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Abstract

The nuclear matter equation of state (EOS) is crucial not only for describing the basic
properties of nuclear matter but also for revealing astrophysical phenomena such as the
structure of neutronstars and supernova explosions. However, the symmetry energy term
in the EOS includes a large uncertainty, especially in the density slope parameter L. The
L parameter has a strong correlation with a neutron skin thickness of neutron-rich heavy
nuclei. Particularly, 132Sn is highly attractive since it is a doubly magic nucleus and has
a larger isospin asymmetry than 208Pb, which will provide a significant insight into the
symmetry energy. However, measuring the skin thickness of 132Sn is challenging due to
its instability.

To investigate the structure of 132Sn, we performed, for the first time, proton elastic
scattering at 196–210 MeV/nucleon at Radio Isotope Beam Factory (RIBF) in RIKEN.
Although precise measurement of cross sections of proton elastic scattering over a wide
momentum-transfer range can provide accurate density distributions, the experiments
had not been conducted due to experimental difficulties in inverse kinematics, such as
achieving high excitation-energy resolution and sufficient statistics. To overcome these
challenges, we have developed a new beam particle identification method using diamond
detectors and low-pressure multi-wire drift chambers (MWDCs), enabling the use of high-
intensity beams. In addition, we constructed a solid hydrogen target and a recoil proton
detection system, consisting of MWDCs, plastic scintillators, and NaI(Tl) calorimeters.
As a result, we successfully measured the cross sections over a momentum-transfer range
of 0.80 to 2.1 fm−1.

To deduce the density distributions of 132Sn, we analyzed the experimental data us-
ing the relativistic impulse approximation (RIA) calculation with relativistic Love-Franey
nucleon-nucleon interactions. The interaction is tuned to reproduce proton elastic scat-
tering data from 58Ni. Using the RIA calculation, we extracted the proton and neutron
density distributions in the form of a two-parameter Fermi shape. The extracted densi-
ties give a root-mean-square matter radius ⟨r2m⟩1/2 = 4.758+0.023

−0.024 fm and a neutron skin
thickness ∆rnp = 0.178+0.037

−0.050 fm.
The obtained cross sections, matter radius, and neutron skin thickness were compared

with the state-of-the-art ab initio calculations using the in-medium similarity renormal-
ization group method with chiral EFT interactions. The angular distributions and matter
radius of the calculation using the ∆NNLOGO interaction are most consistent with the
experimental results. However, a combined analysis with the charge radius measured
by laser spectroscopy reveals that no theoretical calculations, including the ab initio and
mean-field calculations, can reproduce both charge and matter radii simultaneously. From
the viewpoint of isotopic systematics, we found that the matter radius at the magic num-
ber N = 82 shows a noticeable shrinkage compared with the mean-field calculations,
similar to the trend observed in Ca isotopes.

It is well established that the neutron skin thickness of the 132Sn has a strong cor-
relation with the slope parameter of the symmetry energy L, according to predictions



ii

by various mean-field models. Using the linear correlation, our result of the neutron skin
thickness leads to a relatively smaller L value of L = 12.0+24.3

−32.5 MeV than those by previous
works.
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Chapter 1

Introduction

1.1 Nuclear matter equation of state

The nuclear matter equation of state (EOS) is one of the most fundamental properties of
nuclear matter. In the EOS, the binding energy per nucleon E can be expressed as

E(ρ, δ) = E(ρ, 0) + S(ρ)δ2 + O(δ4), (1.1)

where ρ = ρn+ρp is baryon density and δ = (ρn−ρp)/ρ is isospin asymmery with neutron
density ρn and proton density ρp. The E0(ρ) ≡ E(ρ, 0) is the binding energy of the isospin
symmetric nuclear matter, and the S(ρ) is the so-called symmetry energy. There are no
odd-order terms because of the assumption of isospin symmetry in nuclear forces.

The EOS of the symmetric nuclear matter E0(ρ) can be expressed around the nuclear
saturation density ρ0 as

E0(ρ) = Esat +
K0

2
ϵ2 +

K0

6
ϵ3, (1.2)

K0 = 9ρ20
∂2E0(ρ)

∂2ρ

∣∣∣∣∣
ρ=ρ0

, (1.3)

where ϵ ≡ (ρ− ρ0)/3ρ0. The binding energy at the saturation density Esat is known to be
≈ 16 MeV. The K0 is the so-called incomprehensibility of symmetric nuclear matter, which
is well known to have a strong correlation with the isoscalar giant monopole resonance
(ISGMR). For instance, K0 has been constrained to 240 ± 20 MeV by the ISGMR of
208Pb [1]. Figure 1.1 shows the typical predictions for the EOS of the symmetric nuclear
matter (δ = 0) and pure neutron matter (δ = 1) based on the microscopic ab initio
calculations and phenomenological approaches.

1.2 Symmetry energy and neutron skin thickness

The symmetry energy S(ρ) characterizes asymmetric nuclear matter and is essential for
understanding astrophysical phenomena such as neutron-star structure, supernova explo-
sions, and neutron-star mergers. The landmark observation of a gravitational wave from
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Figure 1.1: EOS of nuclear matter and pure neutron matter calculated by the Dirac-
Buuckner-Hartree-Fock using Born A interaction, non-relativistic Buuckner-Hartree-Fock
and various calculations using AV18 interaction with three-body forces, relativistic mean-
field functionals NL3 and DD-TW, and chiral-perturbation theory ChPT. Taken from [2].

the neutron-star merger by the LIGO and VIRGO collaborations in 2017 (GW170817) fur-
ther emphasized its importance [3]. S(ρ) can be expressed around the saturation density
ρ0 as

S(ρ) = J + Lϵ +
Ksym

2
ϵ2 + O(ϵ3), (1.4)

J = S(ρ0), (1.5)

L = 3ρ0
∂S(ρ)

∂ρ

∣∣∣∣∣
ρ=ρ0

, (1.6)

Ksym = 9ρ20
∂2S(ρ)

∂2ρ

∣∣∣∣∣
ρ=ρ0

. (1.7)

The L and Ksym are the slope and curvature parameters of the symmetry energy at the
saturation density ρ = ρ0, respectively. The L and Ksym are related to Kτ as Kτ ≃
Ksym−6L, where Kτ is an isospin-dependent term of nuclear matter incompressiblity KA

as
KA = K0 + Kτδ

2 + O(δ4). (1.8)

The Kτ is investigated by the isotopic dependence of the ISGMR energies of nuclei [1].
The J and L have been investigated by many nuclear physics experiments, such as mea-
surements of masses, isospin diffusions, isovector resonances, isobaric-analog-state ener-
gies, and neutron skin thickness. These parameters also have a very strong correlation



1.2. SYMMETRY ENERGY AND NEUTRON SKIN THICKNESS 3

with the properties of neutron stars, and therefore, they have also been constrained by
astrophysical observations. One of the summary works provides the averaged values of
J = 31.7 ± 3.2 MeV and L = 58.7 ± 28.1 MeV for both terrestrial experiments and astro-
physical observations [4], as shown by Fig. 1.2. The values of L show a broad distribution
and depend sensitively on the observables and experimental methods employed.
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Figure 1.2: Probability distributions of the symmetry energy parameters from various
studies. Taken from Ref. [4].

One of the most important methods to constrain the L parameter is a measurement
of the neutron skin thickness ∆rnp on the neutron-rich nuclei, especially those that have
double magicities. The neutron skin thickness is defined as

∆rnp = rn − rp, (1.9)

where rn(p) = ⟨r2n(p)⟩1/2 is a root-mean-square (rms) radius of neutron (proton). Both non-
relativistic and relativistic mean-field calculations suggest that neutron skin thicknesses of
the doubly magic nuclei have strong correlations with the symmetry energy parameters,
especially L, as shown in Figs. 1.3 and 1.4.

208Pb is the heaviest stable nucleus with doubly magic numbers. Since its neutron
skin thickness is known to have a particularly strong correlation with the symmetry en-
ergy parameters, the density and radius have been studied using various probes, such
as parity-violating electron scattering [7, 8], isovector giant dipole resonance by inelas-
tic α scattering [9], dipole polarizability αD measurements [10], pygmy dipole resonance
(PDR) [11], antiprotonic atoms [12, 13, 14], Pion photoproduction [15], and proton elastic
scattering [16, 17, 18]. The extracted skin thicknesses by several studies are summarized
in Table 1.1 and widely spread. Since the uncertainties in the results, including the model
errors, are not insignificant, strong constraints cannot be placed on the L parameter.

In such situations, the neutron skin thicknesses of unstable nuclei, especially double
magic nuclei such as 132Sn, 52,54Ca, have attracted considerable attention, because they
are known to be more strongly correlated with the L parameter than those of stable nuclei.
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Figure 1.3: Neutron skin thickness S = ∆rnp of 208Pb, 124,132Sn, and 48Ca as a function
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Taken from Ref. [5].

Table 1.1: Experimental values of neutron skin thickness ∆rnp of 208Pb with indications
whether model uncertainties are included.

Experiment ∆rnp of 208Pb [fm] model error
208Pb(p, p) [18] 0.211+0.054

−0.063 ◦
PREX-II [8] 0.283(71) ◦
αD [10] 0.156+0.025

−0.021 ×
PDR [11] 0.180(35) ×
p̄-atom X-ray I [13] 0.16(2)stat(4)syst ◦
p̄-atom X-ray II [14] 0.20(4)exp(5)mdl ◦
Coherent π0 photoprodocution [15] 0.15+0.03

−0.04 ×
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Figure 1.4: Correlations between the neutron skin thickness and the slope parameter L.
The blue and red points are Skyrme Hartree-Fock and relativistic mean-field calculations,
respectively. Taken from Ref. [6].

Although the neutron numbers of 52,54Ca are not magic numbers found in stable nuclei,
evidence of their double magicities has been reported [19, 20]. Measuring the neutron skin
thickness of them with a precision comparable to that achieved for stable nuclei would
enable tighter constraints on the symmetry energy parameters.

Beyond neutron skin thickness

Conventionally, the EOS properties have been studied mainly through mean-field cal-
culations. Within this framework, however, it is difficult to identify correlations across
different models between the symmetry energy parameters and proton or neutron radii.
The neutron skin thickness has remained almost the only observable that provides mean-
ingful constraints on the symmetry energy. However, since the neutron skin thickness is
a very small quantity, its precise extraction is challenging.

To address this, efforts have focused on extending the measurements to systems with
large isospin asymmetry, where the larger skin thicknesses are expected. In parallel,
new approaches have been developed to probe the EOS parameters through alternative
parameters.

One such approach is the comparison with ab initio calculations starting from chiral
effective theory (EFT). Thanks to remarkable progress in theoretical approaches and
computational technologies, ab initio calculations have become applicable to heavy nuclei,
including 132Sn and 208Pb. These advances enable a direct examination of nuclear forces
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derived from chiral EFT through measurements of the size of heavy nuclei. Consequently,
measurements of charge radii and matter radii have become highly valuable, extending
beyond the traditional reliance on neutron skin thickness alone.

Furthermore, instead of reducing measured density distributions merely to radii, new
methods have been developed to extract alternative physical quantities from the distribu-
tions. One approach is a two-dimensional (2D) plotting method of isoscalar (IS) density
ρIS and isovector (IV) density ρIV [21]. Another one is proton density polarization, which
is the change in proton distribution induced by excess neutrons in isotopes [22].

The IS and IV densities are defined as

ρIS(r) ≡ ρn(r) + ρp(r), (1.10)

ρIV(r) ≡ ρn(r) − ρp(r). (1.11)

Figure 1.5 present a 2D plot of IS and IV densities of 208Pb. The black curve shows
the experimental trajectory, while the colored curves are Skyrme Hartree-Fock (SHF)
calculations with SAMi-J families [23]. The dashed line corresponds to the constant
asymmetry limit ρIV = ρIS(N−Z)/A of the asymmetric nuclear matter. It is noticed that
the slopes of the trajectories at the crossing points with the constant asymmetry line have
strong correlations with the symmetry energy parameters. For instance, Fig. 1.6 shows
the correlation between the L parameter and extracted slopes. By using the correlation
for the SHF calculations with SAMi-J parameters and the relativistic mean-field (RMF)
calculations with DDME-J parameters, the L value is deduced as

L =

{
29.5 ± 6.4 MeV (SAMi-J)

36.9 ± 5.2 MeV (DDME-J)
. (1.12)

Although caution regarding model dependence is required and further investigation will
be necessary, the uncertainty is considerably smaller than that obtained through neutron
skin thickness, demonstrating the usefulness of this new method.

The proton density polarization (PDP) has recently been proposed as a quantity cor-
related with the symmetry energy parameters J and L. In Ref. [22], PDP was discussed
in the context of the change for 48Ca caused by the eight excess neutrons added to 40Ca.
Figure 1.7 shows the difference in 4πr2ρn(p) between 40Ca and 48Ca calculated with the
SAMi-J and DDME-J families [23]. Although the proton number itself does not change,
it is found that the proton density distribution is modified by the attraction of the eight
additional neutrons. The ratio R of the peak values between the neutron density differ-
ence and the proton one exhibits clear correlations with the symmetry energy parameters.
Figure 1.8 shows the correlations with L. Since Sn has a longer isotopic chain than Ca,
PDP in the Sn isotope is expected to exhibit a stronger correlation with the symmetry
energy parameters. This highlights the importance of measuring density distributions of
both neutron-rich and proton-rich side Sn isotopes.
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Figure 1.5: Trajectory in a 2D plot of IS
and IV densities of 208Pb. The experimen-
tal trajectory is given by the black solid
curve sandwiched between two dotted lines.
The area between the two dotted lines shows
the experimental uncertainties. The black
solid curve gives the experimental trajec-
tory. The dashed line corresponds to the
constant IV density limit ρIV = ρIV(N −
Z)/A. The colored solid curves are calcu-
lations with the SAMi-J families [23]. The
slopes, shown by the colored dashed lines,
are evaluated at the crossing points with
the constant IV trajectory. Taken from
Ref. [21].

Figure 1.6: Correlation between the symme-
try energy parameter L and the slope of the
IS-IV density curve. The shaded areas show
experimental slopes obtained for 48Ca and
208Pb. The experimental results of 48Ca and
208Pb are taken from Ref. [24] and Ref. [18],
respectively. Taken from Ref. [21].
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Figure 1.7: Neutron and proton density dif-
ferences between 40Ca and 48Ca. (a) Neu-
tron with the SAMi-J family, (b) the same
for proton, (c) neutron with the DDME-J
family, and (d) the same for proton. Taken
from Ref. [22].

Figure 1.8: Correlations between the PDP
peak ratio R and symmetry energy param-
eter L. Each point shows an SHF or RMF
calculation. The yellow band shows the ex-
perimental value [24]. Taken from Ref. [22].

1.3 Nucleon density distributions of the stable nuclei

The nucleon density distribution is one of the most fundamental properties of nuclei. Be-
cause the neutron-skin thickness is strongly correlated with the nuclear matter EOS, as
discussed in the previous section, determining both proton and neutron density distri-
butions is of great importance. However, measuring neutron distributions is particularly
challenging and remains the focus of considerable ongoing efforts.

1.3.1 Proton and charge density distributions of the stable nu-
clei

The proton density distribution ρp can be obtained by unfolding the charge density distri-
bution ρch with the proton’s intrinsic charge distribution. Since the pioneering experiment
by Hofstader et al. [25], charge distributions of various stable nuclei have been investigated
through the electron scattering experiments [26]. The rms charge radii rch = ⟨r2ch⟩1/2 have
also been accurately determined using isotope shifts by laser spectroscopy and muonic
atom X-rays, in addition to the electron scattering [27]. Thanks to its clean reaction
mechanism, the electromagnetic probe provides reliable access to extract charge distribu-
tions, including information about the internal nuclear structure.
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1.3.2 Neutron density distributions of the stable nuclei

It is more challenging to extract neutron density distributions than those for proton
density distributions, since electromagnetic probes are insensitive to neutrons. A major
alternative approach is parity-violating electron scattering, which probes the weak charge
of nucleons [7, 8, 28]. This technique is highly sensitive to neutron distributions because
the weak charge of the neutron (≈ −0.99) is significantly larger than that of the proton
(≈ 0.07). An important advantage of this method is cleanliness and model independence.
Notable examples are the 208Pb radius experiment (PREX) [7], PREX-II [8], and the
48Ca radius experiment (CREX) [28] at the Jefferson Laboratory (JLab). However, a key
limitation of the weak probe is its low statistical yield, which restricts measurements to
a single momentum transfer and results in large statistical uncertainties. Moreover, the
neutron skin thicknesses of 48Ca and 208Pb extracted from CREX and PREX are mutually
inconsistent within conventional mean-field theories, as shown in Fig. 1.9.

Figure 1.9: Difference between the charge and weak form factors of 48Ca versus that
of 208Pb at their respective momentum transfers. The gray circles and magenta dia-
monds show relativistic and non-relativistic density functionals, respectively. Taken from
Ref. [28].

Another approach is hadronic scattering, using probes such as protona [16, 17, 29, 18],
α paricles [30], and pions [31]. Although the uncertainty associated with the reaction
mechanism–mainly due to the limited knowledge about the nucleon-nucleon (NN ) scat-
tering amplitude inside the nuclear medium–must be carefully considered, the large statis-
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tics provided by hadronic probes are highly attractive. Consequently, they have been
employed in various experiments since the latter half of the 20th century. Because the
hadronic probes are sensitive to the isoscalar matter density and therefore lack isospin se-
lectivity, they have primarily been combined with charge density distributions to extract
the neutron distributions.

Proton elastic scattering at intermediate energy

Proton elastic scattering is one of the most promising hadronic probes for extracting
neutron and matter density distributions. In particular, scattering at intermediate energy
of 200–300 MeV, where NN interaction is weakest, is well-suited for this purpose, since
it provides access not only to the surface but also the interior. This is because the total
cross section of the proton–nucleon is relatively small in this energy region, as shown in
Fig. 1.10, resulting in a relatively long mean free path inside the nucleus.
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Figure 1.10: Energy dependences of the proton-proton and neutron-proton interactions.
Taken from Ref. [32].

Several attempts have been made to extract neutron density distributions of Sn and
Pb isotopes from proton elastic scattering measurements at 300 MeV at RCNP [29, 18].
The analysis of these works is based on the relativistic impulse approximation (RIA)
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models with the relativistic Love-Franey (RLF) interactions. In order to reduce the un-
certainties of the NN interactions inside the nuclear matter, a phenomenological medium
modification is introduced into the RLF interactions in terms of density-dependent pa-
rameters. The modification parameters are calibrated by the proton elastic scattering
data of 58Ni, including angular distributions of the cross section dσ/dΩ, analyzing power
Ay, and spin rotation parameter Q (Fig. 1.11). The reason for using 58Ni is that its pro-
ton and neutron density distributions are considered to have almost the same shape both
experimentally and theoretically [33, 16, 12, 34]. Because this reaction model framework,
medium-modified RIA (mm-RIA), is also used in this work, the details are discussed in
Chap. 4.

Figure 1.11: Angular distributions of the cross sections, analyzing powers, and spin ro-
tation parameters for proton elastic scattering from 58Ni at 295 MeV. The red line shows
the medium-modified RIA calculations. Taken from Ref. [18]

By using the mm-RIA, the neutron density distributions of Sn and Pb isotopes are
extracted in the form of model-independent sum-of-Gaussian (SOG) functions by mini-
mizing the χ2 values of the angular distributions of cross sections and analyzing power, as
shown in Fig. 1.12. Figures 1.13a and 1.13b present the extracted densities of Sn and Pb
isotopes, respectively. The key point of these studies is that the difficult-to-quantify un-
certainties inherent in model-dependent parametrizations, such as two-parameter Fermi
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(2pF) or three-parameter Gaussian (3pG), are overcome by employing model-independent
functions. Moreover, the uncertainties of the reaction model are also taken into account,
thereby ensuring a reliable evaluation of the extracted densities.

Figure 1.12: Angular distributions of cross sections and analyzing powers for proton elastic
scattering from 204,206,208Pb at 295 MeV. Taken from Ref. [18]

1.4 Nucleon density distributions of the unstable nu-

clei

Recent advances in accelerator technology and radioactive-isotope (RI) production meth-
ods have enabled extensive investigations of unstable nuclei, including neutron-rich nuclei
with large isospin asymmetry. Particular attention has been drawn to their sizes and
density distributions, since they are expected to have large neutron skin structures. How-
ever, unlike stable nuclei, RIs cannot be employed as fixed targets, which makes such
measurements considerably more challenging.
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(a) Sn isotopes. Taken from Ref. [29]. (b) Pb isotopes. Taken from Ref. [18].

Figure 1.13: Densit distributions extracted from the proton elastic scattering data at
295 MeV.

1.4.1 Charge density distributions of the unstable nuclei

The isotope-shift measurements by laser spectroscopy can be performed even for short-
lived nuclei. Using this method, the charge radius of 132Sn was determined to be 4.7093(76) fm
at ISOLDE [35, 27]. In contrast, electron scattering experiments on unstable nuclei are
more challenging due to the requirement for RI targets. Recently, however, the first
electron scattering measurement on an unstable nucleus, 137Cs, was carried out by the
self-confining RI ion target (SCRIT) project at RIKEN [36]. Further extension of this
technique to a wider range of nuclei is anticipated in the future. The measurement of
charge-changing cross sections σcc is a relatively recent technique [37, 38, 39]. Although
its accuracy is not as high as that of the electromagnetic method, one advantage is that
it allows measurements even for nuclei far from the stability line, where isotope-shift
measurements are comparatively difficult. Moreover, σcc can be measured even with low-
intensity ion beams, down to a few particles per second.

1.4.2 Neutron density distributions of the unstable nuclei

The methods for extracting neutron density distributions of unstable nuclei are limited
mainly by the low luminosity. Neutron distributions have been investigated through
matter density distributions and radii measured with the hadronic probes.

Measurement of reaction cross section (σR) and interaction cross section (σI) is known
to be efficient in determining the matter radius since the discovery of the halo structure in
11Li [40]. The advantages of these techniques are that they can be applied even for beams
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with very low intensity, down to a few particles per second, and the use of cocktail beams
allows simultaneous measurements of many isotopes. Conventionally, these methods have
been applied mainly to light nuclei, but recently they have been extended to heavier nuclei,
including Ca isotopes [39] and Sn isotopes [41]. For heavy nuclei, however, the reaction
mechanisms become increasingly complex, and their treatment remains a challenge. It
should also be noted that these methods provide access only to the matter radii, while
the detailed density distributions cannot be determined.

One of the most remarkable recent results in matter-radius measurements based on
interaction-cross-section experiments is the study of Ca isotopes across the N = 28 shell
closure. Figure 1.14 shows a systematic trend of the matter radii for the Ca isotopes. It
was found that the matter distribution exhibits a pronounced shrinkage at N = 28 and
a subsequent swelling beyond N = 28, in close analogy to the behavior of the charge
distribution. A key question is whether this behavior is unique to the Ca isotopic chain or
if similar features also appear in other isotopes with magic numbers, such as Sn or Pb. The
answer has the potential to significantly influence the interpretation of the neutron-skin
thicknesses in terms ot the nuclear matter EOS.

Proton elastic scattering in inverse kinematics

Proton elastic scattering in inverse kinematics at intermediate energies is a powerful tool
for determining matter density distributions of unstable nuclei.

A notable application of this technique is the measurement using the hydrogen-filled
chamber, IKAR, as an active target. Angular distributions were successfully measured
for light nuclei such as He [44], Li [45], Be [46], B [47], and C [48] isotopes, which lead to
deducing their matter distributions. Another approach involves storing nuclei in a storage
ring and measuring their scattering with a hydrogen gas target. A successful example is
the EXL (exotic nuclei studied in light-ion induced reactions at storage rings) project
using the ESR storage ring at GSI. The collaboration performed the measurement for
56Ni and deduced the matter radius [49]. Similarly, such experiments using the CSRe
storage ring at HIRFL-CSR have been carried out for 58Ni [50] and 78Kr [51], though
these are stable nuclei. The key achievement of both methods is that they have realized
access to the small momentum-transfer region by using thin gas targets.

On the other hand, our groups have used the solid hydrogen target (SHT) for better
statistics, which enables us to access up to a large momentum transfer region even for
heavy nuclei. We have launched the Elastic Scattering of Protons with RI beams (ESPRI)
project and developed the SHT [52] and a recoil proton spectrometer (RPS). This project
aims to measure the cross sections of proton elastic scattering from unstable nuclei at
intermediate energies (200–300 MeV/nucleon) by missing mass spectroscopy, covering a
momentum-transfer range up to ≈ 2.5 fm−1. We have already performed experiments for
several unstable nuclei such as 6He [53], 9,10,11,16C [54], 20O, 50Ca, 44Ti, and 66,70Ni.

Furthermore, we have proposed a new method to determine the proton and neutron
density distributions separately based on proton elastic scattering. This method is par-
ticularly important for unstable neutron-rich nuclei, which are expected to exhibit large
neutron skin thicknesses. In this approach, coupled equations for proton and neutron
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Figure 1.14: Systematic behavior of rms matter radii (red circle) and point-proton radii
(black cross) for Ca isotopes. The point-proton radii were measured using the isotope-
shift method [42]. Taken from Ref. [43].
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form factors can be solved by measuring proton elastic scattering at two significantly dif-
ferent energies in the intermediate-energy region, exploiting the difference in the energy
dependences of the proton-proton and proton-neutron interactions, as shown in Fig. 1.10.
To confirm this possibility, proton elastic scattering data at 200 and 300 MeV were ob-
tained. Even in the preliminary analysis, the proton and neutron radii determined by this
double-energy method are consistent with those obtained using conventional methods,
which combine charge density distribution with proton elastic scattering data at a single
energy (200 or 300 MeV) [55], as shown in Table 1.2.

Table 1.2: Deduced root-mean-square proton and neutron radii by the three methods:
proton elastic scattering at 300 MeV plus chrag density distribution ρch, proton elastic
scattering at 200 MeV plus chrag density distribution ρch, and proton elastic scattering
at 200 & 300 MeV. Taken from Ref. [55].

300 MeV + ρch 200 MeV + ρch 200 & 300 MeV
rp [fm] 4.200 4.200 4.21(2)
rn [fm] 4.285(16) 4.300(22) 4.300(17)

1.5 Purpose of this work

In this thesis, we reported the measurement of proton elastic scattering from 132Sn in
inverse kinematics around 200 MeV/nucleon. Since measuring proton elastic scattering
from heavy RIs over a wide momentum-transfer range is not straightforward, it had not
been accomplished before. However, by developing a new particle-identification method,
a solid hydrogen target, and a recoil proton spectrometer, we succeeded in performing
such measurements for the first time.

We then tested whether the reaction frameworks used for analyzing proton elastic
scattering for stable nuclei also work well for data from nuclei with large isospin asymme-
try. Although the proton and neutron density distribution cannot be deduced separately
because we analyzed the data only at a single energy, the matter density distribution and
radius were extracted, which have not been measured previously. In addition, a combined
analysis with the charge radius gave the neutron skin thickness. The PDR experiment
on 132Sn [56] represents the only attempt to deduce the neutron skin thickness, but the
result highly depends on the model. Therefore, this study plays a significant role in in-
vestigating the structure of systems with large isospin asymmetry and in advancing our
understanding of the EOS of asymmetric nuclear matter.

Furthermore, thanks to remarkable progress in theoretical approaches and computa-
tional technologies, ab initio calculations starting from chiral effective theory (EFT) have
become applicable to heavy nuclei, including 132Sn and 208Pb [57, 58, 59, 60]. These
advances enable a direct examination of nuclear forces derived from chiral EFT through
measurements of the size of heavy nuclei, thereby further enhancing the significance of
the present study. In this work, we compare density distributions predicted by several ab



1.5. PURPOSE OF THIS WORK 17

initio calculations employing in-medium similarity renormalization group (IMSRG), as
well as the angular distributions of proton elastic scattering obtained from the densities
via RIA calculations, with the experimental results.

In Chapter 2, the experimental setup is described. In Chapter 3, the details of the data
reduction and the obtained crosse sections are described. In Chapter 4, the explanation
of the mm-RIA and the results of extracted matter density distributions of 132Sn are
shown. In Chapter 5, the angular distributions of cross section and the extracted matter
radius are compared with several theoretical calculations. Finally, the summary is given
in Chapter 6.
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Chapter 2

Experiment

The experiment was performed at the Radio Isotope Beam Factory (RIBF) at RIKEN.
Figure 2.1 shows an overview of RIBF. In addition to 132Sn, we performed proton elas-
tic scattering for a stable nucleus, 48Ca, to suppress the systematic uncertainty of the
secondary-target thickness and recoil-proton detectors.

Figure 2.1: Overview of RIBF at RIKEN. Taken from Ref. [61].
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2.1 Beam Production

The secondary beam, including 132Sn, was produced via the in-flight fission of 238U. An
238U ion from the superconducting electron cyclotron resonance (SC-ECR) ion source was
accelerated to 345 MeV/nucleon with the beam intensity of about 40 particle nA by the
RILAC2 injector and four cyclotrons (RRC, fRC, IRC, and SRC), as indicated by the
orange line in Fig. 2.2. The accelerated primary 238U beam was bombarded on the 4-mm-
thick 9Be target at the achromatic focal plane (F0), and the produced secondary beam
was separated and identified by the BigRIPS spectrometer. To produce a beam including
48Ca, a 7-mm-thick 9Be was used.

Figure 2.3 shows the secondary beamline and installed detectors. It should be noted
that CNS active target (CAT) detectors [62] were installed at F8 to measure IMSRG in
parallel. The beamline detectors at BigRIPS are used for both CAT and ESPRI mea-
surements. This experiment is the first parallel experiment including multiple scattering
sites at RIBF.

Figure 2.2: Schematic view of the beam acceleration. Taken from Ref. [63].

2.2 BigRIPS Spectrometer

Since the secondary beam has various nuclei, it is required to separate or identify the
isotopes. BigRIPS is a superconducting in-flight RI beam separator at RIBF and has
seven focal planes (F1–F7), six dipole magnets (D1–D6), and fourteen superconducting
triplet quadrupole magnets [64]. The F3 and F7 are momentum achromatic planes, while
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Figure 2.3: The schematic view of the beamline and installed materials.

F1 and F5 are dispersive planes. BigRIPS consists of two stages: the first stage, from
F0 to F2, to separate the beam particles, and the second stage, from F3 to F7, to select
particles based on their atomic number, charge, mass, and momentum. The wedge-shaped
degraders were installed in F1 and F5. In the second stage, the particles are identified
event-by-event by installing beamline detectors at the focal planes to measure the Bρ
value, the time of flight (TOF), and the energy loss (∆E). Table 2.1 summarizes the
setting of BigRIPS.

At BigRIPS, plastic scintillators, parallel-plate avalanche counters (PPACs) [65], and
a multi-sumpling ionization chamber (MUSIC) are used as the standard detectors, and
the TOF-Bρ-∆E method is adopted as the conventional PID technique [66]. While these
detectors are used during the tuning for the low-intensity beam, they are unsuitable for
high-intensity heavy-ion beams exceeding 100 kcps due to radiation damage and low effi-
ciency. Thus, a new PID method called TOF-Bρ-Bρ was adopted, using diamond detec-
tors and low-pressure multi-wire drift chambers (LP-MWDCs). The present experiment
is the first physics experiment employing the PID method.

2.2.1 TOF-Bρ-Bρ method

The secondary cocktail beam was identified using the so-called TOF-Bρ-Bρ method [67].
To apply this method, we determined the time of flight between F3 and F7 (TOF37), the
magnetic rigidity between F3 and F5 (Bρ35), and the magnetic rigidity between F5 and
F7 (Bρ57). These quantities are related as follows:

TOF37 =
L35

β35c
+

L57

β57c
, (2.1)(A

Q

)
35

=
Bρ35
β35γ35

· e

muc
, (2.2)(A

Q

)
57

=
Bρ57
β57γ57

· e

muc
, (2.3)
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Table 2.1: List of parameter configurations of the BigRIPS.

Aluminum degrader thickness (mm)
132Sn 48Ca

F1 3.5 7.0

F5 2.0 5.0

Slit opening area (mm)
132Sn 48Ca

F1 ±21.4 −30.0, +64.2

F2 ±2.0 −3.0, +5.0

F5 ±110.0 ±110.0

F7 ±5.0 −8.0, +10.0

Dipole magnet rigidity (T·m)
132Sn 48Ca

D1 7.4500 6.6800

D2 6.7703 6.2275

D3 6.5835 6.1587

D4 6.5835 6.1587

D5 6.0150 5.6831

D6 6.0150 5.6831
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with the speed of light c, the atomic mass unit mu, the elementary charge e, the flight
path length L, the Lorentz factor γ, the velocity relative to the speed of light β. The
subscripts of ”35”, ”57”, and ”37” represent the quantities with respect to the F3–F5,
F5–F7, and F3–F7, respectively. By assuming the charge state doesn’t change at F5,

Bρ35
Bρ57

=
β35γ35
β57γ57

. (2.4)

By solving Eqs. (2.1) and (2.4), β and γ can be obtained. Then, the A/Q can be obtained.
The energy loss in the F5 degrader ∆E is expressed by

∆E = (γ35 − 1)Amu − (γ57 − 1)Amu. (2.5)

On the other hand, the energy loss can also be expressed as the Bethe-Bloch formula
dE/dx ∝ Z2/β2

35. From these formulas and the assumption Q = Z, the atomic number
Z can be obtained as:

Z = C0 + C1

(
(γ35 − γ57)β

2
35

(A
Q

)
35

+ C2x5

)
(2.6)

where C0, C1, and C2 are empirical coefficients, and x5 is the postion at F5. The last
term represents the wedge-shaped effects of the F5 degrader.

The TOF37 were measured using the diamond detectors placed at F3 and F7 (F3 &
F7 Dia). The Bρ values are determined using the positions measured by the LP-MWDCs
placed at F3, F5, and F7. The Bρ is expressed as

Bρ = Bρ0(1 + δ) (2.7)

with the central rigidity Bρ0 and momentum dispersion δ. When transporting the beam
from F3 (F5) to F5 (F7), the optical vector changes asxi

ai
δij

 =

(x|x)ij (x|a)ij (x|δ)ij
(a|x)ij (a|a)ij (a|δ)ij

0 0 1

xj

aj
δij

 , (2.8)

(i, j) = (3, 5), (5, 7), (2.9)

where xi and ai are the position and angle at i-th focal plane. We used the ion-optics
matrix elements calculated by COSY Infinity in the standard optics mode, provided in
Ref. [68], and summarized in Table 2.2. Since (x|a) values are negligible, by solving the
(2.8), δij is expressed as

δij =
xj − (x|x)ijxi

(x|δ)ij
. (2.10)

Therefore, we can obtain the Bρ values by measuring the positions at the focal planes.
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Table 2.2: Transfer matrix elements from F3 to F5 and from F5 to F7.

F3–F5 F5–F7

(x|x) 0.92025 × 10+0 0.10871 × 10+1

(x|a) [mm/rad] −0.84647 × 10−9 0.22471 × 10−8

(x|δ) [mm/%] 0.31687 × 10+2 −0.34454 × 10+2

(a|x) [rad/mm] −0.36118 × 10−8 0.22198 × 10−8

(a|a) 0.10867 × 10+1 0.91969 × 10+0

(a|δ) [rad/%] −0.70416 × 10−9 −0.75073 × 10−7

2.2.2 Detector setup at BigRIPS

Diamond detector

We installed diamond detectors on F3 and F7 to measure the TOF. The signal of the
F7 diamond detector was also used for serving the beam trigger. The diamond detectors
were developed at the Center for Nuclear Science (CNS), the University of Tokyo. The
material was artificially produced using the chemical vapor deposition (CVD) technique,
which enables the fabrication of crystals large enough to be used as radiation detectors.
Its size and thickness are 30 × 30 mm2 and 0.2 mm, respectively. While there is one pad
on the anode side, the 28 × 28 mm2 cathode is separated into 4 strips at the other side.
However, due to issues with the strip readout, only the singlas from the pad electrode
were used in the analysis in this work.

The signals were amplified by low-noise current amplifiers (Cividec C2-HV for strips
and CAEN A1423B for pads). After discrimination, the signals were recorded by a multi-
hit time-to-digital converter (TDC) (CAEN V1290).

Low-pressure multi-wire drift chamber

We installed low-pressure drift chambers (LP-MWDCs) [69] on F3, F5, and F7 to measure
the trajectories at each focal plane. The configurations are summarized in Table 2.3.
While both vertical and horizontal trajectories are used for the beam tuning, only the
horizontal trajectories are used for the analysis.

The signals were Amplifier-Shaper-Discriminator (ASD) boards (Repic, RPA 132), and
then the timing signals with the timing-over-threshold (TOT) information were recorded
by the multi-hit TDCs (CAEN V1190A).

2.3 Proton elastic scattering in inverse kinematics

Before describing the experimental setup around the secondary target, an outline of the
method for measuring proton elastic scattering is provided. To determine the cross section
of proton elastic scattering, elastic events should be distinguished from inelastic scattering
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Table 2.3: Specifications of MWDCs installed at BigRIPS. The wire positions of the X’
and Y’ planes are shifted by half cells.

F3DC1
Layer configuration XX’YY’XX’YY‘
Cell size 3×3 mm2

Effective area 48×48 mm2

Gas isobutane

F3DC2
Layer configuration XX’YY’
Cell size 5×5 mm2

Effective area 48×48 mm2

Gas isobutane

F5DC1,2
Layer configuration XX’UV
Cell size 5×5 mm2

Effective area 216×144 mm2

Gas isobutane

F7DC1,2
Layer configuration XX’YY’XX’YY’
Cell size 4.8×5 mm2

Effective area 60×60 mm2

Gas isobutane
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and other reaction channels based on the reconstructed excitation energy. In this work,
missing-mass spectroscopy was employed to extract the excitation energy.

For a two-body reaction, the recoil particle energy Tp can be obtained by solving the
following equation:

aT 2
p + bTp + c = 0, (2.11)

a = (mb + Tb + mp)
2 − (2mb + Tb)Tb cos2 θ

b = 2(mb + Tb + mp)(mbEx + E2
x/2) − 2(2mb + Tb)mpTb cos2 θ

c = (mbEx + E2
x/2)2

,

with the physical quantities listed in Table 2.4. Thus, the excitation energy Ex can
be deduced by measuring the incident energy Tb, recoil-particle energy Tp, and scattering
angle θ. The scattering angle was determined by measuring both beam-particle and recoil-
particle angles. While the beam energy was obtained from the position at dispersive focal
plane F5, the other quantities were measured around the secondary target.

Table 2.4: Physical quantities of the two-body kinematics.

mb mass of beam particle (132Sn)

Tb incident energy

mp mass of target particle (proton)

Tb kinetic energy of recoil particle (proton)

θ scattering angle

Ex excitation energy

2.4 Setup around the secondary target

The secondary beam was transported to the twelfth focal plane (F12), where the sec-
ondary target was installed. Figure 2.4 shows a schematic view of the setup around the
secondary target. The 132Sn beam was bombarded on the solid hydrogen target (SHT),
and recoil protons were detected by the recoil proton spectrometer (RPS). On the up-
stream of the SHT, a plastic scintillator (F12pla), two beamline low-pressure MWDCs
(BDC1 and BDC2) were placed to measure the timing, to track the beam. While two
plastic scintillators are installed to identify the ejectile particles on the downstream of
the SHT, they did not work stably due to the attenuation of the light yield caused by
the high-intensity heavy beam. Thus, the detectors were not used for the analysis in this
work.

2.4.1 Beamline detectors at F12

Figure 2.5 shows the side view of the beamline at F12. The F12pla were used to provide
the beam timing information, which was used as a start timing of the TOF of the recoil
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Figure 2.4: Schematic view around the secondary target.

protons, and for the start timing of the drift timing of the BDCs. Figure 2.6 shows the
photograph of F12pla. The light output was read out by two photomultiplier-tube (PMT)
assemblies (Hamamatsu H2431-50) attached to both sides. The charge and timing of the
signals were recorded by a charge-to-digital converter (QDC) (CAEN V792) and a TDC
(CAEN V1290), respectively.

F12pla BDC1&2 SHT

Beam

Figure 2.5: Photograph of F12 area.

The two BDCs [70, 71], which had been developed for our ESPRI project, were in-
stalled with a distance of about 1 m to measure the beam trajectory. The trajectory gave
us the incident angle of the beam and the hit position on the target. The configurations
are summarized in Table 2.5. The BDCs were installed in the vacuum chambers and
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Figure 2.6: Photograph of F12pla.

operated at a low pressure of 67 mbar. The signals were Amplifier-Shaper-Discriminator
(ASD) boards (GND GNA-110), and then the timing signals with the TOT information
were recorded by the multi-hit TDCs (CAEN V1190A).

Table 2.5: Specification of BDCs. The wire positions of the X’ and Y’ planes are shifted
by half cells.

BDC1&2
Layer configuration XX’YY’XX’YY‘
Cell size 5×5 mm2

Effective area 77.5×77.5 mm2

Anode wire Au-W/Re 16µmϕ
Cathode wire Au-Al 80µmϕ
Gas CH4

2.4.2 Solid hydrogen target

We used a solid hydrogen target (SHT) [52] as a proton target. Figures 2.7 and 2.8
show photographs of the SHT system and the produced SHT, respectively. Compared
with compound targets such as polyethylene, using a pure hydrogen target effectively
suppresses background events originating from other nuclei. The SHT had an elliptical
shape with a major axis of 35.4 mm and a minor axis of 20 mm, and a thickness of 1 mm.
As shown in Fig. 2.4, the SHT was tilted by 45◦ to reduce multiple scattering of the recoil
protons in the target In this configuration, the effective area corresponded to a 25 mm-
diameter circle, and the target thickness along the beamline is about 1.4 mm. This thin
target enabled high excitation-energy resolution by minimizing the uncertainty of the
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reaction point along the beam axis and reducing the multiple scattering of the recoil
protons. 6-µm-thick aramid films were used for the windows. The number of protons
included in the SHT was evaluated by the cross section of the proton elastic scattering
for the 48Ca in the same beam time.

Figure 2.7: Photograph of the SHT system.

Figure 2.8: Photograph of the produced
SHT.

2.4.3 Recoil Proton Spectrometer

Two detector sets for detecting recoil particles were placed at the upper and lower windows
of the large vacuum chamber, as shown in Fig. 2.4. Figures 2.9 and 2.10 show side-view
photographs of the RPS chamber and the RPS detectors, respectively. Each set consists of
an MWDC for recoil-particle tracking (recoil drift chamber; RDC), a plastic scintillator
(p∆E), and seven NaI(Tl) calorimeters. The detector sets were used to identify recoil
particles and to measure the kinetic energy and angle of the recoil protons. Because the
angular resolution obtained from the RDC tracking was insufficient, the recoil proton
angle was determined by combining the hit position on the RDC with the reaction point
on the target derived from the BDC tracking. In this work, only the upper-side data were
analyzed due to an issue with the lower RDC.

Recoil drift chamber

The RDCs were used for the angles of the recoil protons. The configurations are summa-
rized in Table 2.5. In this work, the first layer of X-plane was excluded from the analysis
because of excessive noise. The signals were ASD boards (GND GNA-180), and then the
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Figure 2.9: Photograph of the RPS chamber in the
side view.

Figure 2.10: Photograph of the
RPS detectors: RDCs, p∆Es, and
NaI(Tl) calorimeters.
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timing signals were recorded by the multi-hit TDCs (AMSC AMT-VME TDC). The TOT
information was not recorded exclusively for the first X-plane.

Table 2.6: Specification of RDCs. The wire positions of the X’ and Y’ planes are shifted
by half cells.

RDC Up&Down
Layer configuration XYXYX’Y’X’
Cell size 14×14 mm2

Effective area 436×436 mm2

anode wire Au-W/Re 30µmϕ
cathord wire Be-Cu 100µmϕ
Gas Ar(50%) + C2H6 (50%) 1. atm

p∆E

The plastic scintillator p∆E provided the timing and energy loss information of the recoil
protons. The effective area and thickness are 440 × 440 mm2. The thicknesses were
2.53 mm for upside and 3.09 mm for downside. The light output was read out by two
PMT assemblies (Hamamatsu h7195) attached to both sides. The charge and timing of
the signals were recorded by a charge-to-digital converter (QDC) (CAEN V792) and a
TDC (CAEN V1290), respectively.

NaI(Tl) calorimeter

The NaI(Tl) calorimeter was used to measure the kinetic energy of recoil protons. For the
upper set, the detectors are labeled NaI1 through NaI7 from top to bottom. The effective
area and thickness are 431.8 × 45.72 mm2 and 50.8 mm, respectively. The crystal was
hermetically sealed in aluminum frames, and the entrance window had a thickness of 0.1
mm. The signals from the PMTs (Hamamatsu R1307) were first amplified by emitter-
follower preamplifiers, then shaped by a pulse-shaping amplifier (CAEN N156B), and
finally, the peak heights were recorded using a peak-sensing analog-to-digital converter
(PS-ADC, CAEN V785). The calorimeters were tested with proton beams at 20, 40, 60,
and 80 MeV [72]. As a typical result, an energy resolution of 0.3% was obtained for the
80 MeV proton beams.

2.5 Data acquisition system

The data acquisition (DAQ) system was based on the RIBFDAQ framework [73] and
employed three event builders: BLD, CAT, and ESPRI. Figure 2.11 shows the DAQ
diagram. Each builder recorded the data with a common trigger basis, where the common
trigger was distributed by the general trigger operator (GTO) module [74]. The trigger
logic is described in the following subsection.
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Figure 2.11: DAQ diagram.

Because the beam intensity was high (about 200 kcps) and triggers from the CAT,
ESPRI, and BLD detectors were applied, the trigger rate received by the BLD builder was
relatively high. Therefore, we introduced a parallel-readout VME DAQ system utilizing
mountable controllers (MOCOs) for the BLD readout. This experiment represents the
first physics application of MOCOs.

In conventional VME-based readout systems, a single controller typically reads out
multiple modules sequentially. By equipping each VME module with a MOCO, parallel
readout was achieved, thereby reducing the dead time. Subsequently, the MOCO with
parallelized VME (MPV) [75]–integrating MOCOs with a parallel-readout backplane and
a dedicated controller–was developed and has since been widely adopted at RIBF.

The data from the ESPRI builder was merged with that from the BLD builder us-
ing a time-stamping system [76]. The time stamps were recorded by the logic unit for
programmable operation (LUPO) modules [77]. The merging efficiency exceeded 99.9%
while all DAQ systems operated properly.

The number of accepted triggers, requested triggers, and other numbers of the detector
hits were recorded using VME scalers (Struck Innovative Systeme GmbH SIS3820).

2.5.1 Trigger condition

The beam trigger was generated from the pad signal of the F7Dia, which was downscaled
by a factor of 1/10,000. The trigger was mainly used for evaluating the performance of
the BLDs as well as for investigating the properties of the beam. Figure 2.12 shows the
diagram of the ESPRI trigger, which means the reaction trigger at F12. The trigger was
used for the physical analysis. The CAT tigger was not used in this analysis.
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Figure 2.12: Diagram of trigger circuit.
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Chapter 3

Data reduction and Results

In this chapter, the data reduction process is described to obtain the angular distri-
bution of the differential cross section dσ/dΩ for proton elastic scattering from 132Sn.
Figure 3.1 presents the flowchart of the data reduction.

Event Selection Physical Quantity

Calibration

Numbers

F5DC

F3DC
F7DC
F3Dia

F7Dia

BDC

Beam PID

Target Hit

F12pla

𝑝Δ𝐸

RDC

NaI

Scattering Angle 𝜃

TOF of proton

Proton energy 𝑇𝑝

Recoil PID

Beam energy 𝑇𝑏

Excitation Energy 𝐸𝑥

Number of Beam

Yield

Differential

Cross Section 
𝒅𝝈

𝒅𝛀

Figure 3.1: Flow chart showing the derivation of differential cross sections.

3.1 Beam analysis

In this section, the analysis of beam particles is presented, using the beam-trigger data.
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3.1.1 MWDC

The tracking analysis using the LP-MWDCs placed at F3, F5, and F7, and the BDCs, is
described.

First, the drift timing was obtained by subtracting the timing of the reference detector
from the measured timing of each MWDC. The reference detectors were F3Dia for F3DC
and F5DC, F7Dia for F7DC, and F12pla for the BDCs. The upper panel of Fig. 3.2
shows the typical timing distribution of the first X plane (X1) of BDC1. The drift timing
DT was converted into drift length using a space-time conversion (STC) function FSTC,
defined as

FSTC(DT ) =
C

2
×
∫ DT

Tmin
ftdt∫ Tmax

Tmin
ftdt

, (3.1)

where C denotes a cell size. Here, ft represents the normalized distribution of the drift
times from Tmin to Tmax. The lower panel of Fig. 3.2 shows the typical drift length
distribution of X1 of BDC1.
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Figure 3.2: (Upper panel) TDC spectrum on X1 plane of BDC1. (Lower panel) Drift
length distribution converted from TDC spectrum.
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The position X and angle A of a trajectory were determined by minimizing the χ2,
defined as

χ2 =
∑
i

(f(zi) − xi − dli)
2, (3.2)

f(z) = X + Az, (3.3)

where dli, xi, and zi denote the obtained drift length, the wire position, and the plane
coordinate along with the beam axis of the i-th plane, respectively.

3.1.2 Beam PID

The identification of the beam particles was performed based on TOF-Bρ-Bρ method.
Using the measued timings of F3Dia and F7Dia (t3 and t7), the time-of-flight between

F3 and F7 (TOF37) can be represented as

TOF37 = t7 − t3 − toff . (3.4)

Here, toff is the time offset arising from the signal path difference. As 132Sn can be
identified from the plot of the X position of F5 (F5X) versus t7 − t3, shown in Fig. 3.3,
toff was determined such that A/Q of 132Sn is 2.64. Figure 3.4 shows the A/Q spectrum
after the toff calibration.

132Sn

Figure 3.3: 2D histogram of F5X versus t7−
t3.
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Figure 3.4: A/Q spectrum.

Next, the determination of Z was performed. The coefficient C2 in Eq. (2.6) was
determined from the correlation between F5X and (γ35−γ57)β

2(A/Q)35 shown in Fig. 3.5.
Subsequently, C0 and C1 were calibrated using nuclei around Z = 50. Figure 3.6 presents
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the resulting PID plot of the beam particles, where a clear separation was achieved. The
resolutions of Z and A/Q for 132Sn were ∆Z = 0.237 and ∆(A/Q) = 0.00206. The events
satisfying the following equation with (Z, A/Q) were identified as 132Sn.√(Z − 50

∆Z

)2
+
(A/Q− 2.64

∆(A/Q)

)2
≤ 3. (3.5)

𝒁 = 𝟓𝟎

Figure 3.5: 2D histgram of F5X versus
(γ35 − γ57)β

2(A/Q)35.

132Sn

Figure 3.6: Beam PID spectrum: 2D hist-
gram of A/Q versus Z.

3.1.3 Beam energy

The beam energy Tb was determined event-by-event from the horizontal position at the
dispersive focal plane F5 (F5X). Using the RI-beam simulator Lise++ [78] for the fragment
separator, the correlation between F5X and the beam energy at the center of the SHT
was evaluated, taking into account the energy loss in the materials between F5 and the
SHT. Figure 3.7 shows the simulated correlations.

In deriving the beam energy distribution, the effect of straggling was taken into ac-
count. The energy spread due to the straggling is approximately 0.5%. In addition, to
obtain a more accurate distribution, the correlations between F5X and the beam energy
were evaluated at positions corresponding 1/6, 3/6, 5/6 of the SHT thickness, and their
average was taken. The resulting beam energy distribution is shown in Fig. 3.8.

3.1.4 Beam injection angle and position on the target

The trajectory of the beam incident on the SHT was measured by the two BDCs. The
angular resolution and position resolution on the SHT were 0.2 mrad and 0.2 mm (σ),
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Figure 3.7: Simulated correlation between F5X and beam energy on the SHT by Lise++.
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Figure 3.8: Beam energy distribution on the SHT.
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respectively. The beam profile at the SHT is shown in Fig. 3.9. In the figure for the recoil
trigger, the concentric circular region around ϕ25 mm indicates the edge of the copper
frame. In this analysis, events within the ϕ21 mm circle, shown by the black line, were
regarded as beam hits on the target.
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(a) Beam trigger.
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(b) Recoil trigger.

Figure 3.9: Beam profile on the target. The red line indicates a ϕ25 circle, corresponding
to the SHT size, while the black line indicates the ϕ21 circle, within which events were
regarded as beam hits.

3.2 Recoil proton analysis

In this section, the analysis of recoil particles is presented using the recoil-trigger data,
focusing on events with the target hit.

3.2.1 Recoil particle identification

The identification of the recoil particles was performed using the correlation between
the energy loss in p∆E and the TOF from F12pla to p∆E. In addition, for high-energy
particles that penetrated the p∆E and stopped in the NaI(Tl) calorimeter, the correlation
between the energy loss in p∆E and that in the calorimeter was used.

PID by the p∆E detector

The PID was performed based on the correlation between the charge of the p∆E (Qp∆E)
and the TOF from F12pla to p∆E (tp∆E − t12). The TOF from F12pla to the SHT was
assumed to be constant.
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Figure 3.10 shows the correlation between Qp∆E and (tp∆E − t12). In the small TOF
region (35–45 ns), corresponding to particles penetrating p∆E, Qp∆E follows the relation

of Qp∆E ∝ dE
dx

∝ Z2
r

β2
r
, where Zr and βr denote the atomic number and velocity of the parti-

cles, respectively. On the other hand, in the large TOF region (45–60 ns), corresponding
to particles stopping in p∆E, the light yield Qp∆E is related to the kinetic energy Kr as

Qp∆E ∝ Kr =
mr√
1 − β2

r

−mr

≈ 1

2
mrc

2β2
r , (3.6)

where mr and c denote the particle mass and the speed of light, respectively. Based on
these correlations, the spectrum was fitted with the following function:

fPI1(x) =

{
p0 × flow(x) (x ≤ p1)

p0 × fhigh(x) (x > p1)
, (3.7)

flow(x) =
( x− p2
p1 − p2

)2
+ p4(x− p1), (3.8)

fhigh(x) =
(p1 − p3
x− p3

)2
+ p5(x− p1)

2, (3.9)

where pi are fitting parameters. The second term in each of Eqs. (3.8), (3.9) represents
a correction term. Figure 3.11 shows the spectrum of Qp∆E/fPI1(tp∆E − t12). The peak
around Qp∆E/fPI1(tp∆E − t12) = 1 corresponds to protons. The fitting with the proton
gate in Fig. 3.10 and the proton selection in Fig. 3.11 were iteratively performed until
convergence. The red line in Fig 3.10 represents the final function fPI1(x). From this
point forward, events startfying

|Qp∆E/fPI1(tp∆E − t12) − 1| ≤ 0.36 (3.10)

are identified as protons. This condition corresponds to the region within 3σ around
the peak at Qp∆E/fPI1(tp∆E − t12) = 1, as determined by fitting the distribution with a
Gaussian plus a linear background.

PID for high-energy recoil particle

For high-energy recoil particles, additional identification was performed using the E–
∆E method. Figure 3.12 shows the correlation between Qp∆E and the NaI ADC value,
ADCNaI . Assuming that energy losses outside p∆E are negligible, ADCNaI is related to
the energy loss ∆Ep∆E inside p∆E as follows:

ADCNaI ∝ Er − ∆Ep∆E

= C
ArZ

2
r

∆Ep∆E

− ∆Ep∆E, (3.11)
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Figure 3.10: PID plot for recoil particles us-
ing tp∆E− t12 and Qp∆E. The red line shows
the fitting function in the form of Eq. (3.7).
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Figure 3.11: Spectrum of the ratio
Qp∆E/fPI1(tp∆E − t12).

where Er and Ar denote the particle energy and mass,respectively, and C is a constant.
Accordingly, the spectrum was fitted using the following function:

fPI2(x) =
1

p3

( p0
p1 + p2x

− (p1 + p2x)
)
, (3.12)

where pi are fitting parameters. Figure 3.13 shows the spectrum of ArZ
2
r , which was

caculated using the fitted parameters as

ArZ
2
r =

1

p0
(p2ADCNaI + p1 + p2x)(p1 + p2x). (3.13)

Events within 3σ around the peak at ArZ
2
r = 1, determined by fitting the distribution

with a Gaussian plus a linear background, were identified as protons.

3.2.2 Scattering angle

The hit position on the RDC was determined by its tracking. The first X plane, being
closest to the target and most affected by backgrounds, was excluded from the analysis.
While the analysis procedure follows almost the same method described in Sec . 3.1.1,
there are mainly two different points. One is that χ2 is defined as

χ2 =
∑
i

(f(zi) − xi

1 + A2
− dli

)2
, (3.14)

f(z) = X + Az, (3.15)
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to account for the effect of the relatively large incident angle with respect to the RDC.
The other is that the STC function was iteratively corrected to determine a more precise
position, which is described in Appendix B. The position resolution of the RDC was less
than 0.2 mm(σ).

From the above analysis of the RDC, the hit position on the RDC r was obtained.
Combining r with the target-hit postion t, the recoil-proton direction r⃗ = (rx, ry, rz) was

reconstructed as r⃗ = r − t. Furthermore, using the beam direction b⃗ obtained by the
BDCs, the scattering angle of the proton (polar angle θlab and azimuthal angle ϕlab) in
the laboratory frame was determined as

θlab = arccos

(
b⃗ · p⃗
|⃗b||p⃗|

)
, (3.16)

ϕlab = arctan

(
ry
rx

)
. (3.17)

(3.18)

3.2.3 Recoil energy calibration and kinematical correlation

In this section, the energy calibration procedure for the recoil proton is described. In
the analysis, recoil-trigger data were used, with requirements of the target hit and 132Sn
selection. The recoil-proton energy was determined by the TOF for low-energy particles
and by the ADCNaI for high-energy particles. The calibration was based on the pro-
ton energies Tp[kin] of elastic events, which were deduced from the beam energy Tb and
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scattering θlab using the kinematical correlation obtained by solving Eq. (2.11):

Tp =
2(2mb + Tb)mpTb cos2 θlab

(mb + Tb + mp)2 − (2mb + Tb)Tb cos2 θlab
. (3.19)

NaI(Tl) calorimeter

The energy calibration of the NaI(Tl) detector was performed individually for each spec-
trum. Although the detector exhibits position dependence, namely, the measured ADC
values vary with the incident position even for the same incident energy [79], no explicit
correction for this effect was applied. Consequently, the calibration implicitly includes this
position dependence correction. To reduce background contributions, the corresponding
region was selected using the RDC. Figure 3.14 shows the correlation between ADCNaI

and Tp[kin]. Elastic events were graphically selected and fitted with the following function:

fNaI
Tp (x) = p1/2

√
x + p0 + p1x + p2x

2 + p3x
3. (3.20)

ToF

The calibrated proton TOF (TOFp) was expressed as

TOFp = (tp∆E − t12) − toff . (3.21)

The ideal TOF (TOFp[kin]), which was calculated from the Tp[kin] and did not include
effects such as energy loss inside the target, was given by

TOFp[kin] =
Lp

c

γ√
γ2 − 1

, (3.22)

γ =
(Tp[kin]

mpc2
+ 1
)
,

where Lp is the flight path length determined from the positions at the target and at the
RDC. The offset parameter toff was calibrated so that the measured TOF reproduces this
ideal TOF. Since toff reflects not only the difference in signal path length but also the
effects of energy loss in the target, it is not constant. Figure 3.15 shows the correlation
between (tp∆E − t12) and toff = TOFp[(kin)] - (tp∆E − t12), where elastic events were
graphyically selected. In addition, it is required that the absolute value of the excitation
energy Ex determined from the NaI(Tl) calorimeters was less than 3 MeV in the region of
(tp∆E − t12) < 42 ns. This spectrum was fitted using a fourth-order polynomial function,
which was then used to obtain the proton energy Tp.

Figure 3.16 shows the two-dimensional plots between the scattering angle θlab and
energies of the recoil protons. The proton energies Tp in Fig. 3.16(a) and Fig. 3.16(b)
were deduced from the NaI(Tl) calorimeters and the TOF, respectively. The black and
red lines are the kinematical correlation of the elastic scattering and inelastic scattering
to the first excited state (4.04 MeV) for Tb = 26730 MeV.
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3.2.4 Conversion to the CM frame

The scattering angle θlab in the laboratory frame was event-by-event converted to the
scattering angle θcm in center-of-mass (CM) frame by the following equation:

θcm = arcsin
mp

√
m2

p + p2cm sin 2θlab

m2
p + p2cm sin2 θlab

, (3.23)

pcm =

√
(s−m2

p −m2
b) − 4m2

bm
2
p

4s
, (3.24)

s = (mp + mb)
2 + 2mpTb. (3.25)

(3.26)

3.3 Excitation energy and count of elastic events

The excitation energy Ex can be determined from Eq. (2.11), solved for Ex, using Tb, Tp,
and θlab obtained in the previous sections, as follows:

Ex = −mb +
√
m2

b − 2(mb + Tb + mp) + 2A cos θlab, (3.27)

A =
√

(2mb + Tb)mb(2mp + Tp)mp.

Figures 3.17 show the correlations between θcm and Ex, obtained from the ADC of the
NaI(Tl) calorimeters and the TOF, respectively. Representative Ex spectra are presented
in Figs. 3.18a and 3.18b. The vertical lines at θcm show the limitation of the acceptance
of the RDC, while the slanted lines in the forward region show the limitations by the
detection threshold of the NaI(Tl) calorimeters in Fig. 3.17b and by that of p∆E in
Fig. 3.17a. The peaks around Ex = 0 correspond to elastic events. The elastic yields yi
(where i denotes the central scattering angle of each bin) were extracted at every 1-degree
step of the scattering angle θcm in the CM frame, following the procedure described below.

For the TOF analysis, the elastic peak at each angle was fitted with a Gaussian plus a
constant function. The yield yi was obtained by counting the number of events within 3σ
of the Gaussian and subtracting the background contribution estimated from the constant
term.

For the NaI analysis, the elastic yield was determined for each rod individually. Since
the statistics were insufficient to perform fits in every angular bin, the data were grouped
into four regions: θcm < 25◦, 25◦ < θcm < 30◦, 30◦ < θcm < 35◦, and 35◦ < θcm. In
each region, the spectra were fitted with a Gaussian plus a constant function. The yields
were then obtained by counting events within 3σ of the Gaussian, while the background
contribution was evaluated for each angular bin from the counts in the region Ex <
−3 MeV. Finally, the values from all seven rods were summed to obtain the total yield yi.

Figure 3.19 shows the distribution of the obtained yields.
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Figure 3.17: Angular dependence of the excitation energy.
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Figure 3.18: Typical excitation energy spectrum.
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Figure 3.19: Angular dependence of elastic yields. The blue and red points are data using
TOF and NaI(Tl) for proton energies, respectively.

3.4 Derivation of differential cross section

The yield yi can be expressed as

yi = ϵ0IbeamNtgt

∫
∆Ωi

dΩϵ(θ)
( dσ
dΩ

)
, (3.28)

where ϵ0, Ibeam, Ntgt, ∆Ω, ϵ(θ), and dσ
dΩ

denote the angle-independent efficiency, the num-
ber of beam particles, the number of target particles, the effective solid angle, the angle-
dependent efficiency, and the differential cross section, respectively. The ϵ(θ) was assumed
to be constant within each angular bin, i.e. ϵ(θ) = ϵi for θi − ∆θ/2 < θcm < θi − ∆θ/2,
with ∆θ = 1◦. In the experiment, the differential cross section dσ

dΩ
for an infinitesimal solid

angle cannot be directly determined. Therefore, we evaluated the averaged differential

cross section ( dσ
dΩ

), defined as

( dσ
dΩ

)
i

=

∫
∆Ωi

dΩ
( dσ
dΩ

)
∫
∆Ωi

dΩ
. (3.29)
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Assuming that the azimuthal coverage within each angular bin is a constant value ∆ϕi,
the denominator can be expressed as:∫

∆Ωi

dΩ =

∫ θi+∆θ/2

θi−∆θ/2

dθ sin θ

∫
dϕ

≃ ∆ϕi

∫ θi+∆θ/2

θi−∆θ/2

dθ sin θ

= ∆ϕi

(
cos(θi − ∆θ/2) − cos(θi + ∆θ/2)

)
. (3.30)

Thus, Eq. (3.28) can be rewriten as:

yi = ϵ0IbeamNtgtϵi∆ϕi

(
cos(θi − ∆θ/2) − cos(θi + ∆θ/2)

)( dσ
dΩ

)
i
. (3.31)

In the following sub-sections, we describe the procedures used to evaluate the values of
ϵ0, Ibeam, Ntgt, ϵi, and ∆ϕi, as well as the obtained cross sections.

3.4.1 Angular-independent efficiency ϵ0

The angular-independent efficiency ϵ0 consists of three components: the efficiency of the
BLDs at F12, the efficiency of the detectors at F3, F5, and F7, and the DAQ efficiency.

• Efficiency of the BLDs at F12
The efficiency of the BLDs (F12pla and BDCs) at F12 was evaluated using the
beam-trigger data. The efficiency includes not only intrinsic detector efficiencies
but also transmission efficiency from F7 to F12. The evaluated efficiency is 87.5%.

• Efficiency of the detectors at BigRIPS
The efficiency of the detectors at BigRIPS was evaluated using the beam-trigger
data. It is defined as the ratio of events in which the beam particles are detected by
all detectors and all tracks are successfully reconstructed, to the number of events
in which the beam particles hit the SHT. The evaluated value is 90.9%.

• DAQ efficiency
The DAQ efficiency was evaluated by considering not only the ratio of accepted
triggers to requested triggers but also the merge efficiency of the BLD-builder data
and ESPRI-builder data. The resulting value was 92.2%.

As a result, the angle-independent efficiency ϵ0 was evaluated to be 72.7%. Table 3.1
summarizes the values used for the evaluation together with ϵ0.

3.4.2 Effective number of beam Ibeam

The number of beam particles Ibeam was evaluated based on the scaler counts of the F7Dia
signal used for the beam trigger. In addition, we considered the conditions of the scaler
count loss, target hit rate, and purity of 132Sn.
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Table 3.1: Values of angle-independent efficiency ϵ0 and its components.

BLDs at F12 87.5%
Detecros at BigRIPS 90.1%
DAQ 92.2%
Angle-independent efficiency ϵ0 72.7%

• Scaler count loss
Events that occurred within a very short time interval were lost in the scaler. Since
the width of the discriminator signal from F7dia was 17 ns and the averaged beam
intensity was 196 kcps, 0.33% of the events were missed.

• Target hit rate
The ratio of events in which the beam particles hit the SHT to those in which
trackings were reconstructed using the BDCs was evaluated using the beam-trigger
data. As described in Sec. 3.1.4, hits within a ϕ21 mm circle were defined as target
hits. The evaluated ratio is 92.5%.

• Purity of 132Sn
The purity of 132Sn was evaluated as the ratio of events that satisfied Eq. (3.5) to
those in which all BLD detectors worked well and the beam particles hit the SHT.
The resulting value was 27.8%.

As a result, the number of beam particles Ibeam was evaluated to be 7.94×109. Table 3.2
summarizes the values used for the evaluation together with the number of beam particles.

Table 3.2: Number of beam particles (Ibeam) and values for its calculation.

Counts of F7Dia 3.08 × 1010 [particle]
Scaler count loss 0.33%
Target hit rate 92.5%
Purity of 132Sn 27.8%
Number of beam praticles (Ibeam) 7.94 × 109 [particle]

3.4.3 Number of target particles Ntgt

The number of target particles was evaluated from the cross section of proton elastic scat-
tering from 48Ca. The analysis for 48Ca was performed using almost the same procedure
as that for 132Sn. The details of the analysis are described in Appendix C.

The angular distribution of the obtained cross section was compared with a theo-
retical prediction from a medium-modified relativistic impulse approximation (mm-RIA)
calculation with the realistic density [26, 24]. The mm-RIA calculation is explained in
Chap.4. The absolute calibration factor was estimated to be 1.13(5), corresponding to a
proton number of 6.76(35)×1021 and an STH thickness of 0.88(4) mm. Figure 3.20 shows
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the mm-RIA calculation for the proton elastic scattering from 48Ca at 224 to 244 MeV,
together with the calibrated experimental data.
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Figure 3.20: Differential cross section for proton elastic scattering from 48Ca. The exper-
imental data points, obtained from calculations based on a target number corresponding
to a thickness of 1 ×

√
2 mm, were scaled by a calibration factor of 1.13. The red line

shows the mm-RIA with the realistic density [26, 24].

3.4.4 Angular-dependent efficiency ϵi

The angular-dependent efficiency ϵi consists of two components: the RDC efficiency and
the reaction loss in the detectors.

• RDC efficiency
The RDC efficiency was evaluated using the event identified as protons. For the
evaluation, it was necessary to determine the scattering angle without relying on the
RDC. Therefore, the angle was obtained from the time difference between the signals
from the left and right PMTs of the p∆E detector, tRp∆E−tLp∆E. Figure 3.21 shows the
correlation between tRp∆E−tLp∆E and the scattering angle θlab determined by the RDC,
where the spectrum was fitted by a linear function. Using the function, tRp∆E − tLp∆E

was converted to the scattering angle θlab, and the efficiency was evaluated in 1-
degree steps of the scattering angle θlab in the laboratory frame. Furthermore, the
efficiency in 1-degree steps of scattering angle θcm in the CM frame was obtained by
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linear interpolation, using θlab converted from θcm at the average beam energy. The
resulting values are shown in Fig. 3.22.
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Figure 3.21: Correlation between tRp∆E − tLp∆E and scattering angele θlab.

• Raction loss
If a proton undergoes a nuclear reaction before coming to rest, the p∆E or NaI(Tl)
calorimeters cannot yield a light output corresponding to the proton energy at the
reaction point. This effect, known as a reaction loss, becomes increasingly probable
at higher energies. The reaction-loss probabilities for p∆E and NaI(Tl) calorimeters
were evaluated using the values reported in Ref. [80] and Ref. [81], respectively.

3.4.5 Azimuthal coverage ∆ϕi

The azimuthal coverage ∆ϕi was evaluated based on the geometrical configuration of
the RPS system, taking the beam profile into account. Since it is difficult to determine
the exact hardware positions at the edges, the accepted region was constrained by the
positions deduced by the RDC. Although ∆ϕi has a position dependence, the values are
approximately 0.29 rad for TOF data and approximately 0.18 rad for NaI data.
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3.4.6 Result

Figure 3.23 shows the angular distribution of the obtained cross sections over an angular
range of 14◦ < θcm < 38◦, corresponding to a momentum range of 0.80 to 2.1 fm−1. The
main components of the errors in the forward and backward regions were the uncertainty
of the target number and the statistical uncertainty, respectively. The digital data are
listed in Appendix A.

3.4.7 Smearing effect of the scattering angle

It should be noted that the scattering angle was smeared due to angular straggling, mainly
caused by the multiple scattering in the SHT. The effect was particularly significant at
forward angles in the CM frame. Similar to the beam energy spread, the angular smearing
significantly affects the cross section. We calculated the response function f ang

ij , defined
as the fraction of events with the true reaction angle θreact. of the reaction in the i-th bin
and the detected scattering angle θdet in the j-th bin. The values of f ang

ij larger than 1%
are summarized in Table 3.3. In the next section, we use this function when comparing
the experimental data with theoretical calculations.
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Figure 3.23: Obtained differential cross sections for proton elastic scattering from 132Sn
at 196–210 MeV/nucleon.

Table 3.3: Values of the response function f ang
ij . θreact.i denotes the central reaction angle

of the i-th bin, while θreact.i denotes the central detection angle of the j-th bin.

θreact.i θdet.j f ang
ij θreact.i θdet.j f ang

ij

13 12 0.077 22 22 1.000
13 13 0.846 23 23 1.000
13 14 0.077 24 24 1.000
14 13 0.050 25 25 1.000
14 14 0.899 26 26 1.000
14 15 0.050 27 27 1.000
15 14 0.031 28 28 1.000
15 15 0.939 29 29 1.000
15 16 0.031 30 30 1.000
16 15 0.018 31 31 1.000
16 16 0.965 32 32 1.000
16 17 0.018 33 33 1.000
17 17 0.981 34 34 1.000
18 18 0.991 35 35 1.000
19 19 0.996 36 36 1.000
20 20 0.998 37 37 1.000
21 21 0.999 38 38 1.000
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Chapter 4

Analysis

Our analysis is based on the framework of the relativistic impulse approximation (RIA)
with relativistic Love-Franey (RLF) interactions [82], which was formulated by Murdock
and Horowitz [83].

4.1 Relativistic impulse approximation

One of the notable achievements in the application of the RIA to nucleon-nucleus scat-
tering was made by McNeil, Ray, and Wallace [84, 85]. The McNeil-Ray-Wallace (MRW)
model involves two important steps. First, the nucleon-nucleon (NN ) scattering ampli-
tude F is represented in terms of five Lorentz covariants, so-called Fermi invariant Dirac
matrices as

F = FS + FV γµ
(0)γ(1)µ + FPSγ5

(0)γ
5
(1) + FTσµν

(0)γ(1)µν + FAγ5
(0)γ

µ
(0)γ

5
(1)γ(1)µ, (4.1)

where FS, FV , FPS, FT , FA denote the scalar, vector, tensor, pseudoscalar, and axial
vector amplitudes, and subscripts (0) and (1) represent the incident and struck nucleons,
respectively. The amplitude was then folded with densities of target nuclei to provide a
first-order tρ potential.

Murdock-Horowitz model

Murdock and Horowitz developed the RIA model [83] based on the MRW models by
introducing the relativistic Love-Franey (RLF) interaction [82]. In the Murdock-Horowitz
(MH) model, the NN scattering amplitude is modelled as arising from the first Born
approximation for the exchange of a set of mesons. Since each scattering amplitude FL

(L = S, V, PS, T, or A) in Eq. (4.1) is a function of the momentum transfer q, and
laboratory energy E, Eq. (4.1) can be written as

F =
∑
L

FL(q, E)λL
(0) · λL

(1), (4.2)
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Figure 4.1: Meson exchange diagram for the RLF model.

where the λL
(i) stand for Dirac operators for the Lorentz type. In this model, direct

and exchange terms are separately included, and their Feynman diagrams are shown in
Fig. 4.1.

Each scattering FL can be witten as:

FL(q, E) = i
M2

2Eckc

[
FD(q) + FX(q)

]
, (4.3)

FL
D(q) ≡

∑
i

δL,L(i){τ0 · τ1}Iif i(q), (4.4)

FL
X(Q) ≡ (−1)T

∑
i

BL(i),L{τ0 · τ1}Iif i(Q), (4.5)

f i(q) ≡ g2i
q2 + m2

i

(
Λ2

i

Λ2
i + q2

)2

− i
g2i

q2 + m2
i

(
Λ

2

i

Λ
2

i + q2

)2

. (4.6)

Here, D and X denote the direct and exchange terms, q and Q are direct and exchange
momentum transfers, and T is the total isospin of the two-nucleon state. Ii, gi, mi,
and Λi are the isospin, coupling constant, mass, and cutoff parameter of the i-th meson,
respectively. BL,L′ is the (L, L′) component of the Fietz trasformation matrix as:

BL,L′ =
tr(λLλL′

λLλL′
)[

tr(λLλL′)
]2 (4.7)

=
1

8


2 2 1 −2 2
8 −4 0 −4 −8
24 0 −4 0 24
−8 −4 0 −4 8
2 −2 1 2 2




S
V
T
A
PS

 . (4.8)

Furthermore, to give meaningful results at low energies, the pseudoscalar term in



4.1. RELATIVISTIC IMPULSE APPROXIMATION 61

Eq. (4.1) is replaced by the pseudovector term as

FPSγ5
(0)γ

5
(1) → −FPV

qγ5
(0)

2M

qγ5
(1)

2M
. (4.9)

The first-order Dirac optical potential for the spherical nuclei can be obtained by
folding the NN amplitude FL with the target

UL(r, E) = UL
D(r, E) + UL

X(r, E), (4.10)

UL
D(r, E) ≡ −4πip

M

∫
dr′ρ′L(r)t̃LD(|r′ − r|, E), (4.11)

UX
D (r, E) ≡ −4πip

M

∫
dr′ρ′L(r, r′)t̃LX(|r′ − r|, E)j0(p|r′ − r|), (4.12)

tL(q, E) ≡ iM2

2Eckc
FL
D,X(q), (4.13)

t̃LD,X(|r|, E) =

∫
dq

(2π)3
tLD,X(q, E)e−iq·r, (4.14)

where jn is a n-th order spherical Bessel function. For the nonlocal densities ρL(r, r′) are
approxaimatd using the local density ρL(r) as

ρL(r, r′) ≈ ρL((r + r′)/2)
3

|r′ − r|kF
j1(|r′ − r|kF ), (4.15)

where kF is related to the baryon (vector) density by ρV ((r + r′)/2) = 2k3
f/3π2.

For a spin-zero particle, only the scalar, vector, and tensor densities are nonzero. In
addition, the tensor contribution is found to be negligible. Therefore, the optical potential
Uopt can be expressed as

Uopt ≃ US + γ0UV . (4.16)

The MRW model assumes that the NN amplitude between projectile and target is
unmodified by the surrounding nucleons. While this assumption is valid at high energies
(≳1 GeV), it is necessary to correct the optical potentials for medium modifications from
Pauli blocking for intermediate energies (≈200–300 MeV). These effects are incorporated
through a ”Pauli blocking factor” a(E) with a local-density approximation, as follows:

UL(r, E) →
[
1 − a(E)

(ρV (r)

ρ0

)2/3]
UL(r, E), (4.17)

where ρ0 = 0.1934 fm−3.

The blue line in Fig. 4.2 is the MH-model calculation with Dirac-Hartree (DH) den-
sity [86] of 132Sn. Although the calculation reproduces the oscillation pattern at around
the second diffraction peak (θcm ≈ 24◦), the amplitude of the second and third peaks
deviates considerably from the experimental results.
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Figure 4.2: RIA calculation formulated by Murdock-Horowitz with the Dirac-Hartree
density.

4.1.1 Scalar and vector density distributions

In the RIA calculations, both the scalar density ρS and the vector density ρV are required.
Since the vector density corresponds to the baryon density ρ, it can be normalised by the
baryon number. In contrast, the scalar density does not have an analogous normalisation
condition, making it difficult to extract directly from the experimental data. In the MH
model, they used the nuclear matter approximation, in which the scalar density ρS is
desicribed in the form of the vector density ρV as

ρS(r) ≈
(

1 − 3

10

k2
F

M∗2

)
ρV (r), (4.18)

where kF and M∗ are the local Fermi momentum and the effective mass, respectively.
However, according to DH densities for heavy nuclei, the ratio of scalar to vector densities
has an almost constant value of 0.96, as reported in Ref. [87, 29]. Therefore, in this
work, we adopted this assumption ρS = 0.96ρV when extracting the density from the
experimental results or when using theoretical densities in which the scalar density cannot
be obtained.

4.1.2 Coulomb potential

In the MH-model, the Coulomb potential is calculated by assuming a uniform spherical
charge density distribution with radius r0A

1/3, where r0 ≈ 1.25 fm. Since the Coulomb
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potential was found to affect the scattering observables, especially at high momentum,
the charge density ρch is obtained by folding the baryon density with the intrinsic charge
distributions of the proton and neutron as

ρch(r) =

∫
dr′ρp(r

′)ρpch +

∫
dr′ρn(r′)ρnch, (4.19)

where ρp(n) denotes the point proton (neutron) density distributions, and ρ
p(n)
ch represents

the intrinsic charge distribution of the single proton (neutron). The charge form factor
Fch(q), with q being the momentum transfer, is defined as the Fourier transform of the
charge density ρch(r), and is obtained by applying the Fourier transform to Eq. (4.19) as
follows:

Fch(q) ≃ Fp(q)Gp
E(q2) + Fn(q)Gn

E(q2), (4.20)

where Fp(n) is the Fourier transform of the point proton (neutron) density distribution.
The functions Gp

E(q2) and Gn
E(q2) are Sachs electric form factors of the proton and neu-

tron [88], taken in the following froms [89]:

Gp
E(q2) =

(
1 +

q2

12
R2

p

)−2

, (4.21)

Gn
E(q2) =

( q2R2
n/6

1 + q2/M2

)
Gp

E(q2), (4.22)

where R2
p(n) is the mean-square charge radius of the single proton (neutron). In this paper,

Rp and R2
n are taken as 0.84075(64) fm [90] and −0.1155(17) fm2 [91], respectively.

4.2 Medium modification

While the Pauli blocking factor a(E) is introduced in Eq. (4.17), the MH-model calcula-
tion cannot fully reproduce the experimental data. In our previous works [87, 29, 18], a
medium-modified RIA (mm-RIA) calculation was developed, in which a phenomenolog-
ical modification is incorporated into the RLF NN interactions to take medium effects,
such as Pauli blocking, vacuum polarisation [92, 93], multi-step process [94], and partial
restoration of chiral symmetry [95], into account. The modification is made by introduc-
ing the density-dependent parameters into the coupling constants and masses of σ and ω
mesons as

g2i , g
2
i → g2i

1 + aiρ(r)/ρ0
,

g2i
1 + aiρ(r)/ρ0

, (4.23)

mi,mi → mi

[
1 + bi

ρ(r)

ρ0

]
,mi

[
1 + bi

ρ(r)

ρ0

]
, (4.24)

i = σ, ω,

where gi, gi, mi, and mi are the coupling constants and masses of σ and ω mesons for
real and imaginary amplitudes, respectively. The medium-modified parameters ai, ai, bi,
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Figure 4.3: Density distributions of 58Ni. Charge density is taken from Ref. [26]. Proton
density was obtained by unfolding the charge density, and neutron density is assumed to
be the same shape as the proton density (ρn(r) = (N/Z)ρp(r)).

bi are calibrated to reproduce the polarized proton elastic scattering data from 58Ni at
200 MeV. Since the modification has a universal form of density terms, the parameters
calibrated with a real nucleus can be applied to other nuclei.

4.2.1 Calibration of the medium effect parameters

The parameters ai, ai, bi, and bi were calibrated using polarized proton elsatic scattering
data for 58Ni. The reason that we have chosen 58Ni is that the neutron density distribution
can be assumed to be the same as the proton density distribution (ρn(r) = (N/Z)ρp(r))
because the neutron radius of 58Ni is predicted to be almost the same as the proton
radius by many mean-field calculations [96, 97, 12, 98, 34]. The proton and neutron
densities of 58Ni were obtained by unfolding the sum-of-Gaussian (SOG) charge density
distribution [26], as shown in Fig. 4.3.

In the previous mm-RIA analysis for proton elastic scattering at 300 MeV [29, 18, 54],
the number of parameters was reduced to four by assuming the same modification for the
real and imaginary parts (ai = ai, bi = bi). However, full eight-parameter modifications
were used to improve the reproducibility of the angular distribution of the scattering
observables for the analysis of the 200 MeV data. The validity of the analysis at 200 MeV
has been confirmed, since the analysis of 90Zr data at 200 MeV yields a density distribution
and a radius consistent with those obtained at 300 MeV [55].
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Table 4.1: Best-fit medium-effect parameters in Eqs. (4.24), (4.25)

i σ ω

ai 0.0210 0.1965
ai 2.0467 1.1549
bi 0.0326 −0.0224

bi −0.0799 −0.0501

The medium-effect parameters were calibrated by fitting the experimental data of
cross sections dσ/dΩ, analyzing powers Ay, and spin rotation parameters Q to minimise
the chi-square (χ2) value, which is given by

χ2 =
∑
i

(yexpi − ytheo)2i /∆y2i , (4.25)

where yexp, ytheo, and ∆y2i are the experimental data, error, and the calculated result,
respectively. The data of the cross sections and analyzing power were taken from Ref. [55],
and that of the spin rotation parameter was taken from Ref. [99]. These experiments were
performed at the Research Center for Nuclear Physics (RCNP), University of Osaka. The
best-fit parameters are summarised in Table 4.1. The values of ai are relatively larger
than the parameters obtained in the previous work [18], which was based on the four-
parameter fit. In general, the Pauli blocking effect on proton elastic scattering at relatively
low energy (≲ 200 MeV) is known to reduce the scalar and vector potential, particularly
their imaginary parts [83, 100]. Therefore, the large values obtained here are likely to
reflect this effect.

The red line in Fig. 4.4 is the mm-RIA calculation using the calibrated parameters
with the realistic densities deduced from the charge density distribution, which is in better
agreement with the experimental data than the original MH-model calculations (blue line).
It should be noted that the mm-RIA does not well reproduce the experimental data of the
spin rotation parameter. This discrepancy is possibly due to the use of the incorrect beam
energy. Since the beam energy in the measurement of the spin rotation parameter was not
precisely determined, it may differ from that in the measurement of the cross section and
analyzing power. Therefore, future experiments with well-known beam energy, in which
all three observables are measured simultaneously, are expected to improve the calibration
accuracy.

4.3 Extraction of the matter density distribution

The black line in Fig 4.5 presents the calculation of the mm-RIA with the DH density,
which well reproduces the experimental data compared with the MH-model calculation
with the DH density (blue line).

Using the mm-RIA with the calibrated medium-effect parameters, we extracted the
density distributions of 132Sn. In previous analysis for stable nuclei [29, 18], proton den-
sity distributions were obtained by unfolding the charge density distributions measured
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Figure 4.4: Angular distributions of differential cross sections, analyzing powers, and spin
rotation parameters. The experimental data of differential cross sections and analyzing
powers are taken from Ref. [55], while those of spin rotation parameters are taken from
Ref. [99]. The blue dashed and red solid lines are the original MH-model calculation with
DH density, and the mm-RIA calculation using the best-fit parameter with the realistic
density, respectively.
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via electron scattering. However, the charge density distribution of 132Sn has not been
measured. Consequently, we developed and employed a new method in which the proton
density distribution is constrained by the charge radius.

The proton and neutron density distributions were modelled with the two-parameter
Fermi (2pF) functions:

ρi(r) =
ni

1 + exp[(r − ci)/zi]
, (4.26)

i = p, n, (4.27)

where half-density radius ci and diffuseness zi are free parameters, and constant density
ni is a normalisation coefficient adjusted to conserve the number of protons and neutrons:∫

ρi(r)dr = Ni, (4.28)

Np = Z,Nn = N. (4.29)

(4.30)

The matter density distribution ρm is simply given by the sum of the proton and neutron
density distributions: ρm(r) = ρp(r) + ρn(r). The mean-square radii ⟨r2i ⟩ are calculated
as

⟨r2i ⟩ =
1

Ni

∫
drρi(r)r2, (4.31)

i = p, n,m, ch, (4.32)

(4.33)

where Nm = A and Nch = Z.
We constrained the cp and zp to reproduce the known value of the rms charge radius,

⟨r2ch⟩1/2 = 4.7093(76) fm as determined from the isotope-shift measurement using laser
spectroscopy [35, 27]. The rms proton radius ⟨r2p⟩1/2 is related to the charge radius ⟨r2ch⟩1/2
by

⟨r2p⟩ ≃ ⟨r2ch⟩ −R2
p −

N

Z
R2

n. (4.34)

Accordingly, the parameters cp and ap were constrained such that the condition 4.6463 <
⟨r2p⟩1/2 < 4.6617 fm was always satisfied.

The parameters ci and ai were searched to minimise the χ2 defined by Eq. (4.25) for
the cross section. The ytheoi were given by( dσ

dΩ

)
=
∑
j

fbeam
j

( dσ
dΩ

)∣∣∣∣
Tb=T j

b

, (4.35)

( dσ
dΩ

)
i

=

∫ θi+∆θ

θi−∆θ

dθ
( dσ
dΩ

)
, (4.36)

ytheoi =
∑
j

f ang
ij

( dσ
dΩ

)
j
, (4.37)
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Table 4.2: Minimum χ2 value and best-fit 2pF parameters.

χ2
min/ndf cp [fm] zp [fm] cn [fm] zn [fm]

38.0/22 5.632+0.076
−0.119 0.430+0.063

−0.044 5.581+0.066
−0.068 0.576+0.033

−0.037

Table 4.3: Obtained root-mean-square radii and neutron skin thickness of 132Sn.

⟨r2p⟩1/2 [fm] ⟨r2n⟩1/2 [fm] ⟨r2m⟩1/2 [fm] ∆rnp [fm]

4.646+0.015
−0.000 4.785+0.037

−0.039 4.758+0.023
−0.024 0.178+0.037

−0.050

where fbeam
j is the fraction of the beam energy of T j

b and are obtained from Fig. 3.8. It is

confirmed that a beam energy step size (T j+1
b −T j

b ) of 2 MeV provides sufficient precision.
The method for deriving f ang

ij is given in Sec 3.4.7.
The red line in Fig. 4.5 shows the calculation of the mm-RIA with the best-fit density,

which is in good agreement with the experimental data. The reduced minimum χ2 (χ2
min)

value, namely divided by the number of degree-of-freedom ndf = 22, is approximately
1.7.

The standard errors of the parameter and the rms radii can be estimated from the
increase of ∆χ2 corresponding to one standard deviation from the χ2

min, expressed as

χ2 ≤ χ2
min + ∆χ2. (4.38)

Here, ∆χ2 obeys the χ2 probability density function for multiple parameters. In the
present case, ∆χ2 ≈ 3.5, since the number of effective free parameters can be regarded
as three, given the four fitting parameters (cp, ap, cn, and am) subject to one constraint
(Eq. (4.34)). The best-fit parameters with the errors are summarised in Table 4.2. The
solid lines in Fig. 4.6 show the best-fit density distributions for protons (red), neutrons
(blue), and matter (black). The bands surrounding the lines represent the error envelope
of the distributions, determined by the minimum and maximum values among all possible
distributions satisfying Eq. (4.38). The proton band has the nodes around 4.5 and 6.0 fm,
caused by the radial constraint of Eq. (4.34). The reason why the matter band around
the surface is narrower than that of protons or neutrons is considered to be that proton
elastic scattering is inherently sensitive to the isoscalar density, especially around the
surface region.

The obtained rms radii and neutron skin thickness ∆rnp are summarized in Table 4.3.
The error of the proton radius fully encompasses the constrained region derived from
Eq. (4.34), and the best-fit value lies close to its minimum. The rms matter radius was
deduced for the first time in this work.

4.3.1 Absolute factor

The absolute factor of the differential cross sections is highly sensitive to the extracted
matter radius. This sensitivity was confirmed by extracting matter radii from the abso-
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lutely shifted cross sections, as shown by Fig. 4.7. Figure 4.8 shows the absolute-factor
dependence of χ2

min. The minimum of χ2
min occurs at the absolute factor of 0, supporting

the evaluation of the target number using the proton elastic scattering from 48Ca.
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Chapter 5

Discussion

In this section, we discuss the obtained cross sections, matter radii, and neutron skin
thicknesses compared with the theoretical calculations. While somewhat repetitive, we
compared the developed RIA model with the obtained cross sections, together with the
phenomenological model using global Dirac optical potentials. For discussion about the
structure, we employed not only conventional mean-field calculations, such as Skyrme
Hartree-Fock (SHF) and relativistic mean-field (RMF), but also the state-of-the-art ab
initio in-medium similarity renormalization group (IMSRG) [101] with the chiral EFT
nucleon-nucleon (NN ) and three-nucleon 3N interactions.

In this work, four chiral EFT interactions are employed: 1.8/2.0(EM7.5) [60],
1.8/2.0(sim7.5) [60], NNLOsat [102], and ∆NNLOGO [103]. The details of the calculations
are described in Ref. [60]. The interactions reasonably reproduce the binding energies
and charge radii across a wide range of nuclei. It should be noticed that the parameter
optimizations of 1.8/2.0 (sim7.5), 1.8/2.0 (EM7.5), and NNLOsat involve binding energies
and charge radii of medium-mass nuclei: 16O for 1.8/2.0 (sim7.5) and 1.8/2.0 (EM7.5),
and carbon and oxygen isotopes for NNLOsat. On the other hand, only data up to A = 4
are employed for the parameter optimization for ∆NNLOGO.

5.1 Cross section

The phenomenological model using the global Dirac optical potential (GDOP) was de-
veloped by Cooper, Hama, and Clark [104, 105]. The nuclear potentials were calibrated
using the proton elastic scattering data from the stable nuclei ranging from 12C to 208Pb
at 65 to 1040 MeV. Although the GDOP model is not suitable for extracting nuclear den-
sity due to not being a microscopic model, it is known to satisfactorily reproduce proton
elastic scattering data for stable nuclei. The green line in Fig. 5.1 shows the calculation
using the GDOP for 132Sn. While the calculation for 132Sn reproduces the experimental
data well for the backward angles, it exhibits a noticeable deviation in shape around the
first and second peaks. While the calculation incorporates mass-number dependence, it
does not explicitly include isospin dependence. This result, therefore, implies that the
model calibrated only with data from stable nuclei may not perform well for the data
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from nuclei with significant isospin asymmetry, emphasizing the importance of measuring
a wide range of unstable nuclei. Here, representative GDOP results are presented, while
calculations for other GDOP models are given in Appendix D.

Compared with the GDOP and MH-model calculations, the developed mm-RIA cal-
culation well reproduces the experimental results. As shown in Table 5.1, its minimum
χ2 value is also much smaller than those of the other calculations. Therefore, we can
extract information about the nuclear structure by analyzing the cross sections using the
mm-RIA calculations.
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Figure 5.1: Glocal Dirac optical potential calculation [104, 105] (green, dash-dot). The
blue dotted, black dashed, and red solid lines are the MH-model [83] with DH density [86],
the mm-RIA calculation with the DH density, and the mm-RIA calculation with the best-
fit density, respectively.

Table 5.1: Minimum χ2 values of the calculations.

Framework χ2
min

GDOP 147.3
MH model + DH density 475.1
mm-RIA + DH density 53.35
mm-RIA + Best-fit density 37.95

The bands in Fig. 5.2 represent the Rutherford ratios of the mm-RIA calculations us-
ing the densities from the IMSRG calculations. In general, all the calculations reasonably
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reproduce the experimental data (χ2 = 50–150). It is confirmed that the further outward
the positions of the valleys around θcm = 20◦ and θcm = 30◦, the smaller the corresponding
matter radii; 4.816–4.830 (1.8/2.0 (sim7.5)), 4.816–4.830 (1.8/2.0 (EM7.5)), 4.791–4.824
(NNLOsat), and 4.736–4.746 (∆NNLOGO) fm. The calculation using the ∆NNLOGO (cyan
band) is in the best agreement with the experimental data and closely follows the calcu-
lation using the best-fit density (red line).
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Figure 5.2: Differential cross sections divided by the Rutherford cross section. The
red solid line shows the mm-RIA calculation with the best-fit density. The purple,
orange, green, and cyan bands are the IMSRG calculations with the 1.8/2.0(sim7.5),
1.8/2.0(EM7.5), ∆NNLOGO, and NNLOsat interactions, respectively. It should be noted
that the purple and orange bands nearly overlap.

5.2 Matter radius

Figure 5.3 shows the measured and theoretical correlation between the matter and charge
radii of 132Sn. The pink circles are the predictions of Skyrme energy density functionals
(EDFs) with SLy4, SLy5 [106], SAMi [107], SGII [108], SkM* [109], HFB9 [110], UN-
EDF0 [111], UNEDF1 [112], and UNEDF2 [113] interactions, and the black diamonds are
those of relativistic-mean field (RMF) with FSUGold and NL3 interactions [114, 115, 56].
The values are also summarized in Table 5.2. The matter radius measured in this work
is consistent only with that by the ∆NNLOGO, but smaller than the other calculations.
However, the charge radius of ∆NNLOGO is smaller than the experimental value measured
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at ISOLDE [35]. Both charge and matter radii of the experimental results shrink com-
pared with the SHF and IMSRG calculations except for ∆NNLOGO, which were calibrated
with the properties of the stable nuclei.
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Figure 5.3: Experimental and theoretical values of the charge radius ⟨r2ch⟩1/2 and matter
radius ⟨r2m⟩1/2 of 132Sn. SLy4, SLy5 [106], SAMi [107], SGII [108], SkM* [109], HFB9 [110],
UNEDF0 [111], UNEDF1 [112], and UNEDF2 [113] interactions are used for the ”Skyrme
EDF”, and the FSUGold and NL3 [114, 115, 56] interactions are used for the ”RMF”.
The experimental charge radius value of the ”ISOLDE” is taken from Ref. [35].

Figure 5.4 shows the matter radii of the Sn isotopes, obtained in this work and in
Ref. [29]. The blue solid and dashed lines represent RMF calculations with NL3 and
FSUgold parameter sets. The red solid and dashed lines represent SHF calculations with
SLy5 and SGII parameter sets. Compared with the radii of the stable nuclei along the
calculation trends, the matter radius 132Sn is found to shrink. Such a phenomenon is also
confirmed for the charge radii, as shown in Fig. 5.5. Furthermore, similar behaviors were
also seen in the Ca isotope chain [42, 43]. Sn isotopes have a very long isotopic chain,
which enables us to conduct more detailed investigations of these aspects.

5.3 Neutron skin thickness

Figure 5.6 shows a summary of the neutron skin thickness ∆rnp of experimental results
and theoretical calculations, including the IMSRG, SHF, and RMF calculations. The
values are also summarized in Table 5.2. Only the IMSRG (NNLOsat), SHF (SGII), and
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Table 5.2: Matter radius ⟨r2m⟩1/2, charge radius ⟨r2ch⟩1/2, and neutron skin thickess ∆rnp
for 132Sn.

⟨r2m⟩1/2 [fm] ⟨r2ch⟩1/2 [fm] ∆rnp [fm]

Experiment

This work 4.758+0.023
−0.024 0.178+0.037

−0.050

ISOLDE [35] 4.7093(76)

PDR [6] 0.258(24)

Theory

IMSRG(1.8/2.0(EM7.5)) [60] 4.731–4.736 4.816–4.830 0.228–0.234

IMSRG(1.8/2.0(sim7.5)) [60] 4.723–4.732 4.816–4.830 0.240–0.246

IMSRG(NNLOsat) [102] 4.725–4.750 4.791–4.824 0.198–0.208

IMSRG(∆NNLOGO)) [103] 4.642–4.647 4.736–4.746 0.244–0.250

SHF(HFB9) [110] 4.740 4.806 0.219

SHF(SAMi) [107] 4.749 4.810 0.211

SHF(SGII) [108] 4.738 4.792 0.200

SHF(SLy4) [106] 4.741 4.808 0.221

SHF(Sly5) [106] 4.734 4.803 0.225

SHF(SkM*) [109] 4.731 4.806 0.233

SHF(UNEDF0) [111] 4.736 4.828 0.261

SHF(UNEDF1) [112] 4.742 4.827 0.249

SHF(UNEDF2) [113] 4.742 4.819 0.236

RMF(FSUGold) [115] 4.717 4.824 0.271

RMF(NL3) [114] 4.699 4.862 0.346
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Figure 5.4: Systematic behavior of the rms matter radii of tin isotopes. The blue and green
lines show Skyrme Hartree-Fock and relativistic mean-field calculations, respectively. The
experimental data for 116,118,120,122,124Sn taken from Ref. [29].
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Figure 5.5: Systematic behavior of rms charge radii of tin isotopes. The experimental
data taken from Ref. [116].

SHF (SAMi) are consistent with our result, and the others are larger. Our results are
smaller than the value deduced from the PDR experiment.

Using the correlation function between the L parameter and the neutron skin thickness
∆rnp of 132Sn in Ref. [6], as shown in Fig. 1.4, we deduced

L = 12.0+24.3
−32.5 MeV (5.1)

from the obtained neutron skin thickness.

The parity-violating elastic scattering measurements, PREX-2 [8] and CREX [28], are
one of the most important experiments for determining the parameter L. However, analy-
ses of the PREX-2 and CREX data using the conventional EDFs have led to inconsistent
conclusions regarding the extraction of L and ∆rnp: PREX-2 favors very large values of
both L and ∆rnp, whereas CREX favors much smaller ones, which is referred to as the
PREX-CREX puzzle. While our present result favors the values suggested by CREX,
further investigations of more isospin-asymmetric systems are necessary to resolve the
puzzle.
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5.4 Future perspective

5.4.1 Extraction of proton and neutron density distributions of
unstable nuclei

In this work, we deduced only the matter distribution of 132Sn since the charge density
distributions have not yet been measured. However, we have developed a new method to
extract proton and neutron density distributions independently, in which proton elastic
scattering measurements at two distinct incident energies are performed. This method
was verified by measuring proton elastic scattering from 90,92,94Zr at 197 and 295 MeV [55].
The proton density distributions deduced by the new method are consistent with those
obtained by unfolding the charge density distributions. In addition, the neutron radii by
the new method are also consistent with those by the conventional method, in which the
charge density distributions and proton elastic scattering at a single energy are used.

This new method enables us to measure proton and neutron density distributions of
unstable nuclei. Actually, we have already measured proton elastic scattering from 132Sn
at 300 MeV/nucleon [117]. A combined analysis of the 200 and 300 MeV data can provide
a model-independent density distribution and more accurate proton and neutron radii.
Such a model-independent analysis will also enable us to attempt a 2D plotting method of
the IS-IV densities. In addition, it will allow us to apply the proton-density-polarization
technique by measuring proton elastic scattering for proton-rich side Sn isotopes. As a first
step, we are preparing a measurement for the stable nucleus 112Sn at RCNP. Furthermore,
we aim to extend these measurements into the region of unstable nuclei.

χ2 maps for density parameters

By using the present data, we examined the sensitivity of the proton elastic scattering for
the proton and neutron densities.

Figures 5.7 show the χ2 map of (ci, zi) for 9C, obtained from the analysis of proton
elastic scattering at 300 MeV/nucleon using a similar model. When (cp, zp) were fixed,
(cn, zn) were searched to minimize χ2, and vice versa. In this case, two solutions were
found, enclosed by solid and dashed lines. Furthermore, since the rms radius can be
approximately written as

⟨r2i ⟩ ≃
3

5
c2i +

7

5
π2z2i (5.2)

by using the Sommerfeld expansion [118], it is evident that the elastic probe is sensitive
to the radius.

Figures 5.8 show the χ2 maps obtained in the present study. Unlike the case of 9C,
only a single solution exists, and the neutron density distributions can be well constrained.
This is considered to be because of the large atomic number, where the Coulomb potential
allows a clearer distinction between protons and neutrons. However, due to the presence of
a sizable neutron skin, the internal proton density distribution is not strongly constrained.
Consequently, the restriction imposed by the charge radius or a measurement at another
energy proves particularly effective in extracting the accurate densities.
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Figure 5.7: Two-dimensional plots of χ2 of (a) (cp = Rp, zp = ap) and (b) (cn = Rn,
zn = an) for 9C via proton elastic scattering at 300 MeV/nucleon. The regions which
satisfy χ2 ≤ χ2

min+∆χ2 are enclosed by the solid and dashed curves. Taken from Ref. [54].
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Chapter 6

Summary

In order to determine the density distributions and radii of 132Sn, we measured, for
the first time, the angular distribution of the cross sections for proton elastic scattering
from 132Sn at 196–210 MeV/nucleon. Precise measurements of the cross sections covering
a wide momentum-transfer range are necessary to extract accurate density distributions
and radii. To this end, we have developed and employed a new PID method, a solid
hydrogen target, and a recoil proton spectrometer, thereby obtaining high-statistical and
high-quality data over the momentum transfer-range of 0.80 to 2.1 fm−1. The typical
excitation energy resolution is 600 keV (σ), which allows us to clearly identify the elastic
events.

The experimental data were analyzed using the RIA calculation with RLF NN in-
teraction. To explain the proton elastic scattering at intermediate energies, medium-
modification parameters were introduced into the interactions as phenomenological density-
dependent terms. The parameters were calibrated to reproduce the angular distur-
bances of the experimental observables for polarized proton elastic scattering from 58Ni
at 200 MeV.

Using the mm-RIA calculation, we extracted the matter density distribution, where
the proton and neutron density distributions were modeled with 2pF functions. The
parameters of the proton distribution were constrained to reproduce the charge radius
measured at ISOLDE. The obtained rms matter radius is 4.758+0.023

−0.024 fm.
These experimental results are compared with the theoretical calculations, includ-

ing ab initio IMSRG calculations as well as mean-field calculations. The cross sections
and matter radius are consistent with those predicted by the IMSRG calculation using
∆NNLOGO interaction. It is found that, however, no theoretical calculations can repro-
duce both experimental charge and matter radii simultaneously. Regarding the isotopic
trend, the matter radius at the magic number N = 82 is smaller than the values predicted
by the SHF and RMF calculations, a behavior similar to that observed in the Ca isotopes.

The neutron skin thickness was also deduced to be 0.178+0.037
−0.050 fm, which is correspond

to L = 12.0+24.3
−32.5 MeV by using the correlation from the mean-field calcualtions. The value

is more consistent with the CREX result than with the PREX result.
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Appendix A

Data table

The experimental values of the differential cross sections for the proton elastic scat-
tering from 132Sn are summarized in the following table.
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Table A.1: Differential cross sections for 132Sn(p,p).

θcm [deg] dσ/dΩ [mb/sr] ∆(dσ/dΩ) [mb/sr]

14 1.909 × 10+2 0.105 × 10+2

15 1.950 × 10+2 0.103 × 10+2

16 1.576 × 10+2 0.082 × 10+2

17 1.052 × 10+2 0.055 × 10+2

18 5.716 × 10+1 0.309 × 10+1

19 2.563 × 10+1 0.157 × 10+1

20 1.229 × 10+1 0.087 × 10+1

21 1.007 × 10+1 0.075 × 10+1

22 1.447 × 10+1 0.097 × 10+1

23 1.668 × 10+1 0.107 × 10+1

24 1.756 × 10+1 0.111 × 10+1

25 1.496 × 10+1 0.096 × 10+1

26 1.173 × 10+1 0.079 × 10+1

27 7.161 × 10+0 0.544 × 10+0

28 4.416 × 10+0 0.385 × 10+0

29 3.792 × 10+0 0.350 × 10+0

30 2.564 × 10+0 0.271 × 10+0

31 2.275 × 10+0 0, 256 × 10+0

32 2.012 × 10+0 0.238 × 10+0

33 1.794 × 10+0 0.217 × 10+0

34 1.397 × 10+0 0.190 × 10+0

35 1.138 × 10+0 0.176 × 10+0

36 1.230 × 10+0 0.184 × 10+0

37 8.310 × 10−1 1.494 × 10−1

38 9.160 × 10−1 1.542 × 10−1
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RDC Tracking

B.1 Drift length correction

The drift length of RDC was obtained from the TDC distributions using the stc functions.
The trajectory was determined by minimizing the χ2 value, defined as

χ2 =
∑
i

(f(zi) − xi

1 + A2
− dli

)2
, (B.1)

f(z) = X + Az. (B.2)

However, the position dependences remained in the residuals f(zi)−xi

1+A2 − dli, as shown in
Fig. B.1. To reduce the residuals, we corrected the drift length DT as

DT → DT + f(DT ), (B.3)

f(x) = (p0 + p1x + p2x
2)(x + 7)x(x− 7), (B.4)

where parameters pi were calibrated by fitting the 2D spectra of the residuals versus the
drift lengths. This correction was iteratively performed until no further improvement was
observed. Figure B.2 shows the residuals after each iteration.
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Figure B.1: The correlation between the drift length and residual for the X3 plane before
correcting the drift length.
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Figure B.2: The residuals after each iteration.
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Appendix C

Data reduction for 48Ca

In this appendix, the analysis of 48Ca data is described. Since the procedure for 48Ca
was almost the same as that for 132Sn, we present only the results and the difference in
the methods.

C.1 Beam analysis

The 48Ca beam was also produced by bombarding the primary 238U beam on the 9Be
target.

Figures C.1, C.2, and C.3 present the resulting PID plot, the beam energy distribution,
and the beam profile on the SHT for the 48Ca beam, respectively.

C.2 Recoil proton analysis

The recoil particle PID and energy calibration for the 48Ca data were basically performed
with the same functions or parameters as the 132Sn data. However, the TOF between the
F12pla and p∆E was corrected because the timing of the F12pla was affected by the time
walk. The correction was performed based on the correlation plots between the TOF and
the charge of p∆E as shown in Figs. C.4. By selecting the range of 300 < Qp∆E < 400,
projecting the spectra onto the x-axis, and comparing the positions of the peaks around
tp∆E − t12 = 50 ns, as shown in Figs. C.5, the timing correction was determined.

C.3 Excitation energy and count of elastic events

By the same procedure for the 132Sn data, we reconstructed the excitation energies. Fig-
ures C.6 show the correlations between the excitation energies Ex and the scattering angle
θcm. The excitation energies using the NaI(Tl) calorimeters are shifted to higher values.
This is because the energy calibration was performed without correcting for the position
dependence of the NaI(Tl) calorimeters. The black solid lines in Fig. C.6a represent the
averaged upper and lower boundaries of the elastic region. This region sufficiently covers
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48Ca

Figure C.1: Beam PID spectrum: 2D hisgram of A/Q versus Z for 48Ca setting.
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Figure C.3: Beam profile on the target.
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Figure C.4: PID plots for recoil particles using tp∆E − t12 and Qp∆E.
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Figure C.5: tp∆E − t12 spectra with the gate of 300 < Qp∆E < 400.

the elastic peak and is well separated from the first excited state at 3.83 MeV. Therefore,
the elastic yield is considered to be unaffected by the peak shift.

Figure C.7 shows the distribution of the obtained yields.

C.4 Derivation of differential cross section

The differentail cross sections for 48Ca were calculated using Eq. 3.31. The values used
for evaluating ϵ0 and Ibeam are summarized in Tables C.1 and C.2, respectively. Ntgt is
assumed to be 6.76 × 1021, which corresponds to a

√
2 × 1 mm-thick solod hydrogen.

Table C.1: Values of angle-independent efficiency ϵ0 and its components for 48Ca setting.

BLDs at F12 71.2%
Detecros at BigRIPS 77.5%
DAQ 78.2%
Angle-independent efficiency ϵ0 43.2%

Figure C.8 shows the angular distribution of the obtained cross sections. By using
this distribution, the target number Ntgt was evaluated.
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Figure C.6: Angular dependence of the excitation energy for 48Ca. The solid lines repre-
sent the averaged upper and lower boundaries of the elastic region.
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Table C.2: Number of beam particles (Ibeam) and values for its calculation for 48Ca.

Counts of F7Dia 1.19 × 1010 [particle]
Scaler count loss 0.69%
Target hit rate 48.1%
Purity of 48Ca 8.74%
Number of beam praticles (Ibeam) 5.05 × 108 [particle]
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Figure C.8: Obtained differential cross sections for proton elastic scattering from 48Ca.
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Appendix D

Global Dirac optical potential

In 1980, Hama, et al. presented phenomenological global Dirac optical potential
(GDOP) model fits to proton elastic scattering from heavy nuclei (40,48Ca, 56Fi, 60Ni,
90Zr, and 208Pb) at energies between 65 to 1040 MeV. The GDOP calculations reasonably
reproduce observables of the proton elastic scattering. In 1993, extended GDOP models
were presented that fitted the data from nuclei ranging from 12C to 208Pb, and in 2009,
further developments were reported with fits to the data from 4H to 208Pb. The GDOP
formulations include energy-dependent and mass-number-dependent terms. Alongside
these extensions, refinements of the model were also introduced. Depending on the fitting
strategy and model formulation, the 1993 work provided three different calculations, while
the 2009 study presented two. In the following, we show the comparisons of the present
experimental results with these GDOP calculations.

Figure D.1 shows the Rutherford ratios of the GOOP calculations. The solid and
dashed lines are calculations fit to the data from nuclei ranging from 12C to 208Pb and
from 4He to 208Pb, respectively. In the main text, we show the calculation of fit 1 with 12C
to 208Pb data as the GDOP calculation. The dashed lines deviate from the experimental
results at two valleys around θcm = 20◦ and θcm = 30◦. No calculations well reproduce
the peak height at θcm = 15◦. These calculations used only the data of stable nuclei for
the parameter fit and do not include the explicit isospin-dependent term. Our results
imply that a new GDOP model, including such a term, is needed to explain proton elastic
scattering from unstable nuclei.
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N. Paar, and D. Vretenar, Phys. Rev. C, 87, 034301 (2013).

[24] J. Zenihiro et al., Direct determination of the neutron skin thicknesses in 40,48ca
from proton elastic scattering at ep = 295 mev (2018), arXiv:1810.11796.

[25] Beat Hahn, D. G. Ravenhall, and Robert Hofstadter, Phys. Rev., 101, 1131–1142
(1956).

[26] H. De Vries, C.W. De Jager, and C. De Vries, Atomic Data and Nuclear Data
Tables, 36(3), 495–536 (1987).

[27] I. Angeli and K.P. Marinova, Atomic Data and Nuclear Data Tables, 99(1), 69–95
(2013).

[28] D. Adhikari et al., Phys. Rev. Lett., 129, 042501 (2022).

[29] S. Terashima et al., Phys. Rev. C, 77, 024317 (2008).

[30] H. J. Gils, H. Rebel, and E. Friedman, Phys. Rev. C, 29, 1295–1306 (1984).

[31] B.M. Barnett et al., Physics Letters B, 156(3), 172–176 (1985).

[32] C. A. Bertulani and C. De Conti, Phys. Rev. C, 81, 064603 (2010).

[33] L. Ray, Phys. Rev. C, 19, 1855–1872 (1979).

[34] A. N. Antonov, D. N. Kadrev, M. K. Gaidarov, E. Moya de Guerra, P. Sarriguren,
J. M. Udias, V. K. Lukyanov, E. V. Zemlyanaya, and G. Z. Krumova, Phys. Rev.
C, 72, 044307 (2005).

[35] F. Le Blanc et al., Phys. Rev. C, 72, 034305 (2005).

[36] K. Tsukada et al., Phys. Rev. Lett., 131, 092502 (2023).

[37] T. Yamaguchi, I. Hachiuma, A. Kitagawa, K. Namihira, S. Sato, T. Suzuki, I. Tani-
hata, and M. Fukuda, Phys. Rev. Lett., 107, 032502 (2011).



BIBLIOGRAPHY 105

[38] S. Terashima et al., Progress of Theoretical and Experimental Physics, 2014(10),
101D02 (2014).

[39] M. Tanaka et al., Phys. Rev. C, 106, 014617 (2022).

[40] I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto,
O. Yamakawa, T. Kobayashi, and N. Takahashi, Phys. Rev. Lett., 55, 2676–2679
(1985).

[41] R3B Collaboration et al., Acta Physica Polonica B, Proceedings Supplement, 17(3),
3–A18, Funding Information: The project was supported by the BMBF via Project
No. 05P21RDFN2, the Helmholtz Research Academy Hessen for FAIR and the GSI-
TU Darm-stadt cooperation. Publisher Copyright: © 2024 Jagiellonian University.
(2024).

[42] R. F. Garcia Ruiz et al., Nature Physics, 12(6), 594–598 (2016).

[43] M. Tanaka et al., Phys. Rev. Lett., 124, 102501 (2020).

[44] S.R. Neumaier et al., Nuclear Physics A, 712(3), 247–268 (2002).

[45] A.V. Dobrovolsky et al., Nuclear Physics A, 766, 1–24 (2006).

[46] S. Ilieva et al., Nuclear Physics A, 875, 8–28 (2012).

[47] G.A. Korolev et al., Physics Letters B, 780, 200–204 (2018).

[48] A.V. Dobrovolsky et al., Nuclear Physics A, 1008, 122154 (2021).

[49] M. von Schmid et al., The European Physical Journal A, 59(4), 83 (2023).

[50] K. Yue et al., Phys. Rev. C, 100, 054609 (2019).

[51] J. T. Zhang et al., Phys. Rev. C, 108, 014614 (2023).

[52] Y. Matsuda et al., Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment, 643(1), 6–10
(2011).

[53] S Chebotaryov et al., Progress of Theoretical and Experimental Physics, 2018(5),
053D01 (2018).

[54] Y. Matsuda et al., Phys. Rev. C, 87, 034614 (2013).

[55] H. Sakaguchi and J. Zenihiro, Progress in Particle and Nuclear Physics, 97, 1–52
(2017).

[56] J. Piekarewicz, Phys. Rev. C, 73, 044325 (2006).



106 BIBLIOGRAPHY

[57] P. Arthuis, C. Barbieri, M. Vorabbi, and P. Finelli, Phys. Rev. Lett., 125(18),
182501 (2020).

[58] T. Miyagi, S. R. Stroberg, P. Navrátil, K. Hebeler, and J. D. Holt, Phys. Rev. C,
105(1), 014302 (2022).

[59] Baishan Hu et al., Nat. Phys., 18(10), 1196–1200 (2022).

[60] P. Arthuis, K. Hebeler, and A. Schwenk, Neutron-rich nuclei and neutron skins
from chiral low-resolution interactions (2024), arXiv:2401.06675.

[61] H. Okuno, N. Fukunishi, and O. Kamigaito, Progress of Theoretical and Experi-
mental Physics, 2012(1), 03C002 (2012).

[62] Chihiro Iwamoto et al., Progress of Theoretical and Experimental Physics, 2023(8),
083H01 (2023).

[63] RIKEN, Facilities at the ribf, https://www.nishina.riken.jp/facility/

RIBFfacility_e.html (), Accessed on Jan. 28, 2026.

[64] Toshiyuki Kubo, Nuclear Instruments and Methods in Physics Research Section
B: Beam Interactions with Materials and Atoms, 204, 97–113, 14th International
Conference on Electromagnetic Isotope Separators and Techniques Related to their
Applications (2003).

[65] H. Kumagai, A. Ozawa, N. Fukuda, K. Sümmerer, and I. Tanihata, Nuclear Instru-
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