−2

6.0 2.18×10−1 5.4×10−2

6.9 1.29×10−1 1.6×10−2

7.7 6.6×10−2 2.4×10−2

9.5 3.45×10−2 6.6×10−3

10.4 6.2×10−2 1.4×10−2

11.3 7.2×10−2 1.6×10−2

12.1 5.65×10−2 7.9×10−3

13.0 2.34×10−2 6.8×10−3

13.9 3.39×10−2 6.6×10−3

14.8 7.9×10−2 1.2×10−2

Table A.46: 40Ca(α, α′) inelastic,
Ex = 3.74 MeV (3−1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.4 5.10 3.1×10−1

2.3 3.02×101 1.7
3.2 3.97×101 2.3
4.1 4.22×101 2.4
5.0 4.60×101 3.0
5.1 4.68×101 3.0
6.0 5.29×101 3.3
6.9 6.43×101 3.4
7.7 8.02×101 4.2
9.5 6.76×101 3.6

10.4 3.96×101 2.1
11.3 2.08×101 1.2
12.2 7.77 4.5×10−1

13.0 8.39 4.8×10−1

13.9 1.41×101 8.1×10−1

14.8 2.17×101 1.2

Table A.47: 40Ca(α, α′) inelastic,
Ex = 3.90 MeV (2+1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.4 6.36 3.8×10−1

2.3 1.01×101 6.4×10−1

3.2 7.89 5.1×10−1

4.1 1.19×101 7.3×10−1

5.0 1.53×101 1.2
5.1 1.67×101 1.3
6.0 2.10×101 1.5
6.9 1.94×101 1.1
7.7 1.52×101 8.6×10−1

8.6 6.08 3.7×10−1

9.5 1.74 1.2×10−1

10.4 1.46 1.0×10−1

11.3 3.88 2.4×10−1

12.2 5.97 3.5×10−1

13.0 6.72 3.9×10−1

13.9 4.90 3.0×10−1

14.8 2.81 1.9×10−1
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Table A.48: 40Ca(α, α′) inelastic,
Ex = 4.49 MeV (5−1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.4 4.54×10−1 3.8×10−2

4.1 8.71×10−1 8.0×10−2

5.0 9.18×10−1 8.3×10−2

5.1 8.4×10−1 1.4×10−1

6.0 1.01 3.0×10−1

6.9 1.46 1.1×10−1

7.7 2.16 1.5×10−1

8.6 2.95 1.9×10−1

9.5 4.34 2.7×10−1

10.4 5.11 3.1×10−1

11.3 5.97 3.6×10−1

12.2 5.95 3.5×10−1

13.0 5.63 3.3×10−1

13.9 4.02 2.6×10−1

14.8 2.79 1.8×10−1

Table A.49: 40Ca(α, α′) inelastic,
Ex = 5.90 MeV (1−1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.4 3.49×10−1 3.1×10−2

2.3 3.61 2.6×10−1

3.2 3.65 2.6×10−1

4.1 3.11 2.2×10−1

5.0 1.84 1.5×10−1

5.1 1.60 1.3×10−1

6.0 4.91×10−1 9.5×10−2

6.9 2.5×10−1 1.3×10−1

7.7 5.43×10−1 4.7×10−2

8.6 9.13×10−1 7.1×10−2

9.5 1.10 8.3×10−2

10.4 7.86×10−1 6.1×10−2

11.3 4.93×10−1 4.2×10−2

12.2 1.64×10−1 1.7×10−2

13.0 1.49×10−1 1.6×10−2

13.9 4.17×10−1 3.8×10−2

14.8 4.40×10−1 4.0×10−2
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Table A.50: 40Ca(α, α′) inelastic,
Ex = 6.29 MeV (3−2 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.4 1.20 8.5×10−2

2.3 5.53 3.8×10−1

3.2 6.57 4.4×10−1

4.1 8.72 5.5×10−1

5.0 1.00×101 6.2×10−1

5.1 1.02×101 6.4×10−1

6.0 1.25×101 7.7×10−1

6.9 1.19×101 8.7×10−1

7.7 1.27×101 8.3×10−1

8.6 1.18×101 6.8×10−1

9.5 9.54 5.6×10−1

10.4 5.17 3.2×10−1

11.3 2.36 1.6×10−1

12.2 1.12 7.9×10−2

13.0 1.64 1.1×10−1

13.9 2.70 1.8×10−1

14.8 3.58 2.3×10−1

Table A.51: 40Ca(α, α′) inelastic,
Ex = 8.09 MeV (2+2 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.4 2.57 1.7×10−1

2.3 3.01 3.0×10−1

3.2 3.15 3.2×10−1

4.1 5.11 3.4×10−1

5.0 6.27 4.1×10−1

5.1 6.58 4.3×10−1

6.0 6.81 4.4×10−1

6.9 5.00 3.1×10−1

7.8 2.55 3.0×10−1

8.6 1.37 9.9×10−2

9.5 6.61×10−1 5.4×10−2

10.4 1.03 7.7×10−2

11.3 1.79 1.2×10−1

12.2 2.10 1.4×10−1

13.1 1.92 1.3×10−1

13.9 1.33 9.7×10−2

14.8 9.41×10−1 7.3×10−2
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Table A.52: 40Ca(α, α′) inelastic,
Ex = 8.28 MeV (0+3 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.4 9.54 5.5×10−1

2.3 4.52 3.2×10−1

3.2 1.21 1.1×10−1

4.1 1.62×10−1 2.4×10−2

5.0 4.75×10−1 5.1×10−2

5.1 4.62×10−1 5.0×10−2

6.0 1.07 9.5×10−2

6.9 1.19 8.8×10−2

7.8 9.4×10−1 2.0×10−1

8.6 6.33×10−1 7.3×10−2

9.5 3.37×10−1 6.0×10−2

10.4 1.52×10−1 1.7×10−2

11.3 4.24×10−1 3.7×10−2

12.2 5.23×10−1 4.2×10−2

13.1 5.24×10−1 4.2×10−2

13.9 3.20×10−1 3.1×10−2

14.8 1.59×10−1 1.9×10−2

Table A.53: 40Ca(α, α′) inelastic,
Ex = 8.37 MeV (4+1 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.4 1.03 3.9×10−1

2.3 7.75×10−1 7.6×10−2

3.2 5.84×10−1 6.1×10−2

4.1 8.12×10−1 7.6×10−2

5.0 1.05 9.3×10−2

5.1 1.08 9.5×10−2

6.0 1.55 1.3×10−1

6.9 1.85 1.3×10−1

7.8 2.25 2.9×10−1

8.6 2.53 2.2×10−1

9.5 3.13 2.0×10−1

10.4 2.74 1.8×10−1

11.3 2.37 1.6×10−1

12.2 1.60 1.1×10−1

13.1 9.78×10−1 7.0×10−2

13.9 4.75×10−1 4.2×10−2

14.8 3.94×10−1 3.7×10−2
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Table A.54: 40Ca(α, α′) inelastic,
Ex = 8.58 MeV (2+3 ),
Eα = 130 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.4 1.23 8.7×10−2

2.3 1.68 1.4×10−1

3.2 2.11 1.7×10−1

4.1 2.70 2.0×10−1

5.0 3.54 2.5×10−1

5.1 3.74 2.6×10−1

6.0 4.26 3.0×10−1

6.9 3.44 2.2×10−1

7.8 2.42 2.9×10−1

8.6 1.03 1.2×10−1

9.5 4.97×10−1 4.3×10−2

10.4 4.80×10−1 4.1×10−2

11.3 7.67×10−1 6.0×10−2

12.2 1.09 7.7×10−2

13.1 1.20 8.4×10−2

13.9 9.24×10−1 7.2×10−2

14.8 5.21×10−1 4.5×10−2
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A.2.2 Eα = 386 MeV

Table A.55: 12C(α, α′) inelastic,
Ex = 4.44 MeV (2+1 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.4 7.55×101 8.5
1.0 7.76×101 5.1
1.8 7.31×101 4.1
2.5 6.43×101 1.0
3.0 6.13×101 1.0
3.5 6.47×101 1.0
4.0 7.41×101 1.1
4.9 1.00×102 5.0
5.4 1.04×102 5.2
5.9 1.06×102 5.3
6.2 1.12×102 5.6
6.7 1.06×102 5.3
7.3 8.80×101 4.4
7.8 6.75×101 3.4
8.6 4.55×101 2.3
9.1 3.17×101 1.6
9.6 2.12×101 1.1

10.2 1.60×101 8.0×10−1

11.0 1.39×101 7.0×10−1

11.5 1.64×101 8.2×10−1

12.1 1.92×101 9.6×10−1

12.6 2.04×101 1.0
13.4 2.16×101 1.1
14.0 1.98×101 9.9×10−1

14.5 1.72×101 8.6×10−1

Table A.55: (Continued)

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

15.0 1.36×101 6.8×10−1

15.8 1.02×101 5.1×10−1

16.4 7.27 3.7×10−1

16.9 5.07 2.6×10−1

17.5 3.46 1.7×10−1

18.3 1.98 1.0×10−1

18.8 1.71 8.7×10−2

19.3 1.60 8.2×10−2

19.9 1.52 7.8×10−2

20.7 1.44 8.0×10−2

21.2 1.29 7.3×10−2

21.8 1.10 6.3×10−2

22.3 9.26×10−1 5.4×10−2

22.5 8.20×10−1 2.5×10−2

23.1 6.68×10−1 2.1×10−2

23.6 5.26×10−1 1.6×10−2

24.2 3.71×10−1 1.1×10−2

24.7 2.95×10−1 9.1×10−3

25.2 2.34×10−1 7.2×10−3

25.8 1.85×10−1 5.8×10−3

26.3 1.32×10−1 4.0×10−3

26.8 1.15×10−1 3.5×10−3

27.4 9.95×10−2 3.1×10−3

27.9 8.46×10−2 2.6×10−3

28.5 6.45×10−2 2.0×10−3

29.0 5.72×10−2 1.8×10−3

29.5 4.80×10−2 1.5×10−3
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Table A.56: 12C(α, α′) inelastic,
Ex = 7.65 MeV (0+2 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.4 8.27×101 1.6
1.0 7.32×101 9.0×10−1

1.8 5.14×101 6.0×10−1

2.5 3.27×101 7.0×10−1

3.0 1.96×101 6.0×10−1

3.5 9.10 4.0×10−1

4.1 2.80 2.0×10−1

4.3 9.01×10−1 5.8×10−2

4.9 1.07 6.7×10−2

5.4 2.78 1.5×10−1

5.9 4.46 2.4×10−1

6.2 6.01 3.2×10−1

6.7 6.82 3.6×10−1

7.3 5.93 3.1×10−1

7.8 4.49 2.4×10−1

8.6 2.51 1.3×10−1

9.1 1.44 7.3×10−2

9.6 1.01 5.2×10−2

10.2 1.02 5.2×10−2

11.0 1.50 7.6×10−2

Table A.56: (Continued)

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

11.5 1.90 9.6×10−2

12.1 2.08 1.1×10−1

12.6 1.99 1.0×10−1

13.4 1.71 8.6×10−2

14.0 1.38 7.0×10−2

14.5 9.59×10−1 4.9×10−2

15.0 6.04×10−1 3.1×10−2

15.9 3.45×10−1 1.9×10−2

16.4 2.43×10−1 1.4×10−2

16.9 1.93×10−1 1.1×10−2

17.5 2.11×10−1 1.2×10−2

18.3 2.03×10−1 1.2×10−2

18.8 1.92×10−1 1.1×10−2

19.4 1.77×10−1 1.0×10−2

19.9 1.56×10−1 9.1×10−3

20.7 1.24×10−1 1.2×10−2

21.3 7.80×10−2 9.0×10−3

21.8 6.62×10−2 8.2×10−3

22.3 3.91×10−2 6.1×10−3
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Table A.57: 12C(α, α′) inelastic,
Ex = 9.64 MeV (3−1 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.4 2.55 3.4×10−1

1.0 3.24 2.5×10−1

1.5 2.86 2.6×10−1

2.1 4.04 2.6×10−1

2.7 5.50 7.4×10−2

3.3 6.80 7.7×10−2

3.8 8.55 8.2×10−2

4.3 1.07×101 8.9×10−2

4.3 1.01×101 1.1×10−1

4.9 1.28×101 1.2×10−1

5.4 1.50×101 1.3×10−1

5.9 1.69×101 1.4×10−1

6.1 2.05×101 3.9×10−1

6.7 2.06×101 3.9×10−1

7.2 2.12×101 3.9×10−1

7.8 1.94×101 3.7×10−1

8.5 1.59×101 3.9×10−2

9.0 1.29×101 3.5×10−2

9.6 9.43 3.0×10−2

10.1 6.71 2.6×10−2

10.9 3.77 1.9×10−2

11.5 3.04 1.7×10−2

12.0 2.83 1.7×10−2

12.5 2.84 1.6×10−2

13.4 3.27 1.7×10−2

Table A.57: (Continued)

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

13.9 3.40 1.8×10−2

14.4 3.26 1.7×10−2

15.0 2.96 1.6×10−2

15.8 2.20 1.5×10−2

16.3 1.73 1.3×10−2

16.9 1.29 1.1×10−2

17.4 8.74×10−1 9.2×10−3

18.2 4.26×10−1 6.8×10−3

18.8 3.19×10−1 5.9×10−3

19.3 2.41×10−1 5.2×10−3

19.9 2.01×10−1 4.8×10−3

20.7 1.38×10−1 1.0×10−2

21.2 1.24×10−1 9.9×10−3

21.8 1.21×10−1 9.7×10−3

22.3 9.24×10−2 8.7×10−3

23.1 9.54×10−2 8.0×10−3

23.7 7.60×10−2 7.1×10−3

24.2 6.36×10−2 6.5×10−3

24.7 4.53×10−2 5.5×10−3

25.5 2.66×10−2 3.5×10−3

26.1 1.85×10−2 3.0×10−3

26.6 1.59×10−2 2.7×10−3

27.2 1.30×10−2 2.5×10−3
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Table A.58: 16O(α, α′) inelastic,
Ex = 6.13 MeV (3−1 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.4 1.91×101 1.2
2.9 2.15×101 1.3
3.4 2.40×101 1.5
3.9 2.86×101 1.7
4.0 2.91×101 1.8
4.4 3.85×101 2.3
4.9 4.72×101 2.7
5.4 5.31×101 3.1
5.6 5.43×101 3.1
6.1 6.08×101 3.5
6.6 6.14×101 3.5
7.1 6.06×101 3.4

Table A.59: 16O(α, α′) inelastic,
Ex = 6.92 MeV (2+1 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.4 2.49×101 1.5
2.9 3.24×101 2.0
3.4 4.18×101 2.5
3.9 5.40×101 3.1
4.0 5.11×101 3.0
4.4 5.98×101 3.4
4.9 6.75×101 3.8
5.4 6.44×101 3.7
5.6 6.21×101 3.5
6.1 5.52×101 3.2
6.6 3.95×101 2.3
7.1 2.84×101 1.7

Table A.60: 16O(α, α′) inelastic,
Ex = 11.52 MeV (2+3 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

1.0 1.25×101 1.8
2.4 1.56×101 1.0
2.9 1.91×101 1.2
3.4 2.43×101 1.5
3.9 3.00×101 1.8
4.0 3.39×101 2.0
4.9 3.45×101 2.1
5.4 3.26×101 2.0
5.6 3.19×101 1.9
6.1 2.73×101 1.6
6.6 2.37×101 1.4
7.1 1.57×101 9.9×10−1

Table A.61: 16O(α, α′) inelastic,
Ex = 12.05 MeV (0+3 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

1.0 1.63×101 1.0
2.4 4.84 4.2×10−1

2.9 1.81 2.0×10−1

3.4 2.80×10−1 5.4×10−2

3.9 2.80×10−1 5.4×10−2

4.4 8.6×10−1 1.1×10−1

4.9 1.75 2.0×10−1

5.4 2.12 2.3×10−1

5.6 2.24 2.2×10−1

6.1 2.25 2.2×10−1

6.6 2.13 2.2×10−1

7.1 1.02 1.3×10−1
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Table A.62: 20Ne(α, α′) inelastic,
Ex = 1.63 MeV (2+1 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.9 1.94×102 9.7
3.4 2.51×102 1.2×101

3.9 2.86×102 1.4×101

4.1 3.25×102 1.6×101

4.6 3.25×102 1.6×101

5.1 2.93×102 1.4×101

5.6 2.29×102 1.1×101

7.3 3.14×101 2.3
7.8 2.89×101 2.1
8.3 3.41×101 2.4
8.8 4.18×101 2.9
9.0 4.27×101 2.6
9.5 4.58×101 2.7

10.0 4.14×101 2.5

Table A.63: 20Ne(α, α′) inelastic,
Ex = 4.25 MeV (4+1 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

4.6 3.47 2.8×10−1

5.1 5.73 4.1×10−1

5.6 7.04 4.8×10−1

7.3 8.76 8.6×10−1

7.8 7.63 7.7×10−1

8.3 5.53 6.1×10−1

8.8 3.72 4.7×10−1

9.0 3.18 3.2×10−1

9.5 2.24 2.6×10−1

10.0 2.03 2.4×10−1

10.5 2.29 2.5×10−1

10.7 2.61 2.3×10−1

11.2 3.39 2.8×10−1

11.7 3.57 2.9×10−1

12.2 3.55 2.9×10−1

12.4 3.50 2.4×10−1

12.9 3.19 2.2×10−1

13.4 2.58 1.8×10−1

13.9 1.87 1.4×10−1
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Table A.64: 20Ne(α, α′) inelastic,
Ex = 5.62 MeV (3−1 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.4 1.33×101 8.6×10−1

2.9 1.54×101 9.6×10−1

5.1 2.45×101 1.4
5.6 2.56×101 1.4
7.3 1.99×101 1.6
7.8 1.36×101 1.2

12.4 5.01 3.3×10−1

12.9 4.25 2.9×10−1

13.4 3.07 2.2×10−1

13.9 2.38 1.8×10−1

Table A.65: 20Ne(α, α′) inelastic,
Ex = 6.73 MeV (0+2 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.5 8.02×101 5.3
2.4 3.30 2.7×10−1

2.9 7.9×10−1 1.1×10−1

3.4 1.05 1.5×10−1

Table A.66: 24Mg(α, α′) inelastic,
Ex = 1.37 MeV (2+1 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.2 2.27×102 1.2×101

2.7 2.09×102 1.2×101

3.2 3.94×102 2.1×101

3.6 5.23×102 2.7×101

3.7 5.35×102 3.2×101

4.1 6.19×102 3.6×101

4.6 6.45×102 3.8×101

5.1 5.96×102 3.5×101

5.1 5.47×102 2.9×101

5.6 4.37×102 2.3×101

6.1 3.25×102 1.7×101

6.5 2.00×102 1.1×101

6.9 1.23×102 6.8
7.4 8.09×101 4.6
7.8 7.48×101 4.2
8.3 9.35×101 5.2
8.6 1.18×102 6.5
9.1 1.42×102 7.7
9.6 1.52×102 8.3

10.0 1.41×102 7.7
10.4 1.20×102 6.6
10.8 9.78×101 5.4
11.3 6.72×101 3.8
11.8 4.60×101 2.6
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Table A.67: 24Mg(α, α′) inelastic,
Ex = 6.43 MeV (0+2 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.2 1.83×101 9.3×10−1

2.7 6.84 3.5×10−1

3.2 1.62 8.7×10−2

3.6 1.41 7.7×10−2

3.7 1.76 1.1×10−1

4.1 4.24 2.7×10−1

4.6 8.17 4.9×10−1

5.1 8.27 4.7×10−1

5.1 8.50 4.4×10−1

5.6 7.51 3.9×10−1

6.1 5.52 2.9×10−1

6.5 3.17 1.7×10−1

6.9 1.74 9.3×10−2

7.4 1.07 5.9×10−2

7.8 1.04 5.7×10−2

8.3 1.55 8.4×10−2

8.6 1.90 1.0×10−1

9.1 2.11 1.1×10−1

9.6 1.93 1.0×10−1

10.0 1.46 7.9×10−2

10.4 1.09 5.9×10−2

10.8 6.70×10−1 3.8×10−2

11.3 3.60×10−1 2.1×10−2

11.8 3.00×10−1 1.7×10−2

Table A.68: 24Mg(α, α′) inelastic,
Ex = 7.35 MeV (2+3 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.7 7.18 2.5×10−1

1.0 6.54 2.6×10−1

2.4 5.19 2.4×10−1

2.8 7.85 2.4×10−1

3.3 8.76 2.5×10−1

3.8 1.01×101 2.7×10−1

3.5 1.07×101 3.4×10−1

4.0 1.02×101 3.8×10−1

4.5 9.53 4.3×10−1

4.9 7.42 5.5×10−1

5.3 6.51 4.0×10−1

5.7 3.33 5.1×10−1

6.2 1.14 1.3×10−1

6.7 7.31×10−1 9.7×10−2

7.0 4.95×10−1 7.0×10−2

7.5 1.16 8.8×10−2

8.0 1.50 2.0×10−1

8.4 1.95 1.1×10−1

8.8 1.96 4.7×10−2

9.3 1.43 3.7×10−2

9.7 9.40×10−1 3.0×10−2

10.2 5.18×10−1 2.2×10−2

10.6 3.14×10−1 1.8×10−2

11.0 2.40×10−1 1.6×10−2

11.5 3.52×10−1 1.9×10−2

12.0 3.29×10−1 2.1×10−2
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Table A.69: 24Mg(α, α′) inelastic,
Ex = 7.62 MeV (3−1 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.7 4.90 2.9×10−1

1.0 6.76 3.3×10−1

2.4 9.91 3.3×10−1

2.8 1.06×101 2.8×10−1

3.3 1.13×101 2.8×10−1

3.8 1.18×101 2.8×10−1

3.5 1.22×101 3.5×10−1

4.0 1.32×101 4.4×10−1

4.5 1.59×101 5.1×10−1

4.9 1.91×101 6.5×10−1

5.3 2.06×101 3.3×10−1

5.7 2.03×101 3.3×10−1

6.2 1.89×101 3.2×10−1

6.7 1.53×101 2.9×10−1

7.0 1.30×101 2.1×10−1

7.5 9.79 1.9×10−1

8.0 6.35 1.6×10−1

8.4 3.95 1.4×10−1

8.8 2.16 8.7×10−2

9.3 1.77 6.4×10−2

9.7 1.98 2.1×10−1

10.2 2.63 8.9×10−2

10.6 3.29 8.9×10−2

11.0 3.70 8.1×10−2

11.5 3.77 8.3×10−2

12.0 3.65 7.7×10−2

Table A.70: 24Mg(α, α′) inelastic,
Ex = 8.36 MeV (3−2 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.7 4.57 2.3×10−1

1.0 5.47 2.8×10−1

2.4 7.10 3.1×10−1

2.8 8.94 3.0×10−1

3.3 1.18×101 3.3×10−1

3.8 1.53×101 3.7×10−1

3.5 1.51×101 5.0×10−1

4.0 2.18×101 7.0×10−1

4.5 2.65×101 7.4×10−1

4.9 3.01×101 9.0×10−1

5.3 3.29×101 5.6×10−1

5.7 3.12×101 5.3×10−1

6.2 2.89×101 5.2×10−1

6.7 2.14×101 5.4×10−1

7.0 1.86×101 3.2×10−1

7.5 1.30×101 2.5×10−1

8.0 7.46 1.9×10−1

8.4 5.01 1.6×10−1

8.8 3.67 7.0×10−2

9.3 3.73 6.7×10−2

9.7 4.30 7.3×10−2

10.2 4.79 7.7×10−2

10.6 4.67 8.9×10−2

11.0 4.47 8.5×10−2

11.5 3.62 7.6×10−2

12.0 2.82 6.8×10−2
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Table A.71: 24Mg(α, α′) inelastic,
Ex = 9.00 MeV (2+5 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.8 9.2×10−1 1.2×10−1

1.0 1.30 1.2×10−1

2.4 1.84 1.4×10−1

2.8 2.39 1.3×10−1

3.3 3.20 1.6×10−1

3.8 3.37 1.6×10−1

3.5 3.88 2.1×10−1

4.0 4.24 2.6×10−1

4.5 3.77 2.4×10−1

4.9 2.78 2.7×10−1

5.3 2.24 2.4×10−1

5.7 1.57 1.0×10−1

6.2 8.57×10−1 7.8×10−2

6.7 7.34×10−1 7.6×10−2

7.0 6.13×10−1 5.0×10−2

7.5 5.72×10−1 4.8×10−2

8.0 5.80×10−1 4.8×10−2

8.4 6.14×10−1 4.9×10−2

8.8 5.85×10−1 2.6×10−2

9.3 4.67×10−1 2.2×10−2

9.7 3.77×10−1 2.0×10−2

10.2 2.15×10−1 1.5×10−2

10.6 2.06×10−1 1.6×10−2

11.0 1.68×10−1 1.4×10−2

11.5 1.07×10−1 1.2×10−2

12.0 1.17×10−1 1.2×10−2

Table A.72: 24Mg(α, α′) inelastic,
Ex = 9.15 MeV (1−1 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.8 5.6×10−1 1.1×10−1

1.0 5.78×10−1 9.4×10−2

2.4 8.3×10−1 1.0×10−1

2.8 9.96×10−1 9.7×10−2

3.3 9.63×10−1 8.9×10−2

3.8 1.17 1.0×10−1

3.5 1.18 1.3×10−1

4.0 7.9×10−1 1.4×10−1

4.5 6.1×10−1 1.3×10−1

4.9 1.1×10−1 1.5×10−1

5.3 1.3×10−1 2.1×10−1

5.7 2.07×10−1 6.1×10−2

6.2 1.78×10−1 5.1×10−2

6.7 1.31×10−1 4.5×10−2

7.0 9.9×10−2 2.8×10−2

7.5 1.20×10−1 2.9×10−2

8.0 1.87×10−1 3.3×10−2

8.4 2.60×10−1 3.7×10−2

8.8 2.11×10−1 1.8×10−2

9.3 1.32×10−1 1.3×10−2

9.7 1.08×10−1 1.2×10−2

10.2 1.30×10−1 1.3×10−2

10.6 3.03×10−2 8.9×10−3

11.0 3.58×10−2 8.4×10−3

11.5 6.70×10−2 9.8×10−3

12.0 7.8×10−2 1.1×10−2
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Table A.73: 24Mg(α, α′) inelastic,
Ex = 9.31 MeV (0+3 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

0.8 1.84×101 3.9×10−1

1.0 1.69×101 3.7×10−1

2.4 3.09 1.7×10−1

2.8 9.20×10−1 8.5×10−2

3.3 4.74×10−1 6.3×10−2

3.8 1.29 1.0×10−1

3.5 7.8×10−1 1.0×10−1

4.0 1.88 1.6×10−1

4.5 2.75 2.0×10−1

4.9 2.67 2.1×10−1

5.3 2.20 2.4×10−1

5.7 1.92 1.1×10−1

6.2 8.98×10−1 7.9×10−2

6.7 5.23×10−1 6.4×10−2

7.0 5.26×10−1 4.6×10−2

7.5 6.22×10−1 5.0×10−2

8.0 8.71×10−1 5.8×10−2

8.4 1.12 6.6×10−2

8.8 1.44 3.9×10−2

9.3 1.33 3.6×10−2

9.7 1.09 3.3×10−2

10.2 7.42×10−1 2.7×10−2

10.6 5.81×10−1 2.5×10−2

11.0 4.32×10−1 2.2×10−2

11.5 3.48×10−1 1.9×10−2

12.0 3.95×10−1 2.1×10−2

Table A.74: 28Si(α, α′) inelastic,
Ex = 1.78 MeV (2+1 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.2 1.78×102 9.7
2.7 1.82×102 9.9
3.1 2.24×102 1.2×101

3.5 2.64×102 1.4×101

3.6 2.85×102 1.5×101

4.0 3.27×102 1.7×101

4.5 3.24×102 1.7×101

4.9 2.93×102 1.6×101

5.1 2.88×102 1.5×101

5.6 2.19×102 1.2×101

6.0 1.41×102 7.8
6.5 8.30×101 4.8

Table A.75: 28Si(α, α′) inelastic,
Ex = 4.98 MeV (0+2 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.2 1.77×101 1.0
2.7 6.60 4.2×10−1

3.1 1.80 1.4×10−1

3.5 2.40 1.9×10−1

3.6 2.70 2.1×10−1

4.0 5.90 3.9×10−1

4.5 9.40 5.7×10−1

4.9 1.03×101 6.2×10−1

5.1 1.02×101 6.2×10−1

5.6 9.20 5.6×10−1

6.0 5.90 3.8×10−1

6.5 2.60 1.8×10−1
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Table A.76: 40Ca(α, α′) inelastic,
Ex = 3.74 MeV (3−1 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.1 7.51×101 4.4
2.6 8.55×101 5.0
3.0 8.56×101 5.1
3.3 1.09×102 6.4
3.4 1.12×102 6.5
3.8 1.36×102 7.8
4.3 1.56×102 8.9
4.7 1.78×102 1.0×101

4.9 1.84×102 1.0×101

5.3 1.79×102 1.0×101

5.8 1.60×102 9.1
6.2 1.12×102 6.5

Table A.77: 40Ca(α, α′) inelastic,
Ex = 3.90 MeV (2+1 ),
Eα = 386 MeV

θc.m. dσ/dΩ error
(deg) (mb/sr) (mb/sr)

2.1 2.50×101 1.6
2.6 3.29×101 2.1
3.0 4.08×101 2.6
3.3 5.35×101 3.4
3.4 5.97×101 3.7
3.8 6.38×101 3.9
4.3 6.36×101 3.9
4.7 4.46×101 2.8
4.9 4.59×101 2.9
5.3 2.66×101 1.8
5.8 1.50×101 1.1
6.2 8.38 6.7×10−1
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