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Abstract

A precise measurement of the single spin asymmetry, AN , in proton-proton elastic scatter-
ing in the region of four-momentum transfer squared 0.001 < |t| < 0.032 (GeV/c)2 has been
performed using a polarized atomic hydrogen gas jet target and polarized proton beam with
momentum 100 GeV/c at the Brookhaven National Laboratory (BNL). This kinematic region
is known as the Coulomb Nuclear Interference (CNI) region. The interference of the electro-
magnetic spin-flip amplitude with a hadronic spin-non-flip amplitude is predicted to generate a
significant AN of 4–5%, peaking at −t ' 0.003 (GeV/c)2, and a presence of hadronic spin-flip
amplitude would modify this calculable prediction.

The hydrogen gas jet target system provides highly polarized atomic hydrogen, Pt = 0.924±
0.018. The system performance meets the design specifications. The recoil spectrometer, which
consisted of the three left-right symmetric pairs of silicon detectors, was newly developed for
this experiment. We have collected 4 million elastic pp events in the region of 0.001 < |t| <
0.032 (GeV/c)2.

We present the first precise result of AN in the CNI region as a function of −t with a relative
accuracy of ∼ 5%. Our data are well described by the theoretical prediction with the electro-
magnetic single spin-flip amplitude alone and do not support the presence of a large hadronic
single spin-flip amplitude.

In addition to the physics interests, the precise measurement for AN is extremely important
for the measurement of proton beam polarization at the Relativistic Heavy Ion Collider (RHIC)
spin program. The newly measured AN data satisfy with the required accuracy.

At the same time, we have also accomplished the precise measurement of the double spin
asymmetry, ANN , in the same |t| region for the first time. ANN is sensitive to the hadronic
double spin-flip amplitude but there is no solid theoretical prediction for its energy dependence
nor magnitude. The results of ANN for each measured points are consistent with zero within
the errors. The mean value for the region of 0.001 < |t| < 0.032 (GeV/c)2 is < ANN >=
−0.0024 ± 0.0015.

Our results of AN and ANN in the CNI region do not support the presence of large size
of single nor double spin-flip amplitudes at this energy, and provide significant constraints to
determine the poorly known hadronic single and double spin-flip amplitudes.
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Chapter 1

Introduction

1.1 Importance of Elastic proton-proton Scattering

Elastic proton-proton (pp) scattering is one of the most fundamental reactions in particle-nuclear
physics. This reaction is described in transition amplitudes by use of helicity of initial and final
states. Requiring that the interaction is invariant under space inversion, time reversal and rotation
in spin space, proton-proton scattering in a given spin state is described in five independent tran-
sition amplitudes. And the understanding of these amplitudes would provide crucial guidelines
to investigate the reaction mechanism.

There are two kinematic regions of interest in this reaction. One is small to medium values
of momentum transfer and the other is large momentum transfer. The first is in the domain of
non-perturbative quantum chromodynamics (QCD) and precise prediction basing on the QCD is
very difficult. On the other hand, perturbative QCD should be applicable in the latter region. In
this thesis, we will focus on the spin-dependent pp elastic scattering at small momentum transfer
and at high center-of-mass energy.

Each transition amplitude is described as a superposition of the hadronic amplitude and the
electro-magnetic amplitude. Thanks to the great successes of quantum electrodynamics (QED),
the electro-magnetic force is precisely described including the small momentum transfer region.
On the other hand, the hadronic force is not fully described by theory. There are several theo-
retical approaches [1]: extrapolation of low and medium energy Regge phenomenology to high
energies, models based on a hybrid of perturbative QCD and non-relativistic quark models, and
models based on eikonalization techniques.

The nuclear force totally dominates the pp scattering process, except the certain kinematic
regions where the electro-magnetic force leads to transition amplitudes that grow rapidly and
eventually exceed the nuclear force. In this kinematic region, two forces become similar in
strength and interfere with each other. We call this interference the Coulomb Nuclear Interfer-
ence (CNI). The interference of a spin-flip amplitude and non-spin-flip amplitude leads a sizable
transverse-spin dependent asymmetry, AN which is defined by the asymmetry of cross-sections
with up-down polarization for one of the protons. In the case of the elastic scattering between
proton beam and proton target,

AN =
σ↑0 − σ↓0

σ↑0 + σ↓0
, (1.1)

where two subscripts of σ denote the beam polarization state (left) and the target polarization
state (right), respectively. ↑ (↓) in subscript denotes beam or target is polarized transverse-
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up (transverse-down) direction with respect to the beam direction (longitudinal axis) 1. ”0”
in subscript denotes unpolarized state. Originally, AN in the CNI region was first predicted by
Schwinger from the study of neutron-nucleus. scattering in the low center-of-mass energy region
in 1946 [2].

At higher center-of-mass energy, AN is predicted to reach a maximum value of about 4–5%
around the momentum transfer squared |t| ' 0.003 (GeV/c)2 and decreases with increasing
|t| [3, 4]. The prediction is based on the interference between the spin-flip electro-magnetic am-
plitude and the non-spin-flip hadronic amplitude assuming that the spin-flip hadronic amplitude
is zero. However there is no solid ground for this assumption, and AN will be significantly
changed if it is non-zero. Therefore the measurement of the AN will provide a crucial informa-
tion on the spin-flip hadronic amplitude.

Similarly double transverse-spin dependent asymmetry ANN which is defined by the asym-
metry of cross-sections with up-down beam and target polarizations:

ANN =
σ↑↑ − σ↑↓

σ↑↑ + σ↑↓
. (1.2)

We call ”parallel” or ”anti-parallel” state where the beam and target polarization in the same or
opposite direction. ANN is sensitive to another type of spin-dependent transition amplitude as
we will see later in this chapter. Therefore the study of the spin-dependence would be crucial in
completing the picture of the forward pp elastic scattering.

Important polarized pp elastic scattering experiments were done in the 1980s – 1990s. AN

and ANN had been measured using low-medium energy proton beams and polarized proton
targets in the higher four-momentum transfer 0.05 < |t| < 10 (GeV/c)2. However, polarization-
dependence at high energy has been still highly unknown. The first measurement of AN in the
CNI region had been performed by the E704 experiment at

√
s = 19.4 GeV with moderate

precision [5]. Recently, AN has been measured also at
√

s = 200 GeV by PP2PP [7], but
slightly beyond the |t| region of the CNI peak. Regarding ANN , there has been no measurement
in the CNI region because of difficulties of experiments. Therefore the measurements of AN and
ANN in the CNI region are expected to be significant constraints for theoretical approaches and
models.

In addition to the physics interests, the precise measurement of AN is also extremely impor-
tant for the RHIC (Relativistic Heavy Ion Collider) spin program [8]. The RHIC is located at
Brookhaven National Laboratory on Long Island, New York. In addition to heavy ion collisions,
the RHIC also collides intense beams of polarized protons at center-of-mass energies ranging
from 50 to 500 GeV. The design luminosity and polarization for pp collisions are 2×1032 (cm−2

· sec−1) and 70%, respectively. The technical challenges include the production and acceler-
ation of the polarized beams, manipulation of the spin direction at the interaction points, and
the accurate measurement of the beam polarization and related asymmetries. The roles of the
RHIC-polarimeter consists of two main stages to carry out these technical challenges.

In the first stage, the polarimeter serves as a semi on-line feedback tool to tune up the beam
acceleration. The RHIC featured one polarimeter for each ring based on proton-carbon elastic
scattering in the CNI region (”pC-CNI-polarimeters”) [9]. The pC-CNI-polarimeters measured
the bunch-by-bunch polarization for both beams independently at beam momentum (Pbeam)
ranging from 21.4 to 100 GeV/c. Featuring elastic scattering in the CNI region, the beam polar-
ization measurement is performed at any energy without any configuration change. Its accuracy

1
L denotes longitudinal polarized state and N denotes transverse polarized state. See Figure 1.1
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was limited to ±30% due to the previous experiment (BNL E950) where the polarized proton
beam was extracted to be calibrated absolutely in polarization [6]. The pC-CNI polarimeter
performed perfectly in the first stage.

In the second stage, the accurate and absolute polarization measurement becomes critical
for the spin-physics results which provide detailed studies of QCD at a new level of accuracy.
This relies heavily upon an accurate knowledge of the beam polarization. For example, double
longitudinal-spin dependent asymmetry is defined as

ALL =
εLL

P 2
b

where εLL is the measured raw asymmetry in the event yield for a particular process for parallel
and anti-parallel longitudinal-spin of the protons 1. Equal polarizations are assumed for both
beams (Pb) for a simplicity. In the case that εLL 6= 0 2, the accuracy is given by

∆ALL =
εLL

P 2
b

(

(

∆εLL

εLL

)2

+

(

2
∆Pb

Pb

)2
)

1

2

. (1.3)

We refer to the uncertainty from the beam polarization as ∆Pb/Pb. ∆Pb/Pb gives a contri-
bution to the accuracy of the ALL measurement and becomes more important when the accuracy
of ∆εLL/εLL is improved with sufficient statistics. In practice, ALL for the neutral pion is con-
nected to the gluon polarization [10] which is one of the major physics goal for the RHIC-spin
program. We expect to accumulate enough statistics ∆εLL/εLL ∼ 0.1. Therefore we aim to ac-
complish the accuracy of beam polarization ∆Pb/Pb < 0.05. However the pC-CNI polarimeter
is not sufficient for this requirement.

The accuracy of the pC-CNI polarimeter was limited by the absolute AN value of pC elastic
scattering (ApC

N ). The ApC
N was measured at Pbeam = 21.7 GeV/c with moderate precision [6]

and we need to extrapolate to get ApC
N at Pbeam = 100 GeV/c using a theoretical calculation [11].

The uncertainty of AN would cause a wrong scale of the measured beam polarization. Once we
know the exact ApC

N at Pbeam = 100 GeV/c, we can correct a wrong scale and calibrate the
measured beam polarizations.

Our strategy toward the goal of polarimetry at the RHIC is to use the pC-CNI-polarimeter as
the relative polarimeter and to install a polarized hydrogen jet target (H-jet-target) to absolutely
calibrate the pC-CNI-polarimeter. The pp elastic scattering process is 2-body exclusive scattering
with identical particles. Therefore we can change the role of which is polarized between the
target proton and the beam proton. At first we measure AN by use of a well calibrated polarized
proton target.

AN =
εt

Pt
, (1.4)

where Pt is proton target polarization and εt is raw asymmetry for the pp elastic scattering for
the transversely polarized proton target. Then the beam polarization is measured utilizing the
AN :

Pb =
εb

AN
, (1.5)

2In the case that εLL is quite small and the same size as its error (εLL ' ∆εLL), Equation (1.3) is rewritten as

∆ALL '
∆εLL

P 2

b

 

1 +

„

2
∆Pb

Pb

«

2
! 1

2

.

6



where εb is raw asymmetry for the pp elastic scattering for the transversely polarized proton
beam.

Therefore, a new measurement of AN with a precision of ∆AN/AN ∼ 0.05 is required.
In this thesis we report on a precise measurement of AN and ANN of pp elastic scattering in

the CNI region at
√

s = 13.7 GeV which has been performed in 2004 at the RHIC.
The following sections in Chapter 1, we will describe the general properties of transition

amplitudes of the pp elastic scattering process. We will describe their behavior with a brief
review of existing experimental data. We also explain how to extract unknown spin-flip hadronic
amplitudes from AN and ANN .

In Chapter 2, we describe setup of the experiment (H-jet-target system and the recoil spec-
trometer) and the RHIC high energy polarized proton beam.

Chapter 3 presents the off-line analysis.
In Chapter 4, our AN and ANN data are shown. The experimental interpretation of hadronic

spin-flip amplitudes is discussed. Chapter 4 also contains the comparisons between our AN data
and past experimental results.
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1.2 Transition Amplitude for Elastic pp Scattering

Through this thesis units are used in which h- = c = 1. We specify the kinematics in the center-
of-mass frame for convenience, unless stated otherwise.

1.2.1 Introduction of helicity amplitudes

When two hadrons interact, their interaction is controlled by a mixture of strong (hadronic) and
electro-magnetic forces. Several kinds of transition amplitude can be found depending on how
the quantization axes and eigenstates are chosen. The helicity amplitudes are the simplest, useful
and urged by the parity restrictions. Therefore we shall concentrate exclusively on them 3.

We consider a reaction of A + B → C + D, where A,B,C and D are all protons. The
four-momenta of them are

pA = (E, ~p), pB = (E,−~p),

pC = (E, ~q), pD = (E,−~q),

where E is the energy. ~p and ~q are the three-momenta of coming and outgoing particles, respec-
tively. Their absolute values are same (|~p| = |~q|). And those square are

p2
i = E2 − |~p|2 = (mp)

2 (i = A, B, C and D)

where mp = 0.93827 GeV/c2 is the proton mass. In the collision of particle A and B the total
center-of-mass energy squared can be expressed in the Lorentz-invariant form

s = (pA + pB)2 = (pC + pC)2 = 4E2.

The four-momentum transfer squared is

t = (pA − pC)2 = (−pB + pD)2 = −2|~p|2(1 − cosθ),

where θ is the scattering angle between the three-momentum ~p and ~q.
The scattering process is described in the center-of-mass system by a matrix φ in spin space,

defined in such a way that the differential cross-section is given by

dσ

dΩ
=

∑

λA,λB ,λC ,λD

| < λCλD|φ|λAλB > |2,

where λC , λD represent the spin state of the outgoing nucleons, λA, λB the spin states of the
incoming nucleons. The matrix φ is a function of the total center-of-mass energy squared s and
is expressed in terms of amplitudes for total angular momentum, parity and spin. Requiring that
the interaction is invariant under space inversion, time reversal and rotation in spin space, we can
select the following set of five independent helicity amplitudes as functions of s and t.

3However, in some circumstances other types of transition amplitude can be valuable, in particular transversity
amplitudes, so we introduce them in Appendix A.1.
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φ1(s, t) = < +
1

2
+

1

2
|φ| + 1

2
+

1

2
>,

φ2(s, t) = < +
1

2
+

1

2
|φ| − 1

2
− 1

2
>,

φ3(s, t) = < +
1

2
− 1

2
|φ| + 1

2
− 1

2
>,

φ4(s, t) = < +
1

2
− 1

2
|φ| − 1

2
+

1

2
>,

φ5(s, t) = < +
1

2
+

1

2
|φ| + 1

2
− 1

2
> .

(1.6)

where φ1(s, t) and φ3(s, t) correspond to non-spin-flip amplitudes, φ5(s, t) corresponds to single-
spin-flip amplitude and φ2(s, t) and φ4(s, t) correspond to double-spin-flip amplitudes, respec-
tively.

It will be convenient to introduce following shorthand:

φ±(s, t) =
φ1(s, t) ± φ3(s, t)

2
.

Connections between helicity amplitudes and Spin-dependent observables

There are many spin-dependent observables regarding beam and target polarization states. We
define proton moves along z-axis as displayed in Figure 1.1. In the case that the polarization
axis is the y-axis, the proton is polarized transversely. In the case that the polarization axis is the
z-axis, the proton is polarized longitudinally.

In this section, we mainly consider only initial state transverse polarization measurements.
As we have described in Equation (1.1) and (1.2), the transverse single and double spin depen-
dent asymmetries, AN and ANN , are defined by the asymmetry of cross sections with up-down
beam and target polarizations. Such cross-sections are proportional to transversity amplitude
squared as shown in Figure A.2 in Appendix A.1. The relations between transversity and helic-
ity amplitudes are described in Equation A.1.

AN and ANN are expressed using helicity amplitudes respectively [4]:

AN
dσ

dt
= − 4π

s(s − 4m2
p)

Im[φ∗
5(s, t){φ1(s, t) + φ2(s, t) + φ3(s, t) − φ4(s, t)}], (1.7)

ANN
dσ

dt
=

4π

s(s − 4m2
p)
{2|φ5(s, t)|2 + Re[φ∗

1(s, t)φ2(s, t) − φ∗
3(s, t)φ4(s, t)]}, (1.8)

where dσ/dt is differential cross-section which is obtained if the initial spin states are unpolar-
ized:

dσ

dt
=

2π

s(s − 4m2
p)

[|φ1(s, t)|2 + |φ2(s, t)|2 + |φ3(s, t)|2 + |φ4(s, t)|2 + 4|φ5(s, t)|2] (1.9)

As for the other spin-dependent asymmetries with all polarization directions, they are summa-
rized in Appendix A.2.

In the limit of t = 0, the optical theorem introduces a total cross-section as follows:

9



�

��
�����	�
�	�
���	���������������������! #"$�%'&#(*),+.-�/*&�+�/�021

354 06(7&#8:9;/�<=?> 3@4 &A< 4CB )ED

F 4 )�GH8�I > <J8K)
(�0L0K1
354 0L(*&#8:9M/�<=ON /�0:8OPQ8:I:1SR 4 &UT!D

�	�V�? �"W�

Figure 1.1: Definition of transverse-polarization and longitudinal-polarization. Red arrow repre-
sents the proton spin direction.

• Spin averaged total cross-section

σtot =
8π

√

s(s − 4m2
p)

Imφ+(s, 0). (1.10)

• Difference between total cross sections for anti-parallel and parallel spin states (transverse)

∆σT = σ↑↓ − σ↑↑ = − 8π
√

s(s − 4m2
p)

Imφ2(s, 0). (1.11)

We would describe the connection between ANN and ∆σT in the limit of t → 0:

ANN → −∆σT

σtot

• Difference between total cross section for anti-parallel and parallel spin states (longitudi-
nal)

∆σL = σ→
←
− σ→

→
=

8π
√

s(s − 4m2
p)

Imφ−(s, 0). (1.12)

The
√

s dependence of Imφ+(s, 0), Imφ2(s, 0) and Imφ−(s, 0) have been studied experimen-
tally and theoretically, as discussed later.
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Parameterization of helicity amplitudes at very small t

We will concentrate on describing the properties of helicity amplitudes at very small momentum
transfer squared |t| < 0.05 (GeV/c)2 and high energy

√
s (� mp) in the following discussions.

At small |t| ≈ 0.003 (GeV/c)2, the electro-magnetic-force and hadronic-force become similar
in strength and interfere with each other. The lowest order in α, the fine structure constant, φi

(i = 1−5) can be approximated as a sum of the one-photon exchange amplitude and the hadronic
amplitude decomposed as;

φi(s, t) = φhad
i (s, t) + φem

i (s, t)eiδC . (1.13)

The Coulomb phase δC reflects the distortion of the pure amplitudes φem
+ (s, t) and φhad

+ (s, t)
due to the simultaneous presence of both hadronic and Coulomb scattering. Here, δC is approx-
imately independent of helicity [4, 12]

δC = αln
−2

t(B + 8/Λ2)
− αγ. (1.14)

where B, often called ”the slope”, is the logarithmic derivative of the differential cross-section at
−t = 0, a number about 12 (GeV/c)−2 and increasing above

√
s = 10 GeV. γ is Euler’s constant

γ = 0.5772 and Λ is introduced phenomenological way as energy scale Λ2 = 0.71 GeV2.

The electro-magnetic part of helicity amplitude The electro-magnetic force is well under-
stood in QED and electro-magnetic amplitudes are given exactly [4]. We are interested in their
leading terms at high energies;

φem
1 (s, t) = φem

3 (s, t) = φem
+ (s, t) ∼= αs

t
, (1.15)

φem
2 (s, t) = −φem

4 (s, t) ∼= αsκ2

4m2
p

, (1.16)

φem
5 (s, t) ∼= − αsκ

2mp

√
−t

. (1.17)

where µp = κ + 1 = 2.79285µN is the proton magnetic moment. κ refers to the anomalous
magnetic moment. µN is the nuclear magneton.

The amplitudes φem
+ (s, t) and φem

5 (s, t) are all singular as |t| → 0. The amplitudes
φem

2 (s, t) and φem
4 (s, t) are non-singular as |t| → 0.

The hadronic part of helicity amplitude At very small t in the forward limit (θ → 0) and
the domain of non-perturbative QCD, there are no precise theoretical predictions. However,
the behaviors of hadronic amplitudes are assumed from a consequence of angular momentum
conservation:

φhad
1 (s, t) ∝ cosθ → 1, (1.18)

φhad
2 (s, t) ∝ cosθ → 1, (1.19)

φhad
3 (s, t) ∝ 1

2
cosθ(1 + cosθ) → 1, (1.20)

φhad
4 (s, t) ∝ 1

2
cosθ(1 − cosθ)cosθ → |t|, (1.21)

φhad
5 (s, t) ∝ − 1√

2
cosθ

√

1 − cosθ2 →
√
−t (1.22)
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Thus, as |t| → 0 the hadronic amplitude φhad
1 (s, t), φhad

2 (s, t) and φhad
3 (s, t) go to a possibly

nonzero constant while φhad
4 (s, t) ∝ |t| and φhad

5 (s, t) ∝
√
−t. All φhad

i (s, t) are non-singular
at |t| → 0.

From another aspect of Regge pole theory, the factorization of helicity amplitudes should
hold to a good approximation at high energies [1, 13],

φhad
1 (s, t) = φhad

3 (s, t), (1.23)

φhad
2 (s, t) = −{φ5(s, t)}2

φ+(s, t)
. (1.24)

The interpretation of φhad
2 (s, t) from the property of factorization [14] runs counter to Equation

(1.19). However it is generally expected that double spin flip amplitude φhad
2 (s, t) is negligible

as |t| → 0. Thus,

φhad
− (s, t) → 0 (1.25)

φhad
2 (s, t) ∝ |t| → 0. (1.26)

We would describe the expected magnitude of the hadronic helicity amplitudes in the region
|t| < 0.05 (GeV/c)2 at

√
s � mp,

(|φhad
1 (s, t)| ∼= |φhad

3 (s, t)|) � (|φhad
5 (s, t)| ∝

√
−t) > (|φhad

4 (s, t)| ∝ |t|). (1.27)

For example, in the middle of CNI region −t = 0.003 (GeV/c)2, the size of φhad
1 (s, t) and

φhad
3 (s, t) are three hundred times lager than those of φhad

4 (s, t), and twenty times lager than
φhad

5 (s, t), respectively.
As we have introduced before, φ2(s, 0) is related to ∆σT directly in Equation (1.11) and

φ−(s, 0) is related to ∆σL directly in Equation (1.12). There are some measurements from the
past experiments for ∆σT and ∆σL (Figure 1.5 and 1.6 in the next section). In particular, ∆σL

is decreasing in magnitude fast with energy and it is quite compatible with Equation (1.23).

1.2.2 The current constraints on hadronic amplitudes

In the 1980s-1990s many polarized and unpolarized pp collisions in the CNI and higher t region
have been measured. Consequently, hadronic non-spin-flip amplitudes are understood very well.

On the other hand, hadronic spin-flip amplitudes (φhad
2 (s, t), φhad

4 (s, t) and φhad
5 (s, t)) are

not well understood. There are only two experiments in the CNI region, so far. A first measure-
ment of AN in CNI region at

√
s = 19.4 GeV had been performed by the E704 experiment at

Fermi National Accelerator Laboratory (FNAL) using the 200 GeV/c polarized proton beam ob-
tained from the decay of Λ hyperons [5]. Recently, AN has been measured also at

√
s = 200 GeV

by colliding the RHIC polarized proton beams [7]. However, the former measurement is much
less precise and the recent measurement is slightly higher than the CNI region, they are not
enough in resolving the unknown hadronic spin-flip amplitudes.

At large |t| > 0.1 (GeV/c)2, many AN and ANN data been measured in the 1980s – the
1990s for the broad center-of-mass energy region. In this region, AN is expected to vanish
by theory. However there are some contradictions between theory and experiment. Therefore,
the spin dependence of helicity amplitudes (φhad

2 (s, t), φhad
4 (s, t) and φhad

5 (s, t)) are not well
understood for all t and center-of-mass energies.

In the rest of the subsections, we will describe the best knowledge of helicity amplitudes in
the CNI region from the past measurements for unpolarized and polarized cases.
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φhad

+
(s, t) from unpolarized pp elastic scattering experiments

There are many total cross-section and differential cross-section data of unpolarized pp elastic
scattering with precise and broad energy range. Figure 1.2 displays the total cross-section (σtot)
as a function of total center-of-mass energy. The high energy behavior of σtot, which is flat up
to

√
s ∼ 20 GeV, is a value of 38 mb and then grows to 43 mb at

√
s = 63 GeV increasing

further to about 62 mb at the CERN Super Proton Synchrotron (Spp̄S) collider (
√

s = 546GeV).
Especially for the high energy region, more than

√
s ∼ 20 GeV, the cross-section was found to

be rising approximately as ln2s. Regge theory [15] describes the data and suggests the form of
φ+(s, 0) as the Froissart-Martin bound [16].

|φ+(s, 0)| ≤ const.sln2s as s → ∞.

 s (GeV)√
10 210 310 410
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Figure 1.2: Total cross-section for pp collision as a function of center-of-mass energy [17]. The
solid curve shows the results of the fitted function using Equation (1.9) [18] suggested by Regge
theory.

Figure 1.3 displays the differential cross-section measured by experiment the UA6 at
√

s =
24.3 GeV [19] and the solid curve shows the results of the fitted function using Equation (1.9).
In this small |t| region, Equation (1.27) tells us the dominant components are φhad

1 (s, t) and
φhad

3 (s, t). Since we are interested in very high energy
√

s, we will generally neglect mp with
respect to

√
s to simplify the presentation of the formulas which follow. For example, s(s −
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Figure 1.3: An experimental plot of dσ/dt vs. −t for pp elastic scattering at
√

s = 24.3 GeV.
The horizontal and vertical axes are logarithmic scales. The solid curve used the parameterization
of Equation (1.29). Parameters from fitting results [19] are σtot = 39.46 ± 0.04 mb, ρ =
0.009± 0.010± 0.006 and B = 11.4± 0.5± 0.07 (GeV/c)−2. We input δC = 0.02. The dashed
lines corresponds to dσem/dt (blue), dσhad/dt (green) and dσint/dt (pink).

4m2
p)

∼= s2. Then Equation (1.9) is rewritten as below:

dσ

dt
' 2π

s2
2|φ+(s, t)|2 (1.28)

∼= 4π

∣

∣

∣

∣

α

|t|e
iδC + (ρ + i)

σtot

8π
eBt/2

∣

∣

∣

∣

2

∼= dσhad

dt
+

dσem

dt
+

dσint

dt
, (1.29)

where we used the optical theorem (1.10) at the last step.
As we will discuss in Subsection 1.3.1, the parameters (ρ,B, σtot and δC ) in the explicit

expression for φhad
+ (s, t) are related the accuracy of the theoretical prediction of AN . ρ is real-

to-imaginary ratio of φhad
+ ,

ρ =
Reφhad

+ (s, 0)

Imφhad
+ (s, 0)

. (1.30)

We assume that ρ is small and varies negligible over the very small |t| region of our interest.
B and δC have been introduced in Equation (1.14). The two parameters are obtained from

experimental data as displayed Figure A.3 and Figure A.4. (For example, ρ = −0.08± 0.02 and
B = 12.0 ± 0.1 (GeV/c)−2 at at

√
s = 13.7 GeV.)

Coulomb-Nuclear-Interference The importance of the interference between coulomb force
and nuclear force, defined dσint/dt in Equation (1.29), is clearly maximal when |φhad

+ | = |φem
+ |.
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The interference term is of maximum significance when |t| = |tc|,

|tc| ∼=
8πα

σtot

∼= 0.071

σtot(mb)
. (1.31)

In this small −t region, the behavior of dσ/dt changes dramatically. The coulomb scattering
dominates in the region of |t| � |tc| and dσ/dt goes nearly as 1/|t|2. The nuclear scattering
dominates in the region for |t| � |tc| and dσ/dt goes nearly as eBt. Between the two region
at |t| ' |tc|, the electro-magnetic amplitude and hadronic amplitude become similar in strength
and interfere with each other. We refer to this region as the Coulomb-Nuclear-Interference (CNI)
region (|t| < 0.05 (GeV/c)2). |tc| is obtained to be ∼ 0.002 (GeV/c)2 at

√
s = 10–200 GeV.

Figure 1.3 displays the coulomb, nuclear and interference components of the differential cross-
section in these three |t| regions. The dashed lines corresponds to dσem/dt (blue), dσhad/dt
(green) and dσint/dt (pink).

φhad

2
(s, t) and φhad

5
(s, t) from polarized pp elastic scattering experiments

There is a huge amount of spin-dependent data at low to medium energies and higher |t| (> 0.05),
but little understanding of mechanisms at work. Because of the lack of clear-cut theoretical ideas
and because of the difficulty of experiments there has generally been a lack of experimental effort
since the middle 1980s. In particular, there are few experimental data at high energy and in the
CNI region for AN .

A first measurement of AN at
√

s = 19.4 GeV and in the CNI peak region had been per-
formed by the E704 experiment at FNAL in 1990 [5]. Recently, new AN data has been measured
at
√

s = 200 GeV by the PP2PP experiment [7] with the advent of polarized proton collider ex-
periments at BNL. Both results are displayed in Figure 1.4 as a function of −t. However, the
former measurement is much less precise and the recent measurement is slightly beyond the CNI
peak region, they are not decisive results in resolving the unknown hadronic spin-flip amplitudes.

We would introduce the data in several t regions at low to medium beam energies briefly:
−t = 0, 0.15 and 0.1 – 10 (GeV/c)2.

Figure 1.5 and 1.6 display the results of measurements of ∆σT [32] and ∆σL [33]. As
they have been introduced in Equation (1.11) and (1.12), these data are in the limit of −t = 0
(GeV/c)2. ∆σT is certainly not zero in the low to medium energy region, but the limited data
do suggest that it is decreasing rapidly with energy. ∆σL is a complicated structure at low-to-
medium energies but is decreasing in magnitude fast with energy.

Away from the very small t in the CNI region, the data for fixed −t = 0.15 (GeV/c)2 (or
interpolated from nearby values) are displayed in Figure 1.7 and indicate that AN in pp elastic
scattering falls very fast with the center-of-mass energy. This data has sometimes led to the
conclusion that φ5(s, t) would vanish as a power of s as s → ∞ [34]. The solid line is a fitted
function suggested by Regge poles, namely, AN = a1 + a2/

√
Pbeam + a3/Pbeam [35]. a1, a2

and a3 are free parameters.
Figure 1.8 and 1.9 display the results of measurements of AN [36, 37, 38, 39, 40] and

ANN [41, 42] at higher −t and low beam momenta.
The results of AN and ANN data at even higher −t are quite contrary to the theoretical pre-

diction from helicity conservation at high energy. It is believed that the single spin-flip amplitude
φ5(s, t), where the initial helicity (=1) is not equal to the final total helicity (=0), should van-
ish. The same for the double spin-flip amplitude φ2(s, t). It should vanish because the initial
helicity (=1) is not equal to the final total helicity (=−1). Therefore AN and ANN must go to
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Figure 1.4: AN data as a function of momentum transfer squared t at large
√

s [5, 7].
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Figure 1.5: ∆σT for pp elastic scattering as a function of laboratory beam momentum [32].
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Figure 1.6: ∆σL for pp elastic scattering as a function of laboratory beam momentum [33].

 (GeV/c)beamP
0 50 100 150 200 250 300

N
A

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
10	GeV/c CERN	1971
11.8	GeV/c ANL	1977
14	GeV/c CERN	1971
17.5	GeV/c CERN	1971
24	GeV/c CERN	1977
45	GeV/c SERPUKHOV	1976
100	GeV/c FNAL	1978
300	GeV/c FNAL	1978

Figure 1.7: AN for pp elastic scattering at −t = 0.15 (GeV/c)2 as a function of laboratory
beam momentum. The solid line is a fitted function suggested by Regge poles, namely, AN =
a1 + a2/

√
Pbeam + a3/Pbeam [35]. a1, a2 and a3 are free parameters.
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zero because they are proportional to φ5(s, t) and φ2(s, t). These contradictions between theory
and experiment are not understood, except for the statement that −t is too small to expect the
asymptotic predictions to hold. But if the trend in AN and ANN continues to much larger values
of −t we will seriously have to question whether QCD picture of the strong interaction is really
correct.
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Figure 1.8: AN for pp elastic scattering as a function of −t at Pbeam = 24 GeV/c and Pbeam = 28
GeV/c. These AN data at large −t are measured in 1977 - 1993 [36, 37, 38, 39, 40]

.
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Figure 1.9: ANN for pp elastic scattering as a function of −t at beam momentum in the labora-
tory frame Pbeam = 11.75 GeV/c [41] and 18.5 GeV/c [42].
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1.3 Experimental approach to φhad
2 (s, t) and φhad

5 (s, t)

In principle we can approach to the unknown hadronic spin-flip amplitudes by measuring several
observable with proper initial spin states as referred in Equation (1.7) and (1.8). In this sec-
tion, the more dedicated experimental approach to extract the contributions of hadronic spin-flip
amplitudes from the measured AN and ANN are discussed .

1.3.1 φhad

5
(s, t) and AN

In the CNI region, the known electro-magnetic amplitudes and the hadronic amplitudes are com-
parable in size. Although the hadronic amplitudes cannot be calculated from QCD at the same
time they are expected to have smooth finite limits as |t| → 0. Therefore, a knowledge of the
electro-magnetic amplitudes together with some limited information on the hadronic amplitudes
may allow us to anticipate the the form of AN and the position of its maximum in terms of t.

For understanding the |t| dependence of the dominant AN form, we will ignore the sec-
ond and higher order of φhad

2 (s, t) and φhad
4 (s, t) because they are negligible with respect to

φhad
+ (s, t). Their magnitudes are explained in Equation (1.27). Using Equation (1.7) and (1.9),

AN becomes

AN =
−2Im[φ∗

5(s, t){φ1(s, t) + φ2(s, t) + φ3(s, t) − φ4(s, t)}]
|φ1(s, t)|2 + |φ2(s, t)|2 + |φ3(s, t)|2 + |φ4(s, t)|2 + 4|φ5(s, t)|2

≈ −Im[φ∗
5(s, t)φ+(s, t)]

|φ+(s, t)|2 . (1.32)

φhad
5 (s, t) is characterized by use of relative amplitude, which is defined in the following

way:

r5 =
mpφ

had
5 (s, t)√

−tImφhad
+ (s, t)

, (1.33)

where r5 is assumed to be complex and to vary with
√

s but their variation with −t over small
region are neglected.

Equation (1.32) is rewritten as:

mpAN√
−t

16π

σ2
tot

dσ

dt
e−Bt = [κ(1 − δCρ) − 2(Imr5 − δCRer5)]

tc
t
− 2Rer5 + 2ρImr5, (1.34)

and
16π

σ2
tot

dσ

dt
e−Bt =

(

tc
t

)2

− 2(ρ + δC)
tc
t

+ (1 + ρ2). (1.35)

The asymmetry for the CNI region can thus be expressed as a function of
(

tc
t

)

. The position
of the maximum in AN is near tc:

tmax

tc
=

√
3 +

8

κ
(ρImr5 − Rer5) − (ρ + δC). (1.36)

The uncertain ”spin-flip” relative amplitudes are apparent in these equations. Comparing this
equation with the precisely measured AN , we can extract the relative spin-flip amplitudes. A
measurement of AN in the CNI region, therefore, can be a sensitive probe for φhad

5 (s, t).
The presence of a hadronic spin-flip amplitude (φhad

5 (s, t)) interfering with the electro-
magnetic spin-non-spin-flip one (φem

+ (s, t)) introduces a deviation in shape and magnitude for
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AN calculated with no hadronic spin-flip [1]. We compare the AN data from the E704 to the
theoretical prediction with no hadronic spin-flip hadronic amplitudes. We input the parameters:
δC = 0.02, ρ = −0.03, σtot = 39.0 mb and B = 12 (GeV/c)−2 at

√
s=19.4 GeV. The χ2 is

1.65 for 6 degrees of freedom. (The χ2/ndf for a fitting with constant value is also small, χ2/ndf
= 1.94/5. )

The AN data from the E704 are also fitted with the theoretical prediction allowing for a
hadronic spin-flip contribution. The χ2 is 1.33/4 d.o.f . The r5 is obtained as:

Imr5 = 0.14 ± 0.32,

Rer5 = −0.03 ± 0.05,

where we assume that |φhad
2 (s, t)| is zero. It is hard to see the form of AN and extract the

hadronic spin-flip contribution from the data points, because they are moderate precision.
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Figure 1.10: AN as a function of −t for p↑p → pp at
√

s = 19.4 GeV [5]. The data points are
moderate precision and it is hard to see the form of AN . The black line the is theoretical function
with no hadronic spin-flip. The AN data were also fitted with theoretical function which is shown
in the dotted red line( |φhad

2 (s, t)| = 0) and just flat line shown in the blue dashed-dotted line.

Lastly, we will describe the r5 dependence of the AN form using Equation (1.34). We input
the parameters: ρ = −0.08 and σtot = 38.4 mb and δC = 0.02. They are obtained from
the experimental results at

√
s = 13.7 GeV. We estimated the size of Imr5 and Rer5 from a

deviation (∆AN ∼ 10−3) in shape and magnitude for AN calculated with no hadronic spin-flip
amplitude.

Figure 1.11 and 1.12 display the deviation in shape and magnitude for AN calculated with
different non-spin-flip amplitudes. The solid black line in the Figure 1.11 and 1.12 is the AN

with no hadronic spin-flip (|r5| = 0). .
The solid black line, dashed red line and dashed-dotted pink line in Figure 1.11 are the case

of Imr5 = 0, Imr5 = 0.02 and Imr5 = −0.02, respectively.
The solid black line, dashed red line and dashed-dotted pink line in Figure 1.12 are the case

of Rer5 = 0, Re r5 = 0.02 and Re r5 = −0.02, respectively.
We can anticipate that the height of the peak is mainly sensitive Imr5, while the shape de-

pends mainly on Rer5. The deviation which comes from non-zero Re r5 will be bigger than that
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Figure 1.11: AN for Imr5 = 0.00, 0.02,−0.02.
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Figure 1.12: AN for Rer5 = 0.00, 0.02,−0.02.
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of Im r5. This means that the AN measurement is more sensitive to Re r5 than Im r5. Thus,
comparing new measurement of AN data , which are required to be better than ∆AN < 10−3

(∆AN/AN ∼ few %), to the theoretical prediction with no hadronic spin-flip, a deviation in
shape and magnitude will constrain the size of the hadronic spin-flip amplitude.

Actually, the form of AN and the position of its maximum depend on the parameters de-
scribing the hadronic amplitudes:σtot , the ratio ρ between the real and imaginary parts of the
forward scattering amplitude, the Bethe phase shift δC , and the nuclear slope parameter B [1].
The accuracy of σtot, ρ and δC will limit the accuracy of the r5 measurement and we will discuss
this issue in Chapter 5.

1.3.2 φhad

2
(s, t) and ANN

The conventional assumption, φhad
4 (s, t) ∝ t → 0 at large

√
s and small −t, leads to

ANN
dσ

dt
=

4π

s2
{2|φ5(s, t)|2 + Re[φ∗

1(s, t)φ2(s, t) − φ∗
3(s, t)φ4(s, t)]}

∼= 4π

s2
{2|φhad

5 (s, t)|2 + Re[φ∗
+(s, t)φhad

2 (s, t)]}.

Because there is no purely one photon exchange contribution to this asymmetry, ANN is sensitive
to spin-flip hadronic amplitudes especially for φhad

2 (s, t).
This sensitivity has been studied theoretically but there is no conclusive understanding for

its −t dependence nor magnitude to φhad
+ (s, t) [43]. Figure 1.13 illustrates the enhancement of

φhad
2 (s, t) to ANN assuming 5% magnitude to φhad

+ (s, t) at −t = 0. The three curves correspond
to

φhad
2 (s, t)/φhad

+ (s, t) = 0.05(1 + i),

φhad
2 (s, t)/φhad

+ (s, t) = 0.05,

φhad
2 /φhad

+ = 0.05i.

The ANN shape is almost flat in the region of −t > 0.005 (GeV/c)2 and the value is quite differ-
ent depending on the real-to-imaginary ratio of φhad

2 (s, t)/φhad
+ (s, t). Here, we would emphasize

that assumed of 5% magnitude to φhad
+ (s, t) was noted as ”achievable experimental accuracy of

not-too-distant future”, since we do not know how large the double spin-flip amplitude, if it
exists. But this theoretical estimation indicates that the imaginary part of φhad

2 (s, t) is much
sensitive to ANN .

Thus, we are able to confirm the existence of hadronic spin-flip amplitudes from AN and
ANN measurements. However, as we discussed in Section 1.1, there has been no measurement
in the CNI region because of difficulties of experiments. Therefore the first measurement of
ANN as a function of |t| in the CNI region is especially important and is expected to provide
best knowledges of φhad

2 (s, t),∆σT and Imφ2(s, 0).

1.4 Summary of Introduction

As a summary of above discussions, we summarized the theoretical and experimental under-
standing for elastic pp scattering as below:

• The pp elastic scattering processes are described in transition amplitudes by use of helicity
of initial and final states.
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Figure 1.13: We quote this plot from [43, 66]. The plot illustrates the enhancement of φhad
2 (s, t)

to ANN due to the interference with the one-photon exchange by use of 5% magnitude at −t = 0.
The three curves correspond to φhad

2 (s, t)/φhad
+ (s, t) = 0.05i, φhad

2 (s, t)/φhad
+ (s, t) = 0.05,

φhad
2 (s, t)/φhad

+ (s, t) = 0.05(1 + i).

• Requiring that the interaction is invariant under space inversion, time reversal and rota-
tion in isotopic spin space, we can select a set of five independent helicity amplitudes as
functions of s and t (φi(s, t), i=1, 2, 3, 4, 5).

• Each helicity amplitude is described as a superposition of the hadronic amplitude φhad
i (s, t)

and the electro-magnetic amplitude φem
i (s, t).

• The electro-magnetic amplitudes (φem
i (s, t), i=1, 2, 3, 4, 5) are given exactly by QED [4].

• Non-spin-flip hadronic amplitude (φhad
+ (s, t) = (φhad

1 (s, t) + φhad
3 (s, t))/2) are deter-

mined by the total cross-section phenomenological way.

We may expect the characteristics of these hadronic amplitude theoretically as −t → 0:

• φhad
− (s, t) = (φhad

1 (s, t) − φhad
3 (s, t))/2 → 0.

• φhad
4 (s, t) → 0

The missing pieces are φhad
2 (s, t) and φhad

5 (s, t). They correspond to double and single
spin-flip amplitudes.

The precise measurements of AN and ANN will provide the best experimental constrains for
r5 and r2, and allow us to achieve fully understanding for pp elastic scattering in the CNI region
at
√

s → ∞.
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Chapter 2

Experiment

2.1 Kinematics of pp Elastic Scattering and Detector Design

We describe the kinematics of pp elastic scattering at very small |t| < 0.035 (GeV/c)2 and
specify the kinematics in the laboratory frame.

In the pp elastic scattering process, both forward-scattered particle and recoil particle are
protons and there are no other particles involved nor new particles produced in the process.
Therefore, the recoil particle identification and the mass measurement of all the rest particles,
which we do not detect, are essential for the elastic event selection.

In order to select a 2-to-2 process, the recoil particle identification and missing particle(s)
identification is needed. Since initial states are well defined, both particles can be, in principle,
identified by detecting the recoil particle only. The background processes are also discussed for
the comparison. Particularly the forward scattered particle identification is essential to reject the
background processes. The required detector resolutions to distinguish the elastic events from
those background is also described.

2.1.1 Elastic Scattering and Background Processes

Figure 2.1 displays (a) elastic pp scattering process pp → pp and (b) background inelastic scat-
tering process pp → Xp for comparison.

p1, p2 and pR are 4-momenta of incident proton, target proton and recoil particle, respec-
tively. mp is the proton mass. pX is the four-momentum of missing particle(s) which we do not
measure;

p1 = (E1, ~p1),

p2 = (mp, 0),

pX = (EX , ~pX) and

pR = (ER, ~pR). (2.1)

Here E1(= 100 GeV), EX and ER are the energies of the incident, undetected and recoil parti-
cles. ~p1, ~pX and ~pR are 3-momenta of incident, undetected and recoil particles. We define the
scattering plane from ~p1 and ~pR. In the scattering plane, the relationship of 4-momenta between
missing momenta and recoil protons are unique.
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Figure 2.1: (a) Elastic scattering process and (b) Inelastic scattering process in the laboratory
frame.
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Four-momentum transfer squared, t is obtained measuring the kinetic energy of the recoil
particle TR:

t = (p2 − pR)2 = (mp − ER,− ~pR)2 = −2mpTR < 0, (2.2)

where TR = ER −mR is the kinetic energy of recoil particle. In the region 0.001 ≤ |t| ≤ 0.035
(GeV/c)2, the kinetic energy of the recoil proton is 0.5 ≤ TR ≤ 17 MeV.

TR, time-of-flight (ToF ) of recoil proton and flight length L satisfy the following equation :

ToF = L

√

mp

2TR
. (2.3)

Since we discuss very low kinetic energy region, TR < 17 MeV, the nonrelativistic approxima-
tion is applicable to the kinematics.

By imposing energy-momentum conservation:

pX = (p1 + p2 − pR),

after some algebra

pX
2 = (p1 + p2 − pR)2

MX
2 = mp

2 + t − 2E1TR + 2|~p1||~pR|sinθR (2.4)

where θR is the recoil angle with respect to the x-axis as displayed in Figure 2.1 and M 2
X = p2

X

is the invariant mass squared of the undetected particle(s). For the pp elastic scattering, MX is
the proton mass and recoil angle, θpp

R , and kinetic energy, TR, are uniquely correlated by:

θR
pp =

−t + 2E1TR

2|~p1|| ~pR|
∼=
√

|t|
2mp

∼=
√

TR

2mp
(2.5)

where θR
∼= sin θR at high energies E1 � mp and at small momentum transfer region (|t| �

4mp
2). This equation corresponds to the blue line in Figure 2.2.

The possible diffractive dissociation processes (b) in Figure 2.1 are:

pp → (p + π)p

pp → (p + 2π)p

pp → N(1440)p

Thus, the channel for diffractive dissociation opens at MX > mp + mπ ≈ 1.07 GeV/c2. Here,
mπ is the mass of pion. The red, green and pink lines in Figure 2.2 are the angle-energy correla-
tions of these inelastic processes.

The recoil particle identification and the mass measurement of all the rest particle(s) are
essential for the event selection. This is carried out by use of

• kinetic energy, TR,

• time of flight, ToF, and

• recoil angles, θR of the recoil particles.
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Figure 2.2: The correlations between energy and angle of recoil particle of elastic and inelastic
process.
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2.1.2 Required Detector Performance

Required Kinetic Energy Range and Resolution.

As we have introduced in the section 1.1, the interference between electro-magnetic force and nu-
clear force is predicted to generate a significant AN of 4 ∼ 5%, peaking at |t| ' 0.003 (GeV/c)2.
For a precise measurement of the AN peak, the required accuracy for t and AN are ∆|t| < 0.0005
(GeV/c)2 and ∆AN < 0.001, respectively. The recoil technique is of great advantage to achieve
the very small |t| region, because the resolution of |t| is directly connected to the kinetic energy
resolution. For example, ∆|t| = 0.0005 (GeV/c)2 corresponds to ∆TR = 0.1 MeV in terms of
the kinetic energy.

In order to reach ∆AN ∼ 0.001 statistically, we need to accumulate more than 106 pp elastic
scattering events in the CNI region.

Here we would emphasize the advantages of our apparatus. The recoil technique using in-
ternal solid target was pioneered at Joint Institute for Nuclear Research (JINR) [44] and was
later used at Serpukov [45], Felmilab [46, 47], Centre European pour la Recherche Nucleaire
(CERN) [19], Indiana University Cyclotron Facility (IUCF) [48] et cetera. However there was
no spin-dependent data in the CNI region from these experiments. Because the energy loss in the
solid target would limit the achievable minimum kinetic energy. We employed the gas-jet target
and improved the achievable minimum kinetic energy by one-fifty.

Required Recoil Angle Range and Resolution

The goal of the missing mass measurement is to distinguish mp
2 from (mp + mπ)2. If we aim

for a 3-σ separation, the required width of the missing mass squared ∆(M 2
X) of the pp elastic

scattering process is:

∆(M2
X) < {(mp + mπ)2 − m2

p}
2

3
∼ 0.17(GeV/c2)2. (2.6)

By using Equation (2.4), the width of M 2
X for the pp elastic scattering process is estimated:

∆(M2
X) ∼=

(

−2(mp + E1) +
p1

√

2mp

)

∆TR ⊕ 2|~p1|
√

2mpTR∆θR (2.7)

where A ⊕ B denotes the quadratic sum of A and B. The first term is independent of TR but is
linear in ∆TR. ∆TR has been required to be less than 0.1 MeV. Then, the first term is estimated
to be ∼ 0.01 (GeV/c2)2 and does not limit ∆(M 2

X).
The second term is a function of TR. In the cases of TR = 5, 10 and 17 MeV, the angle

resolution is required to be ∆θR ∼ 8.8, 6.2 and 4.8 mrad, respectively. Thus we conclude that
∆θR ≤ 4.8 mrad is sufficient for 3-σ separation between elastic and inelastic processes.

Required Flight Length L, ToF Range and Resolution

The goal of the recoil particle identification is to distinguish protons from the huge amount
of prompt particles, which are possibly pions from beam-related interactions upstream and are
synchronized with RHIC beam bunches. The beam bunch arrives every 106 nsec with the design
luminosity (110 bunches in each ring). Due to the length of the RHIC beam bunches, the collision
timing spread around σ ∼ 2 nsec. Considering the intrinsic time resolution and stability of the
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Range Resolution
recoil kinetic energy TR (MeV) 0.5 – 20 ≤ 0.1

recoil angle θR (mrad) 15 – 100 ≤ 4.8

ToF (nsec) 13–80 ≤ 3.5

Table 2.1: Summary of the kinematic parameters

DAQ system, the ToF resolution can be roughly estimated to be ∼ 3.5 nsec as discussed later
in Section 3.4.

By assuming the velocity of the prompt particles is the light velocity c and requiring 3-σ
separation, ToF of the fastest recoil proton is estimated. In order to have the signal protons well
separated from the prompt particles of the ”current” beam bunch,

ToFmin =
L

vmax
>

L

c
+ 11 nsec,

where L is the flight length. The highest energy of proton is ∼ 20 MeV and β ∼ 0.2 for our
physics purpose. Therefore the minimum L is estimated to be 0.75 m.

In order to have the slowest signal protons well separated from the prompt particles of the
”next” beam bunch,

ToFmax =
L

vmin
<

L

c
+ 95 nsec.

The lowest energy of proton is ∼ 0.5MeV and β ∼ 0.03 for our physics purpose. Therefore the
maximum L should be 0.92 m.

Summary of kinematic parameters

Taking account of the above considerations, we set L = 0.8 m for the experiment. The required
range and resolution of energy, angle and ToF are summarized in Table 2.1.

We will compare the required to the achieved performances in Section 2.4.
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2.2 H-jet-target System and the Recoil Detector

Firstly we will describe the overview of the experimental setup. Secondly H-jet-target system
is described. The basic principles of polarized atomic-beam and the performance from 2004
commissioning experiment are described. Lastly we will describe the recoil spectrometers.

2.2.1 Overview of Experimental Setup

Figure 2.3 displays the photo of the entire jet-target system at the interaction point, ”12 o’clock”
(IP12). 1
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Figure 2.3: Picture of the jet-target system at IP12

The jet-target system is 3.5 m in height and about 3000 kg in weight. At IP12, the blue and
yellow beams can be separated by more than 10 mm. During the commissioning run in 2004,
only blue beam collided with the jet-target. The arrows in Figure 2.3 indicate the directions of
the RHIC blue beam, H-Jet atomic-beam and recoil proton, respectively. The jet-target is a free

1The RHIC storage rings, which we will describe later in Section 2.3, are designed with six interaction points
(IP’s), where beam collisions are possible. If the rings are thought of as a clock face, the system is at 12 o’clock.
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atomic-beam (vertical green arrow), which crosses the RHIC beam (blue arrow). The velocity
of the atomic-beam is ∼ 1560 ± 50 m/s [50] and negligible with respect to the RHIC beam
(100 GeV/c). Therefore, we treated target proton as quiescence in the laboratory frame. The
recoil proton direction is indicated with red arrow. The jet-target system was placed on the rails
which are perpendicular to the beam direction (yellow arrow in Figure 2.3). The entire system
is able to move to left and to right by 10 mm each, in order to adjust the jet-target center to the
blue beam center.

The recoil protons were detected by the silicon detectors in both sides as shown in Figure
2.4. We use the x-, y- and z-axis, which is defined in the figure, in the following discussions.

���

���! #"
 #"%$

& ' (

Figure 2.4: Inelastic process (pp→ pX) in laboratory frame

2.2.2 H-jet-target System

Figure 2.5 displays the H-jet-target system. The system consists of mainly 3 parts including nine
vacuum chambers and nine differential vacuum stages:

1. Atomic Beam Source (ABS) : 1st to 5th chambers. Polarize the atomic hydrogens.

2. Scattering Chamber : 6th chamber. Collisions between the target-proton and the beam-
proton are occurred.

3. Breit-Rabi Polarimeter (BRP): 7th to 9th chamber. Measure the target polarization

We will describe these below.
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Figure 2.5: H-Jet system overview
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Atomic Beam Source (ABS)

The ABS part includes five vacuum chambers and five differential vacuum stage. The five cham-
bers consisted of H2 dissociator, the separation-magnets (six permanent sextupole magnets),
focusing-magnets (two permanent sextupole magnets), RF-transitions. The magnets are well
aligned to the center of each chamber.

H2 dissociator The principle for the polarized hydrogen atom is described below. H2 molecules
are dissociated to two hydrogen atoms by passing through RF-cavity (RF 21.6 MHz, 250 300W).
The S-wave ground state of hydrogen atom is split by hyperfine states :

|1 > = | ↑ ; + >

|2 > = cosθ| ↑ ; − > +sin θ| ↓ ; + >

|3 > = | ↓ ; − >

|4 > = cosθ| ↓ ; + > − sin θ| ↑ ; − >

where ↑, ↓ denotes the electron spin-state and +,− denotes the nucleus spin-state. Both spin
axes are parallel to the y-axis. And θ = 1

2 arctan(Bc

B ), Bc =
Ehfs

2µB
= 50.7 mT. Ehfs is the

zero field hyperfine splitting. The populations of four hyperfine states are called n1, n2, n3 and
n4, respectively. Figure 2.6 shows the energy levels of the four hydrogen hyperfine states as a
function of applied magnetic field. The atomic-beam exiting the dissociator consists of nearly
equal populations of hyperfine states, n1 = n2 = n3 = n4.
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Figure 2.6: Energy level diagram for hydrogen. Energy is measured in units of Ehfs, the zero
field hyperfine splitting. Magnetic field is measured in units of Bc = 50.7 mT.

Separation and Focusing magnets The inhomogeneous field acts as a Stern-Gerlach appara-
tus separating the atomic-beam by electron spin projection. The field strength of the separation
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magnet B is typically 1.6 ∼ 1.7 T. Therefore, θ in Equation (2.8) is almost zero. The four
hydrogen hyperfine states become :

|1 > = | ↑ ; + >

|2 > = | ↑ ; − >

|3 > = | ↓ ; − >

|4 > = | ↓ ; + > (2.8)

The separation magnets kick out hyperfine states |3 > and |4 > (electron spin down) and the
atomic-beam exiting the last sextupole separation magnet consists of nearly equal populations,
n1 = n2. Then, the electron spin is totally polarized to up. In case, if the |3 > or |4 > state
atom goes through along the very center axis of the sextupole magnet, it would not be kicked out
by magnetic field. Although the separating magnets, a set of six sextupole magnets, are aligned
well to the chamber centers, but they do not aligned perfectly. Therefore, the residual atoms of
state |3 > and |4 > are negligible. The focusing-magnets guide atoms in the state |1 > and |2 >
to the center of scattering chamber.

RF-transitions Compact high frequency transitions are employed to create nuclear polariza-
tion of the atomic beam with high efficiency [49]. They consist of a resonator cavity in the
case of the strong field transition (SFT) or a high frequency coil in the case of weak field transi-
tion (WFT). They are immersed in a static magnetic field whose strength and gradient along the
atomic beam path can be individually adjusted. In principle the SFT exchanges populations of
the state |2 > and |4 >, the WFT exchanges populations of the state |1 > and |3 > as a function
of the magnetic field. We adjust the each of magnetic fields that the SFT to move atoms in the
state |2 > into |4 > and the WFT moves atoms from the state |1 > to |3 >. The set of SFT
and WFT is positioned between the fifth and the sixth chamber (just in front of the scattering
chamber) as displayed in Figure 2.6. The ON/OFF combination of RF-transitions changes the
polarity of the target.

〈 TYPE-1 : SFT is ON and WFT is OFF 〉 The SFT moves atoms from the state |2 > to
|4 >. Atoms in the state |1 > do not change the state. The populations of state |1 > and |4 > are
nearly equal, while state |2 > and |3 > are nearly zero, n1

∼= n4 6= 0 and n1
∼= n4

∼= 0. Thus,
the electron spin is totally de-polarized, while the proton spin is now completely polarized to up
direction (P+ = 1).

〈TYPE-2 : SFT is OFF and WFT is ON 〉 The WFT moves atoms in the state |1 > to
state |3 >. Atoms in the state |2 > do not change the state. The populations of state |2 > and
|3 > are nearly equal, while state |1 > and |4 > are nearly zero, n2

∼= n3 6= 0 and n1
∼= n4

∼= 0.
Thus, electrons spin is totally de-polarized, while the proton spin is now completely polarized to
down direction (P− = −1).

〈TYPE-3 : Both SFT and WFT are ON at the same time 〉 The SFT and the WFT move
atoms in the state |2 > to |4 > and atoms in the state |1 > to |3 >, respectively. The populations
of state |3 > and |4 > are nearly equal, while state |1 > and |2 > are nearly zero, n3

∼= n4 6= 0
and n1

∼= n2 6= 0. Thus, electrons spin state changes to opposite sign, while the protons stays
zero (P0 = 0).
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〈TYPE-4 : Both SFT and WFT are OFF 〉 Nothing is change. The electron spin state
stays up, while protons spin state stays zero (P0 = 0).

Although Pz = 0 state is obtained by two ways, TYPE-3 and 4, we preferred the operation
that SFT and WFT are both ON (TYPE-3). The reason is discussed in section 2.2.2. The ideal
target polarization is obtained if the 3 conditions are fulfilled:

• The efficiency of RF-transition are almost 100%,

• the atomic-beam entering the RF-transitions consists of nearly equal populations of hyper-
fine state |1 > and |2 >, n1

∼= n2 and

• the presence of infinite holding magnetic field in the scattering chamber.

The efficiency of RF-transitions and the population of states are confirmed in the BRP and
we will mention this later. We will mention about the holding magnetic field in the next.

Scattering Chamber

The polarization is determined by the strength of the holding field magnet located in the scatter-
ing chamber. In order to minimize the effect of the holding magnetic field on the recoil protons,
we use The Nested Opposing Helmholtz-type Coils, whose fields are adjusted to keep the total
y-axis (vertical) field integral along the proton paths close to zero, as shown in Figure 2.7.

Figure 2.8 shows the polarization of the four hydrogen hyperfine states as a function of
applied magnetic field, Bhold

Bc
.

This figure tells that the stronger Bhold we set, the higher the achievable polarization, even
there are polarization saturation limit. But, in practice, the holding magnetic field was tuned to
avoid De-polarization of atomic-beam by bunch field of the RHIC beam. Then, ∆P±

P±
< 0.02

were measured by comparison with and without RHIC beam conditions.
The holding magnetic field is measured Bhold = 1200 Gauss and high uniformity was

achieved, ∆Bhold

Bhold
∼ 5 · 10−3 within ∼ 4.0 cm center region. At the applied field, Bhold

Bc
= 2.37,

and the maximum achievable two-state atom polarization is estimated using Equation (2.9).
Where,ε1→3 and ε2→4 are the inefficiency of the RF-transitions of WFT and SFT, respectively.
In ideal case, the inefficiencies are zero and n2

n1
= 1, the maximum achievable two-state atom

polarization is ±0.96.

P+ =
1 + n2

n1
cos2θ − 2n2

n1
ε2→4cos2θ

1 + n2

n1

P− =
−1 − n2

n1
cos2θ + 2n2

n1
ε1→3

1 + n2

n1

P0 =
−1 − n2

n1
(1 − 2ε2→4)cos2θ + 2ε1→3

1 + n2

n1

(2.9)

2θ = tan−1 Bc

Bhold

cos2θ ∼ 0.921.

where, n2

n1
, ε1→3 and ε2→4 are measured by BRP and we will describe in the next section.
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Figure 2.7: The holding magnetic field as a function of distance from the chamber center on the
x-z plane. The fields are adjusted to keep the total y-axis (vertical) field integral along the proton
paths close to zero. The Nested Opposing Helmholtz-type Coils are used.
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Figure 2.8: Holding magnetic field strength vs. proton polarization

Breit-Rabi Polarimeter (BRP)

BRP measures the transition inefficiencies ε1→3 and ε2→4 and the ratio of n2/n1. This part
includes the sextupole magnet system (separating and focusing sextuple magnets), ion gage
atomic-beam detector and the same type of SFT and WFT. In order to achieve the best accu-
racy of the measurement of RF-transition inefficiencies, SFT and WFT are used for the purpose
of redundancy check.

As described in the previous section, the target polarization P0 is obtained by two ways in
principle.

• TYPE-3 : Both SFT and WFT are ON, the ion gage atomic-beam detector will measure
the population NON = (n1 · ε1→3 + n2 · ε2→4).

• TYPE-4 : Both SFT and WFT are OFF, the ion gage atomic-beam detector will measure
the population NOFF= (n1 + n2).

Figure 2.9 displays the population of atom for several target spin-states. In this figure, NON

is smaller than NOFF the order of thousand. Thus ε1→3 and ε2→2 are measured to be ∼ 0.003 or
less. The measurement time of ion gage atomic-beam detector is proportional to the population
of atom. During the experiment, the target polarity was changed periodically, every 5 minutes,
to reduce the systematic errors of asymmetry measurements. Between spin-up and spin-down
period, the spin-zero period was needed for system requirement but spin-zero period was dead-
time for experimental purpose. To reduce dead-time during data taking period, the operation
TYPE-3 was employed.

Results from commissioning RUN in 2004

Figure 2.10 displays a sample of the measured P± in 2004 commissioning run [51]. We had
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Figure 2.9: The population of atom for several spin-states measured by the ion gage atomic-beam
detector.
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Figure 2.10: The jet-target polarization in 2004.
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measured quite stable behavior over the whole 2004 run, mean values for nuclear polarization of
the atoms:

|P±| = 0.958 ± 0.001. (2.10)

Here we describe the dilution correction from hydrogen molecules. Actually, there were
still some hydrogen molecules in the scattering chamber and the estimated was H2/H ∼ 0.015.
This means that the dilution is about 3% in terms of hydrogen atoms. BRP can measure only
proton polarization, therefore we have corrected the effect on the polarization from the hydrogen
molecules.

Finally, the target polarization in 2004 commissioning run was |P±| = 0.924 ± 0.018.

Profile and Thickness of Atomic-beam

We have discussed about the target polarization in the previous sections. Here, the profile and
the density of atomic-beam are mentioned briefly. The atomic-beam profile was measured with
a 2mm in diameter compression tube. The results are displayed in Figure 2.11. At the center of
the scattering chamber, the FWHM of the atomic-beam was 6.5mm.
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Figure 2.11: Atomic-beam profile at the target

The measured profile satisfied the designed value and guarantee the required angle resolution,
∆θR ∼ 5 mrad, discussed in Subsection 2.1.2. Furthermore, we measured target profile by
scanning with the RHIC beam and the recoil spectrometer during commissioning run period. We
will mention this measurement in the later section, but the results of both ways agree very well.

The total atomic-beam intensity in the collision chamber was measured to be (1.2±0.2)·1017

atoms/cm2 [51]. Taking the measured atomic-beam intensity, velocity (1560 ± 50) m/s [50]
and profile, the areal target thickness along RHIC beam axis was calculated to be (1.3 ± 0.2) ·
1012atoms/cm2.
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2.2.3 Recoil Spectrometer Setup

The spectrometer employed for the experiment was silicon detector to measure the kinetic energy
of recoil proton precisely. We will look briefly at the overview of the recoil spectrometer at first.
Figure 2.12 displays the picture of scattering chamber. The RHIC blue beam goes from left
to right horizontally (along the x-axis) and the atomic-beam goes vertically (along the y-axis).
The recoil protons come out almost perpendicular to the y-z plane and were detected by silicon
detectors. The detectors were mounted on the flanges of scattering chamber as shown in Figure
2.13. Flanges are parallel to the y-z plane.

��������������� �!���"���$#�%'&)(+*��,��%
-/.0�21 3547698�%:%
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Figure 2.12: Relationships of the RHIC-beam and the jet-target atomic-beam directions super-
imposed on the scattering chamber.

The required resolutions for kinetic values have been discussed in Subsection 2.1.2. In this
section, we will compare the kinetic values between the required and the achieved one-by-one.
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Figure 2.13: The silicon detectors mounted on the flange
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Achieved acceptance and angle resolution

Taking account of the flight length L = 0.8 m and the required angular range and resolution, the
objective size and fineness of the detector are obtained.

• The detector length along with beam direction should be more than 6 cm in order to cover
the required angular range.

• The read-out pitch should be less than 6.4 mm in order to meet the required angular reso-
lution.
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Figure 2.14: The picture of silicon detectors mounted on the one of the flange.

Figure 2.15 displays the schematic view of the atomic beam of the jet-target, the RHIC-beam
and three-pairs of silicon detectors. Three pairs of silicon detectors were located in left-right
sides to gain the azimuthal acceptance for statistics. One arm covered 0.205 rad in azimuth
angle.

Figure 2.16 displays the picture of silicon detectors mounted on one side of the flange. We
used two different types of silicon detectors and we will discuss details in Subsection 2.2.3.
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detectors
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Figure 2.17 displays the schematic view of three pairs of silicon detectors from top view. The
silicon strip runs along the incident RHIC-beam direction (we set it as the z-axis). Therefore, the
hit position, Z , is obtained from the channel-number.

Z = Z0 + channel# × dZ

where, Z0 = 8 mm, dZ = 4 mm (See Figure 2.17). The recoil angle and its resolution are
obtained as:

θR =
Z

L
, (2.11)

∆θR =
dZ

L
, (2.12)

where, L ∼ 800 mm (See Figure 2.17). Thus the acceptance of one arm is 10 ∼ 100 mrad in
recoil proton angle. and each read-out channel covered 5.5 mrad. And the recoil angle resolution
is estimated to be 5.5mrad from readout single channel size.
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Figure 2.17: Schematic of scattering chamber from TOP VIEW
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Actually the measured angle θR has some offset value because of the mis-alignment of the
target chamber by θalign. In addition to θR for low energy recoil proton is deflected the Holding-
Magnet field, θMgnt. Therefore, the correct recoil angle should be:

θR =
Z

L
+ θalign + θMgnt (2.13)

The size of θalign and θMgnt are less than 5 mrad, respectively. The details are discussed in
Appendix A.8. In practice we do not need to use θR for the missing particle identification and the
hit position (channel number) data are enough. These discussions are mentioned in Subsection
3.5.2.

Silicon detector performance

As we have mentioned in Figure 2.16, two out of three pairs of silicon detectors (Si #1-4, 3-
6) were fabricated by the Hamamatsu Photonics, K. K. The other pair of silicon detectors (Si
#2-5) were fabricated by the BNL Instrumentation Division. We will discuss about the silicon
properties Main characteristic are summarized in Table 2.2. The surface area were almost same
but the strip size and detector thickness were different between Hamamatsu-type and BNL-type.
The biggest difference was the thickness of the entrance window, which is the non-active volume
on the surface of the silicon. This is the surface structure of the silicon detector which consists
of read-out aluminum-pads , SiO 2 and Si.

Figure 2.18 depicts the cross-section of Hamamatsu-type.
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Figure 2.18: Cross section of Hamamatsu-type silicon. The entrance-window is the non-active
volume on the surface of the silicon and consists from SiO2, Al electrode and p+.
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BNL (Si #2 and 5) Hamamatsu (Si #1, 3, 4 and 6 )
strip size (width × length) 1.09 mm ×64 mm 100 µm ×50 mm

Number of strip 64 strips 720 strips
effective detector size 70 mm × 64 mm 72 mm × 50 mm
Mechanical thickness ∼ 450 µm ∼ 400 µm

Entrance window (p+ implant + SiO2) ∼ 0.15 µm p+ implant ∼ 1 µm
thickness SiO2 ∼ 1 µm, Al ∼ 1 µm

Depletion voltage ∼ 160 V (measured) ∼ 90 V (given)
Operating voltage 180 V 200 V
Connection type DC coupled AC coupled

with Pre-amplifier
Number of read-out channel (ch.) 16 ch. (4 strips / 1 ch.) 16 ch. (40 strips / 1ch.)
Width of single read-out channel 4.38 mm 4.44 mm

Capacitance /1channel 80 ∼ 100 pF (measured) ∼ 60 pF (given)
Leak current /1channel ∼ 10 nA at 180 V ∼ 10 nA at 200 V

Yield rate 25% (Only 2 of 8 wafers 100%
are acceptable quality)

Table 2.2: Characteristics of BNL-Type and Hamamatsu-Type silicon detectors

Because the deposit energy in the entrance-window can not be measured, the thinner entrance-
window type is preferred. BNL-type has quite thin entrance-window and ideal to detect low
energy particles of order of few MeV. This is a quite unique technology for over the world. At
the beginning, we planed to use the BNL-type silicon detectors only. Although the thin entrance
window with small size ( 10 mm ×24 mm) was produced and worked very well, it was difficult
to make a bigger surface detector keeping the uniformity of each layers. Because of the thick-
ness of the entrance window, the dedicated treatments for energy calibration were needed for
Hamamatsu-type detectors. The details of discussion will be presented in Subsection 3.3.1.

Summary for Recoil Spectrometer Setup

The spectrometer employed for the experiment was silicon detector to measure the kinetic energy
of recoil proton precisely. We have discussed the required and achieved acceptances. The range
of covered recoil angle were 10 < θR < 100 mrad for two pairs (Hamamatsu-type) and 10 <
θR < 87.5 mrad for one pair (BNL-type) for one-side. The acceptance of azimuthal angle was
210 mrad for one-side. Although we used two different types of silicon detector, the resolution
of read-out channel of recoil angle were same: 5mrad.
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2.2.4 Read-out Electronics

This section describes the overview of read-out electronics and the detailed silicon signal per-
formance by single read-out channel. Although we were forced to employ two different types
of silicon detector, we managed to make their performances similar. Specifically, it is preferable
that the raw-signals of two different detectors are similar in terms of voltage and waveform in
order to avoid the complications in the read-out electronics chain. The basic characteristics of
silicon detectors, like depletion voltage, capacitance, etc., are mentioned in Appendix A.4.

Read-out Signal Flow

Figure 2.19 displays the outline of read-out signal processes.

Inside the RHIC Tunnel recoil protons were detected by the silicon detector at IP12. The
deposit energy was converted to the electric charge in the silicon detectors. And the electric
charge was converted to the voltage in the preamplifier. The preamplifier was mounted on the
Front-End-Electronics Board which located outside of the scattering chamber.

Counting-house (Outside of the RHIC Tunnel) The signal output from preamplifier was
transferred to the counting-house through twisted cables. The counting-house was apart from
the H-Jet target location, ∼ 50 m. By use of twisted cables, the ground was isolated between
inside and outside of the RHIC tunnel. The signal was shaped by the shaping-amplifier and
processed by the Wave Form Digitizer (WFD). Inside of the WFD, the waveform analysis was
done by the on-board Field Programmable Gate Array (FPGA) chip. These results were used
for on-line analysis. The event-by-event waveform was recorded in the DAQ-PC for off-line
analysis.

The signal processing is described step-by-step in the following subsections.

Front End Electronics in RHIC Tunnel Six silicon detectors were mounted on the left-right
sides flanges of scattering chamber. Each detector had 16 read-out channels and there were 96
channels in total. Each output signal from silicon was pre-amplified at the Front-End-Electronics
(FEE) Board. Sixteen preamplifier chips were mounted on one FEE. All 16 read-out signals from
one silicon detector were processed by one FEE. Figure 2.20 displays the picture of FEEs.

Figure 2.21 display the read-out schematic diagram of silicon detectors. We employed two
different types of silicon detectors (BNL-type and Hamamatsu-type) which we did not plan in
the first design. Because the size and thickness of two silicon detectors were not same, so that
the capacitances per single read-out channel were different. The diagram were also bit different;
The connection between silicon detector and preamplifier was DC-coupled for BNL-type and
AC-coupled for Hamamatsu-type. Because the silicon signal was amplified by charge-sensitive
preamplifier, the output voltage and signal decay-time did not depend on the detector capacitance
but the characteristics of preamplifier essentially and measured to be 3 µs. The preamplifier was
needed to be discharged completely before the next signal comes. The overall event rate was
estimated to be ∼ 30 kHz, that is, the event comes every 30 µs. Thus we confirmed that the
preamplifier is discharged fast enough.

On the other hand, the signal rise-time would change depending on the capacitance of read-
out channel. The larger capacitance read-out channel tends to result in a long rise-time in general.
But we verified that the preamplifier does not change the output waveform much, even from the
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Figure 2.19: Read-out electronics outline
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Figure 2.20: Picture of FEE Board including preamplifier chips.
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different read-out capacitances . This fact was very fortunate for us because we do not need to
care about the capacitance dependence for output signals.

AC coupled

HV: -200V
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Cf

Bias resister
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To
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Rf
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Figure 2.21: Schematic of the silicon detectors and the preamplifier

Figure 2.22 displays the comparison of the output signals from preamplifier between BNL-
type and Hamamatsu-type. Although the detector characteristics between two different types
were not completely same, the rise-time of them are similar ∼ 27.5 nsec for both cases fortu-
nately.

Signal Shaping in the Counting House The output signal from preamplifier was transported
to the counting-house through the twisted pair cables. The counting-house was apart from IP12
∼ 50 m. The ground line was isolated between inside and outside of the RHIC tunnel. The
signal was shaped and attenuated in order to adjust to the input requirements of the WFD.

One factor in the choice for time constant of shaping circuit is the charge collection time in
the detector being used. To reduce pile-up events, it is important to keep these time constants
short so that the shaped waveform can return to the baseline as quickly as possible. On the other
hand, once the shaping time constants become comparable with rise-time of the pulse form the
preamplifier, the input network no longer appears as step voltage and some of its amplitude is
lost. This loss is called the ballistic deficit and can be avoided only by keeping the time constants
long compared with the charge collection time in the detector.

Figure 2.23 displays the equivalent circuit of the shaping amplifier of FWHM 12 nsec. This
shaper was used in 2004 run.
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Figure 2.22: Rise-time comparison between BNL-type and HAMAMATSU-typ2
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Figure 2.23: Equivalent circuit of the shaper : CR-(RC)3
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If we input step function into this shaper, the output shape can be express as below:

Vout(t) = Vpeak ·
t

τs

3

· exp(
−t

τs
) (2.14)

τs = C1 · R1 = C2 · R2 (2.15)

The typical signal samples of before and after shaping are shown in Figure 2.24. The red
waveform is after shaping.
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Figure 2.24: Explanation for shaper mismatching

Actually, this pulse shaping amplifier was not suitable for the output signal from preamplifier.
The rise-time comparison between before and after pulse-shaping amplifier is also shown in the
figure. This mismatch might cause the deterioration of energy resolution. Unfortunately, the
suitable one was not ready for the 2004run, then the dedicated waveform study was needed to
evaluate the waveform quality by off-line analysis (see Subsection 3.2.1) 2.

Data Acquisition System

The WFD modules recently developed as a deadtime-less DAQ system for the pC polarimeter
at Yale University. Because of the limited number of the WFD, data-taking for this experiment
was done alternatively with the pC polarimeter. The pulse shapes are digitized at the equivalent

2Basing on these studies, we have already replaced the shaping amplifier to suitable one from 2005run.
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Data source Contents
Silicon detector channel ID#, Waveform data
FPGA outputs maximum amplitude, integral for whole gate width, time at maximum
Beam (CDEV) bunch ID#, bunch fill-pattern, bunch pol.-pattern (up/down/”0”)

Revolution number, Wall current monitor (WCM) [53]
H-Jet Target polarization state (up/down/”0”)

Table 2.3: Summary of the storage contents into the DAQ-PC

frequency of 420 MHz and analyzed inside the modules, providing the recoil proton deposit
energy and time of flight as on-line results.

The WFD is a CAMAC module hosting 4 independent channels with common storage SDRAM
(64 MByte) and CAMAC control circuitry as shown in Figure 2.25. In each channel the input
signal is split into three, two of which are delayed by 1

3 and 2
3 of the ADC digitization period.

We call them RGB. Three 8-bit ADCs (AD94833) synchronously start conversions at 140 MHz
resulting in triple equivalent digitization frequency. All waveform analysis is done inside the
Virtex-E Xilinx FPGA chip at 70 MHz clock frequency.

The block diagram of analyzing circuits in the FPGA is shown in Figure 2.26. The input
signal passes through a digital filter for noise reduction and partial compensation for different
amplification of delayed sub-channels. A level trigger is used to determine the presence of a
significant signal in a particular bunch crossing period, and if the signal is not detected, the ADC
values are used for baseline calculations. The baseline is determined individually for all three
sub-channels to compensate for different amplifier offsets and is averaged over 16 latest bunch
crossing periods with no significant signal. The baseline is then subtracted and the signal is
stored in a first-in first-out (FIFO) memory, from which it can be directly read out as a waveform
or taken for further analysis. The analysis is of the conveyor type and takes up to 5 stages, each
stage corresponding to a sequential bunch crossing. On the first stage the whole waveform is
used to define the signal amplitude (maximum), integral and time at maximum. The second
stage implements 1

4 constant fraction discriminator (CFD) based on the amplitude value defined
at the first stage. These analyzed values in the FPGA were used as on-line results. Waveform
data was used for off-line analysis which is discussed in chapter: analysis. The FPGA keeps
track of the bunch and revolution numbers, as well as of bunch polarization pattern. In addition
to these contents, the H-Jet target polarization status was also tracked by the FPGA. The contents
were read out and stored to the computer synchronized with H-Jet polarization status (+/0/-). The
limiting the maximum event rate to 3 · 106 s−1 per channel was come from the speed of transfer
to on-board storage memory by FIFO memory.

Record Data The storage contents are shown in Table 2.3. The recorded data size were about
250 MByte per 1 hour data-taking.

The on-line data from silicon detectors were used for keeping track data quality. Waveform
data for event-by-event were used for further detailed analysis which is discussed in section 3.2.1.

3The specification is found at < http://www.analog.com>
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Figure 2.25: Block diagram of the WFD modules

Figure 2.26: Simplified block diagram of one WFD channel
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2.3 High-energy Polarized Proton Beam

The Relativistic Heavy Ion Collider (RHIC) storage rings are 3.83 km in circumference and are
designed with six interaction points (IP’s), where beam collisions are possible. The two inde-
pendent storage rings are referred to the blue-ring and the yellow-ring respectively. In addition
to heavy ion collisions, the RHIC also collide intense beams of polarized protons. The RHIC is
the first and only polarized proton-proton collider in the world.

2.3.1 RHIC-AGS Complex as a Polarized p+p Collider

The study of high energy polarized protons beams has been a long term program at BNL with
the development of polarized beams in the Booster and the Alternating Gradient Synchrotron
(AGS) rings for fixed target experiments. The capability of polarized proton beams have been
extended to the RHIC machine. The RHIC was designed to provide collisions of polarized
protons at a maximum beam energy of 250 GeV to study the proton spin structure. The first
collision was made in 2000 and the performance has been improved every year in its luminosity
and polarization.

A number of technological developments and advances have made the RHIC possible to
create a high-current polarized sources, maintain the beam, polarization throughout acceleration
and storage, and obtain accurate beam polarizations at several stages from the source to full-
energy beams. The major components used for the acceleration of proton beams at RHIC are
diagrammed in Figure 2.27. We will describe the overview of the RHIC as a polarized-proton
collider. The more details are found in the reference [54, 55].

Polarized proton injection uses an optically-pumped polarized H− ion source. The polarized
H− source produces 500 µA in a single 300 µs pulse, which corresponds to 9 × 1011 polarized
H−. The polarization of more than 80% has been reached at the source. There are several steps
from polarized H− pulse to a bunched polarized proton beam; the LINAC, the Booster, the AGS
then the RHIC.

A pulse of polarized H− ions are accelerated to 200 MeV kinetic energy in the 200 MHz
LINAC. The pulse of H− ions is strip-injected and captured into a single bunch in the AGS
Booster. The single bunch of polarized proton is accelerated in the Booster to 1.5 GeV kinetic
energy and then transfered to the AGS, where it is accelerated to 24.3 GeV (RHIC 100 GeV run
parameter). Then, the polarized protons are transfered to the RHIC.

The AGS to RHIC transfer line has been designed to transport proton beams in the energy
range, from 20.6 GeV to a maximum injection energy of 28.3 MeV. Each of the RHIC rings can
be filled with up to 120 polarized proton bunches from the AGS, in which case the time between
bunch crossing at IP’s is 106 nsec. Since the high precision asymmetry measurements are re-
quired by the experiments, a frequent polarization sign reversal for single bunch is imperative
in order to avoid systematic errors from any correlations that may exist between a bunch and its
spin direction. The polarization sign of every single bunch is assigned at the source. It takes
about 5 seconds from the ion source to the RHIC ring including acceleration in the AGS ring.

After filling of both rings is complete, the beams are accelerated to flat-top energy. During
acceleration, polarized proton beams encounter two types of depolarizing resonances as dis-
cussed later. In order to maintain the polarization, six ”Siberian snakes” are installed in the AGS
ring and in the RHIC rings.

The brief history of the RHIC facility, which is focused on the polarized proton beam accel-
eration, is summarized below.
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Figure 2.27: Layout of the RHIC facility. Polarized protons are accelerated from the source
through a LINAC, a Booster synchrotron, and the AGS before being injected to the RHIC rings.
Several of the components used to maintain polarization throughout the acceleration stages are
shown. Locations of polarimeters are also noted.
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• Fiscal-year 2000: Single Siberian snake and pC polarimeter were installed in the blue-ring.

• Fiscal-year 2001: 3 Siberian snakes were installed (not operational) and other 1 pC po-
larimeter was installed.

• Fiscal-year 2002: Commissioning of 2 Siberian snakes/ring and 8 spin rotators were in-
stalled around the STAR and the PHENIX. (Spin rotator rotates transverse spin to any
direction.)

• Fiscal-year 2003: Commissioning of 8 spin rotators. Bunch-by-bunch polarimeter infor-
mation were available.

• Fiscal-year 2004: Installation and the first operation of the hydrogen gas jet target and the
absolute polarimeter. The first calibration for pC polarimeter (blue-ring) was completed
by using the absolute beam polarization from the absolute polarimeter. The warm snake
was installed in the AGS ring.

• Fiscal-year 2005: The calibration for pC polarimeters (in the blue-ring and yellow-ring)
were completed. The cold snake was installed in the AGS ring.

• Fiscal-year 2006: Commissioning for the cold snake at the AGS ring.

To date, polarized proton beams have been accelerated, stored and collided in the RHIC
rings at center-of-mass energies of 62.4, 200 and 410 GeV. The acceleration of polarized beam
in circular acceleration is complicated by the presence of numerous depolarization resonance.
During acceleration, the polarization may be lost when the spin precession frequency passes
through a depolarizing resonances. Therefore the polarization is maintained by the use of two
partial Siberian snakes in the AGS and two full Siberian snakes in each RHIC ring. The average
store polarization reached 40% and the average store intensity reached 1011 protons/bunch in
2004. Besides constant polarized beam deliveries to the experiments (the RHIC, the STAR, et
cetera), the beam-development has also been continued. Polarized protons were first accelerated
to the record beam energy of 205 GeV in the RHIC with a significant polarization measured
at top energy in 2005 [56] and further high-energy beam commissioning has been continued in
2006 towards the maximum beam energy of 250 GeV.

2.3.2 Depolarizing Resonance and Siberian Snakes

To accelerate polarized proton beams, the understanding of the evolution of spin during accel-
eration and the tools to control it are needed. Beam polarization during acceleration can be
compromised by depolarization mechanisms driven by magnetic fields which perturb the spin
motion away from its precession around the guiding dipole field. The motion of the spin direc-
tion vector,

−→
S , of a proton under the influence of external field is described by the Thomas-BMT

equation.
d~S

dt
=

e

γm
~S × [(1 + Gγ) ~B⊥ + (1 + G) ~B||] (2.16)

Here γ is the Lorenz factor and G = 1.793 is the proton anomalous g-factor. ~B⊥ and ~B|| are
magnetic fields perpendicular and parallel to the beam direction, respectively. Equation (2.16)
also shows that in a perfect accelerator with only guiding dipole field, the spin direction vector
precesses Gγ times per orbital revolution. Horizontal magnetic fields from misaligned dipole
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magnetic and focusing quadrupole magnets can perturb the spin direction away from the stable
vertical direction.

During acceleration, the depolarizing spin resonances occur if the spin precession frequency,
νsp, is equal to the frequency of the encountered spin-perturbing magnetic fields. There are
two main types of depolarizing resonances which are corresponding to the possible sources of
such fields: imperfection resonances, which are driven by magnet error and misalignments, and
intrinsic resonances, driven by the focusing fields.

The resonance conditions are usually expressed in term of νsp. For ideal planar accelerator,
where orbiting particles experiences only the vertical guide field, the spin tune is equal to Gγ.
Imperfection resonance arises when

νsp = Gγ = k (2.17)

is an integer. Because if the condition of Equation (2.17) is satisfied, the spin vector is at the
same phase in its precession every time. And it encounters imperfect fields which exist with a
more or less random distribution around a ring.

Intrinsic resonances arises when

νsp = Gγ = kP ± Qy, (2.18)

where P is the superperiodicity of the machine and Qy is the vertical betatron tune. For exam-
ple, P = 12 and Qy ≈ 8.70 at the Brookhaven AGS. A superperiodicity is a repeated section of
bending and focusing magnets. The betatron tune is the number of oscillations around the stable
beam orbit per beam revolution, in the vertical plane (the y-z plane). The z-axis is taken to be in
direction of proton motion. Depending on the strength of the resonance and resonance crossing
rate, the amount of depolarization can vary. For the most of the time during the acceleration cy-
cle, the precession axis, or stable spin direction, coincides with the main vertical magnetic field.
Close to a resonance, the vertical direction by the resonance driving fields. When a polarized
beam is accelerated through an isolated resonance the polarization loss can be calculated using
the Froissart-Stora equation [57]

Pf = (2e−π|ε|2/2α − 1)Pi, (2.19)

where Pi and Pf are the polarization before and after crossing the resonance. ε is the resonance
strength, defined as the Fourier amplitude of spin perturbing fields. α = dGγ

dθ is the resonance
crossing rate, θ is the azimuthal angle around the acceleration. When the beam is slowly (α �
|ε|2) accelerated through the resonance, the spin vector will adiabatically follow the stable spin
direction resulting in spin flip. However, for a faster acceleration rate partial depolarization
or partial spin flip will occur. Traditionally, the intrinsic resonances are overcome by using a
betatron tune jump, which is effectively makes α large, and the imperfection resonances are
overcome with harmonic corrections of the vertical orbit to reduce the resonance strength ε.
At high energy, these traditional methods become difficult and tedious because the strength of
imperfection resonances generally increase linearly with the beam energy.

By introducing a Siberian Snake [58], which generates a 180 degrees spin rotation about
a horizontal axis, the stable spin direction remains unperturbed at all times as long as the spin
rotation from the Siberian Snake is much larger than the spin rotation due to the resonance driving
fields. Therefore the beam polarization is preserved during acceleration. An alternative way to
describe the effort of the Siberian Snake comes from the observation that the spin tune with the
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Snake is a half-integer and energy independent. That is, the spin tune:

νsp = Gγ

is changed to

νsp = Gγ ± 1

2
.

Therefore, neither imperfection nor intrinsic resonance conditions can ever be met as long
as the betatron tune is different from a half-integer. Since the orbit distortion is inversely pro-
portional to the momentum of the particle, a dipole magnet snake is particularly effective for
high-energy accelerators, e.g. energies above about 30 GeV. Figure 2.28 displays a spin mo-
tion image through one Siberian snake. This device was named because of the beam trajectory
through the magnet and in honor of Siberian-based inventors.

Figure 2.28: Spin motion image through one Siberian snake. Siberian snake, which is a series
of spin-rotating dipoles, was named because of the beam trajectory through the magnet and in
honor of Siberian-based inventors.

For lower-energy synchrotron, such as the Brookhaven AGS, a partial snake, which rotates
the spin by less than 180 degrees, is sufficient to keep the stable spin direction unperturbed at the
imperfection resonances.

Polarized Proton Beam Acceleration in the AGS Ring

Over 40 imperfection resonance conditions are crossed in the AGS as the beam is accelerated
from energy of 2.4 GeV (Gγ = 4.6) up to 24.3 GeV (Gγ = 46.5).

To overcome imperfection resonances in the AGS, a normal conducting helical dipole magnet
(warm snake) has been used as a 5% partial Siberian snake. (Since there is not enough space to
permit a full snake in the AGS, only a partial snake is possible.) The 5% partial Siberian snake
(snake strength s = 0.05) generates a 9 degrees spin rotation about a horizontal axis. The spin
tune becomes:

νsp = Gγ ± s

2
,
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which does not satisfy the imperfection resonance condition.
However, the strength of the partial snake is insufficient to overcome the effects of intrinsic

resonance. There are seven intrinsic resonances that are crossed during acceleration in the AGS.
With the typically fast acceleration rate in the AGS, there are only four strong intrinsic resonances
at 0 + Qy, 12 + Qy, 36 − Qy and 36 + Qy that cause significant polarization loss. Figure 2.29
displays the AGS intrinsic spin resonance strength as a function of Gγ.

Figure 2.29: The calculated AGS intrinsic spin resonance strength as a function of Gγ. (Gγ ≈
1.9× beam energy in GeV.)

In order to handle intrinsic resonances, the technique used was to artificially enhance the res-
onances such that they were tuned to produce a complete spin flip each time one is encountered,
rather than depolarization. A pulsed AC dipole magnet is used to induce a full spin flip for all
particles as these resonance are crossed. The AC dipole is pulsed in such a way that the vertical
betatron oscillation amplitude is increased for all beam particles.

The use of the 5% partial Siberian snake and the pulsed AC dipole in the AGS significantly re-
duce the depolarization effects from imperfection and strong intrinsic resonances. Consequently,
the maximum beam polarization at extraction from AGS was increased to 50% approximately.

The pC-CNI polarimeter, which is installed in AGS and is introduced later, measures the
effects of depolarizing resonances at a number of different beam momenta (Pbeam = 2.4 – 24.3
GeV/c). Figure 2.30 shows the measured asymmetry versus the parameter Gγ (Gγ ≈ 1.9× beam
energy in GeV) by use of this polarimeter [59]. The decreasing of the measured asymmetry as
the beam energy increase is come from two reasons; the beam depolarization and the decreasing
of the analyzing power itself as the beam energy increase (See Figure A.7 in Appendix A.5).

The ramp-up takes about 0.5 sec. The ramp was repeated hundreds times to collect these
data. The data are binned by the beam momentum. Each point corresponds to a bin width of
50 MeV/c, which is about 1 msec. The sign of asymmetry changes when resonance conditions
are crossed. The solid line is a predicted spin direction due to resonances based on magnet
strengths in the machine. The amplitude of the line is adjusted to fit the data. The error bars are
statistical only.
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Figure 2.30: Measured analyzing power versus Gγ for the ramp-up. The data were taken in
2005. The ramp-up takes about 0.5 sec. The ramp was repeated hundreds on times to collect
this data. The data are binned by the beam momentum. Each point corresponds to a bin width of
50 MeV/c, which is about 1 msec. The sign of asymmetry changes when resonance conditions
are crossed. The solid line is a predicted spin direction due to resonances based on magnet
strengths in the machine. The amplitude is adjusted to fit the data. The error bars are statistical
only. The data were taken in 2005.
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A study has shown that a stronger Siberian snake could also be effective in overcoming the
strong intrinsic resonance in the AGS. A super-conduction helical dipole magnet as a 20% partial
Siberian snake in the AGS is currently being developed.

Polarized Proton Beam Acceleration in the RHIC Rings

Without Siberian Snake there are numerous depolarizing resonances in RHIC, both intrinsic and
imperfection resonances.

Figure 2.31 displays the RHIC intrinsic spin resonance strength as a function of beam energy.
The strong intrinsic spin resonances at higher energy are expected to be over a factor of two
stronger than those below 100 GeV.

Figure 2.31: The calculated RHIC intrinsic spin resonance strength as a function of beam energy.

Full Siberian snakes are used to overcome both imperfection and intrinsic resonances in the
RHIC. But even in a perfect accelerator, which has no magnetic field errors, with snakes, the
spin perturbations can still add coherently and result in significant polarization loss at certain
tune values. For a single snake case, the accumulated spin perturbations can’t perfectly canceled
out if

mQy = νsp + k,

where m and k are integers. These are called snake resonances and m is the order of the snake
resonance. Adding the second snake at the opposite side of the ring to the first snake provides
additional cancellation when m is an even number.

A configuration of two Siberian snakes in each ring was chosen to overcome both imperfec-
tion and intrinsic resonances. As displayed in Figure 2.32, the two snakes are places on opposite
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sides of the ring with their spin precession axes perpendicular to yield an energy independent
spin tune. Hence, with two snakes, all the even order snake resonances disappear.

Figure 2.32: Two snakes are placed on opposite sides of the ring with their spin precession axes
perpendicular to yield an energy independent spin tune.

However, the even order snake resonances reappear if the intrinsic resonance overlaps an
imperfection resonance. The overlap of an intrinsic resonance with an imperfection resonance
also splits the existing odd order resonances. All of this greatly reduces the available betatron
tune space to avoid polarization loss. Hence, careful control of tunes and vertical closed orbit is
necessary for any high energy accelerator. And the beam polarization measurements at various
stage of acceleration in order to identify and address possible origins of depolarization at each
step are needed to provide feedback for accelerator developments.

Currently, polarized protons have been successfully accelerated up to 100 GeV with mini-
mum or no polarization loss with Siberian snakes and proper control of betatron tunes and the
vertical orbit distortions. The polarized proton beams have been achieved an average beam po-
larization in RHIC of 45 ∼ 50% and delivered to the experiments in 2005 and 2006.

Even with the success of accelerating polarized protons to 100 GeV, as Figure 2.31 displays,
the strong intrinsic spin resonances at higher energy are expected to be over a factor of two
stronger than those below 100 GeV. During polarized proton run-05, polarized protons were
accelerated to a new record energy of 205 GeV. Significant beam polarization was measured at
the top energy, after successfully crossing through strong spin resonances between 100 GeV and
205 GeV [56].

2.3.3 pC Polarimeter

The proton-carbon (pC)-CNI polarimeter, which takes advantage of an analyzing power, ApC
N ≈

0.01, in the elastic scattering of polarized protons with carbon atoms, serves as a fast feed-
back tool to tune up the beam acceleration. ApC

N originates from interference between electro-
magnetic force and hadronic force was initially measured by AGS experiment E950 [6].
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The pC-CNI polarimeters are installed in the AGS, the blue-ring and the yellow ring respec-
tively. They employed ultra-thin carbon ribbon target (3.5µg/cm2 thick and 5µm wide typically),
which have been developed at IUCF, and collected 20 million events of recoil carbons of the elas-
tic scattering process within 20 seconds. The pC polarimeter measures beam polarization several
times in a store and also measures bunch-by-bunch polarization.

The accuracy of the pC-CNI polarimeter was limited by the uncertainty of AN of pC elastic
scattering. The AN data of proton-carbon elastic scattering was measured at Pbeam = 22 GeV/c
[6] and we need to extrapolate to get AN at Pbeam = 100 GeV/c using a theoretical calcula-
tion [11]. The uncertainty of AN would cause a wrong scale of the measured beam polarization.
Once we know the exact AN at Pbeam = 100 GeV/c, we can correct a wrong scale and calibrate
the measured beam polarizations.

Calibration of pC polarimeter to achieve ∆Pb/Pb ∼ 0.05 was provided by a polarized
hydrogen-jet-target polarimeter in 2004. Taking advantage of the pp elastic scattering process,
which is 2-body exclusive scattering with identical particles, we can change the role of which is
polarized between the target proton and the beam proton. Thus the beam polarization is mea-
sured utilizing the AN which is measured by a well calibrated polarized proton target. Requiring
a new measurement of AN is better than ∆AN/AN ∼ 0.05, the accuracy of absolute beam
polarization can be achieved ∆Pb/Pb ∼ 0.05.

2.4 Brief History of Run-4 and Experimental Setup Parameters

• Installation

– April 5th-7th: Installation of H-Jet target system into the RHIC ring at IP12.

– 6th-7th: H-Jet target system was set up. We started vacuuming.

– 7th: We installed FEE boards. We checked test-pulse signals, calibration α source
signals at IP12.

• The H-Jet target and the recoil detector setup (April 7th – 25th) We applied bias voltage
to the silicon detector and adjusted the shapers using α source signals. We also took the
energy calibration data using alpha particles (148Gd and 241Am). Then we adjust the
timing window with the RHIC clock and tried to find the H-Jet target center position by
use of the RHIC-blue beam (the first target profile measurement data on April 15th).

• Physics data taking ( April 26 th ∼ May 14 th. H-Jet target polarization = 0.924 ± 0.018)

– Normal physics run with 100GeV/c proton beam ∼ 90 hours

– Accumulated 3 million elastic events in the 4-momentum transfer squared |t| range
0.001 < |t| < 0.032 (GeV/c)2.

– Normal physics run with 24GeV/c proton beam (injection energy) ∼ 14 hours.

– Data for systematic error study

∗ Background study (See Section 3.6)
· Empty-target runs; 6.5 hours
· No-beam runs; 8 hours
· Empty-target, No-beam runs; 3hours

∗ Holding magnet study (See Appendix A.8)
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Planed, designed values Achieved values in 2004

Thickness (atoms/cm2) 5 · 1011 (1.3 ± 0.2) · 1012

FWHM size (mm) 5.5 6.5

Polarization 0.9 0.924 ± 0.018

Table 2.4: H-Jet target

Planed, designed values Achieved values
−t range (GeV/c)2 0.001 – 0.02 0.001 – 0.032

recoil angle range (mrad) 10– 90 10 – 100

recoil angle resolution (mrad) < 8 5

Azimuthal angle range (mrad) 262 × 2 205 × 2

Depletion thickness µm 800 ∼ 420 (BNL), ∼ 400 (Hama.)
Entrance window thickness ∼ 150 nm ∼ 150 nm (BNL), 1 ∼ 2µm (Hama.)

Table 2.5: Recoil spectrometer. (BNL) and (Hama.) denote silicon types.

· Non-magnetic field; 1.7 hours
· Reversed-magnetic field; 1.5 hours

∗ Target profile measurement (the second trial on May 5th).

We summarized the parameters of H-Jet-target system, recoil spectrometer in Table 2.4 and
2.5.

The RHIC-beam intensity (proton/bunch) was 1 · 1011 with 55 bunch mode. The revolution
frequency was 78 kHz. β∗ at IP12 was 10m. The RHIC-beam diameter is σ ∼ 1 mm and smaller
than The H-jet-target size. The beam position at IP12 was always fixed and monitored by Beam
Positioning Monitor (BPM) [52]. The achieved luminosity was 4.7 × 1029 cm−2 sec−1.
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Chapter 3

Data Analysis

3.1 Analysis Outline

Off-line analysis was performed to determine AN and ANN for the pp elastic scattering in the
CNI region as a function of four-momentum transfer squared −t. The experimental data taken
with the setup are summarized in Table 2.3. The main two parts of the analysis are determination
of −t and the elastic event selection.

Firstly, we will discuss about the waveform analysis as groundwork in Section 3.2. The
kinetic energy TR and the arrival time of the recoil particles are obtained from waveform, which
is taken with silicon detector, event-by-event. We will also describe how to perform a quality
assurance for raw data.

In Section 3.3, we will describe the conversion from waveform data to TR. Obtained TR

is connected to −t via Equation (2.2). TR was obtained from the energy deposit in the silicon
detector, ER, by correcting the energy loss due to the entrance-window of the silicon detector
and/or unmeasured energy due to the punch-through of the proton. In order to estimate the energy
loss, we need to estimate the entrance-window thickness and the fiducial volume of the silicon
detector.

In Section 3.4, we will discuss the ToF resolution prior to the event selection. ToF from
the collision point to the silicon detector was obtained from the arrival time of the recoil particle.
In order to distinguish recoil protons from the huge amount of prompt particles, we utilize ToF
separation.

The essentials for the elastic event selection are the recoil particle identification and the mass
measurement of all the rest particles, which we do not detect. The recoil particle is identified as
the proton by use of TR and ToF correlation. Then we apply further selection using TR and hit-
channel# correlation to select the elastic event. The TR and hit-channel# correlation confirms
the forward scattered particle is proton. This process is described in detail in Section 3.5.

In Section 3.6, we will describe the background estimation, which is also important. We
itemized the background sources and confirmed that they are unpolarized. Based on these stud-
ies, AN and ANN were corrected to avoid a dilution by background events.

3.2 Waveform Analysis

Off-line analysis starts from waveform analysis. TR and the arrival time of recoil particle are ob-
tained from waveform event-by-event. Waveforms are shaped by the shaping amplifier (12 nsec
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FWHM). At the Waveform Digitizer (WFD), the offset voltage of every single waveform data
has been subtracted and digitized by 8bit ADC at the equivalent frequency of 420 MHz. The
detailed process in WFD modules has been discussed in Subsection 2.2.4. WFD samples wave-
form every 2.38 nsec and records all waveforms above threshold (500 keV). Every waveform is
recorded with 90 points. The acquisition timing gate signal is synchronized with the RHIC-rf
clock. We applied quality assurance check for all recorded waveforms because the uniformity of
waveform data have a direct bearing on TR and ToF resolutions.

3.2.1 Introduction of Waveform Data

Energy and Arrival Time from Waveform Figure 3.1 and 3.2 display the sample waveform
data and AMP ,Tmeas, TMAX and INTG. We refer to maximum pulse height and its timing
as AMP and TMAX . We define the arrival time, Tmeas, which is two times the average of
the nearest two 1/4 maximum pulse height timings Ta and Tb (constant fraction triggering).
Therefore one digit size of Tmeas is equivalent to a half of internal WFD sampling time cycle,
1.19nsec.

INTG is one forth of the sum of waveform data for 31 points. Filled gray region in Figure
3.2 corresponds to INTG. G is the center of gravity,

G =
90
∑

i=1

i × ph(i)/
90
∑

i=1

ph(i),

where ph(i) is the pulse height of each waveform data point as displayed in Figure 3.1.
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Figure 3.1: Waveform data sample and explanation of AMP , Tmeas and TMAX .

AMP and INTG are related to the deposit energy in the silicon detector. Tmeas is related
to the arrival time comparing with RHIC rf-clock. Figure 3.3 displays the correlation of INTG
and Tmeas of one of the read-out channels. We can see the signals of the recoil proton clearly.
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Figure 3.3: INTG vs. Tmeas from channel #3
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The events which is vertically distributed around INTG = 550 in INTG are calibration α
source (241Am) events. We equipped the left arm with the 241Am source and the right arm with
241Am and 148Gd sources, respectively. Since we could not prepare a shutter from calibration
source, α particles were always detected by the detectors during RUN-4 period. We cut out
these region from the asymmetry calculation. The significant energies for calibration sources are
5.486 MeV for 241Am and 3.183 MeV for 148Gd. The width of spectrum in terms of FWHM are
less than few keV [60]. There is some tail towards less energy than INTG = 550. These are
calibration α events and randomly scattered in time. Although the energy spectrum of calibration
α is quite sharp but the deposit energy distribution in the silicon detector fluctuates statistically
and has a tail shape. However the events from α source are lower than protons and should not
have any correlation with spin states. The ratio of tail events is estimated using special data for
background study as discussed in Subsection 3.6.3. as displayed in Figure A.12.

In Figure 3.3, there are the huge amount of events around Tmeas = 45 and INTG = 75
are prompt particles, which are possibly pions from the beam-related interaction upstream. They
are synchronized with RHIC beam bunches and comprise one of the background sources. The
events in the region 40 < Tmeas < 80 and INTG > 600 are also synchronized with RHIC
beam bunches. The ratio of background regarding the RHIC-beam is discussed in Subsection
3.6.3.

3.2.2 Waveform Quality Assurance

Average Waveform and Characteristics

A uniformity of waveforms is important to obtain good TR and ToF resolutions. To evaluate
a uniformity, we made average waveform by gathering a few thousands of waveforms from α
source events per read-out channel. Here we applied rough eye selection to gather waveforms in
order to reject bad waveforms. Figure 3.4 displays the accumulated 1725 waveforms in 2-D plot.
As a result of smoothing, we have obtained 10 times finer time binning as displayed in Figure 3.4.
They are normalized by the area. Then normalized waveforms are shifted along horizontal-axis
in order to keep their center of gravity, G, at 450. To obtain the mean envelope of accumulated
waveforms, we sliced the 2-D plot along the horizontal-axis and apply the Gaussian fitting. The
red data points are the mean envelope and we refer to them as average waveform. The dispersion
band along the red points correspond to the error of average waveform. A rise-time from 10%
to 90% of the maximum amplitude is 14.6 nsec.

The enlargement accumulated waveforms around the maximum pulse height is displayed
in the left side of Figure 3.5. The projection along the vertical-axis of the red dashed box is
displayed in the right side plot. The mean peak pulse height value of the accumulated waveforms
is AMP = 127 and σ ∼ 2 counts.

The detailed procedure of making the average waveform is described in Appendix A.6.
The ratio INTG/AMP is a one of parameters to confirm waveform uniformity. It should

be constant value as long as waveforms are uniform at any energies. The ratio for the average
waveform is obtained to be 3.9 using average waveform, INTG = 500 and AMP = 127.

We utilized average waveform as a reference in order to categorize waveforms into ”good”
and ”bad” groups.
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Figure 3.4: Accumulated Waveforms 1725 samples. They are normalized to have constant
INTG value.
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Figure 3.5: The enlargement of accumulated waveforms around the maximum pulse height.
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”Good” Waveform Selection

In order to categorize every waveform, the χ2 fit was done by scaling the reference-waveform.
”Prompt” region events, which are in the region of Tmeas < 60 and INTG < 200, are removed
in the following discussions. We leave the center of gravity timing, G, and the maximum pulse
height, AMP as fit parameters. The error of every waveform data point is set to 2 counts in
terms of pulse height. This value corresponds to the width of energy spectrum for the calibration
source (we will discuss in Subsection 3.3.1). Thirty-one data points of every waveform are used
for fit with the reference-waveform. This is same as the integral region for INTG as shown in
Figure 3.2.

The reduced chi-square (χ2/ndf) is used as a measure to categorize waveforms into ”good”
and ”bad” groups. Basing on the distribution of χ2/ndf as displayed in Figure 3.6, we set the
criteria χ2/ndf ≥ 5 for bad in order to distinguish waveforms are ”good” or ”not-good”.
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Figure 3.6: χ2/ndf distribution

The distribution of χ2/ndf is obtained from the data set which is displayed as the correlation
between INTG and Tmeas in Figure 3.7.

Figure 3.8 displays the samples of ”good” and ”not-good” waveform.
Figure 3.9 displays the INTG-Tmeas correlation for categorized as ”good” waveform events

from the total events (Figure 3.7). Figure 3.10 displays ”not-good” waveforms. From this figure,
”not-good” waveforms occur randomly in time. The ratio of ”not-good” event to the total events
are ∼ 10% .

Figure 3.11 suggests the correlation between χ2/ndf and INTG. Considering Figure 3.10
and 3.11, most of ”not-good” waveforms are related to calibration α ”tail” events and the rate of
occurrence depends on INTG.

We think ”not-good” waveforms are due to the mismatch between shaper and preamplifier.
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Figure 3.7: INTG vs. Tmeas correlation for all except ”prompt” events.
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Figure 3.8: Sample waveforms of ”good” and ”not-good”.
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Figure 3.9: INTG vs. Tmeas correlation for ”good” waveforms only
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Figure 3.10: INTG vs. Tmeas correlation for ”not-good” waveforms only.
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The shaping amplifier did not match with the output of preamplifier signal as we have discussed
in Subsection 2.2.4. Actually some irregular waveform are found and these should be discarded
by off-line analysis.

As long as the reason of strange waveform is the mismatch between the preamplifier and
the shaper, the discard ratio should be independent of the polarization states but depend on the
energy. We can’t measure INTG nor Tmeas data correctly from these kinds of ”not-good”
waveform.

From these studies, the most of ”not-good” waveforms are regarded as the tail events of α
particles from the calibration sources. Therefore, we can discard these events. In practice, we
need to concentrate on the events which pass the elastic event selection which will be discussed
in Section 3.5. The discard ratio in the elastic event selection are only few% and the values are
summarized in Subsection 3.5.2 as a function of energy bins.

Uniformity Evaluation of ”Good” Waveforms

INTG/AMP uniformity Figure 3.12 displays the correlation of AMP and INTG of the
same data set as Figure 3.7. The black points and red points are corresponds to χ2/ndf < 5 and
χ2/ndf ≥ 5, respectively. From this figure, the criteria to distinguish ”good” and ”not-good”
waveforms are thought to be reasonable.

Seeing Figure 3.13, most of waveforms are independent of the energy-range.
Figure 3.13 displays the distribution of INTG/ADC . Black line and red line correspond to

χ2/ndf < 5 and χ2/ndf ≥ 5, respectively. The mean value is 3.9 and agree with that of reference
waveform (∼ 4).

Good agreement between the mean values of INTG/ADC between reference waveform
and ”good” waveforms means that there is no obvious energy dependence among ”good” wave-
forms in the whole energies. We conclude that the criteria for ”good” waveform selection
(χ2/ndf < 5) is reasonable. Thus, applying the pattern matching selection for every waveform,
”good” waveform selection works for the whole energy range.

Tmeas resolution and rise-time uniformity As long as waveform does not change, in prin-
ciple, a rise-time from 10% to 90% of the full amplitude should be stable. Figure 3.14 displays
the distribution of rise-time for one of the silicon detector. The mean value is 14.9 nsec and
agree with that of reference waveform. σ is ∼ 0.7 nsec and then uniformity of rise-time is better
than one digit size of Tmeas(1.19 nsec). Black and red points are corresponds to χ2/ndf < 5
and χ2/ndf ≥ 5, respectively. Since every waveform is shaped by the shaping amplifier, the
difference of rise-time between ”good” and ”non-good” waveforms is not so clear.

Seeing Figure 3.13 and 3.14, most of waveforms are ”good” and same as the reference wave-
form for all energies. Thus, we confirmed the uniformity of waveform for event-by-event.

So far we have discussed the waveform uniformity limited in single read-out channel. We
have 96 independent read-out channels and each of reference waveform should be same if the
read-out electronics are adjustment ideally. However, in practice, the mean values of factor K
and rise-time are not completely same over all read-out channels. Therefore we prepared the
proper evaluation-waveform of all 96 read-out channels.
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Figure 3.11: χ2/ndf vs. INTG
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Figure 3.12: The correlation of AMP and INTG for one of the read-out channel. The black
points and red points are corresponds to χ2/ndf < 5 and χ2/ndf ≥ 5, respectively. The ratio of
”not-good” events to the total events are ∼ 10%.
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Figure 3.13: INTG/AMP as a function of INTG for one of the read-out channel. The mean
value is 3.9 and agree with that of reference waveform (∼ 4).
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Figure 3.14: Rise-time distribution for one of the read-out channel. The mean value is 14.9 nsec
and agree with that of reference waveform. σ is ∼ 0.7 nsec and then uniformity of rise-time is
better than one digit size of Tmeas(1.19 nsec).
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3.3 Kinetic Energy of Recoil Protons

In this section, we will discuss about the energy conversion from INTG to the incident kinetic
energy, TR (MeV). As we have described in Subsection 2.2.3, two out of three pairs of silicon
detectors were fabricated by the Hamamatsu Photonics, K. K. The other pair of silicon detectors
were fabricated by the BNL Instrumentation Division. The entrance-window thickness and the
detector thickness were different between Hamamatsu-type and BNL-type, In order to achieve
the energy resolution better than 0.1 MeV, we need to correct the energy loss appropriately.

The detection energy range for the recoil proton is 0.6 − 17 MeV. As described in Equation
(3.1), TR is obtained as a sum of the deposit energy in the silicon detector, ER and the energy
loss, ∆ER. ER is obtained as a product of INTG and the energy calibration scale constant
CE (MeV/INTG). CE differs slightly among read-out channels because the read-out electronics
chains are individual.

TR = ER + ∆ER

= CE × INTG + ∆ER, (3.1)

where ∆ER includes the energy pedestal, energy loss due to the entrance-window of the silicon
detector and/or unmeasured energy due to the punch-through of the proton. Since the energy
baseline properly estimated and subtracted in the WFD modules (See Subsection 2.2.4), the
energy pedestal is estimated to be small compared to other components.

The recoil protons, in the energy of TR > 7 MeV, are not fully absorbed in fiducial volume in
the detectors. In this case, TR is reconstructed using the entrance-window thickness, the fiducial
volume thickness.

3.3.1 Energy Calibration

The energy calibration was performed using α particle. At first, we will describe the how we
estimate the entrance-window thickness using the calibration α sources, in order to perform the
energy loss correction in the entrance-window. Then the achieved energy resolution will be
discussed comparing to the required energy resolution. We also discuss about the stability of CE

during whole RUN-4 period.

Energy Loss Correction in the Entrance-window

In order to convert INTG into the deposit energy in MeV, we used two calibration α sources.
During RUN-4 period in 2004, we equipped the left arm with the 241Am source and the right
arm with 241Am and 148Gd sources respectively. Their significant energies are 5.486 MeV for
241Am and 3.183 MeV for 148Gd, and FWHM are less than few keV [60].

Figure 3.15 displays the INTG spectrum of single read-out channels for BNL-type. Two
peaks, which we call Gd0 and Am0 of INTG readings, correspond to the α spectrum of 148Gd
and 241Am, respectively. The energy resolution is estimated to be ∼ 70 keV from the width of
spectra.

Figure 3.16 displays the INTG spectrum of single read-out channels for Hamamatsu-type.
Although the significant energy spectra of the two types of calibration sources are quite narrow
in order of few keV, the INTG spectrum of Hamamatsu-type have two sets of double peaks.
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Figure 3.15: INTG spectrum for one of read-out channels of BNL-type detector.
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Figure 3.16: INTG spectrum for one of read-out channels of Hamamatsu-type detector.
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Double peaks to the left correspond to α particles of 148Gd and double peaks to the right corre-
spond to that of 241Am. We refer to left two peaks as Gd1, Gd2 and refer to right two peaks as
Am1, Am2, respectively.

Double peaks implies the double structure of the entrance-window. Seeing the width of each
spectrum, the energy resolution is estimated to be ∼ 70 keV. However we need to estimate how
much α particle loses its energy in the entrance-window in order to convert INTG into the
absolute energy.

By use of two α calibration sources, we evaluated the thickness of the entrance window. We
refer the incident energies of 241Am source and 148Gd source to EAm and EGd, respectively.
The deposit energies in the fiducial volume are referred to E i

Am and Ei
Gd. Here i denotes the

type of entrance-windows. i = 0 is BNL-type and i = 1, 2 Hamamatsu-type.
Then we have :

EAm = Ei
Am + ∆Ei

Am, (3.2)

EGd = Ei
Gd + ∆Ei

Gd, (3.3)

where ∆Ei
Am and ∆Ei

Gd include the energy loss in the entrance-window and the energy pedestal.
The deposit energy (Ei

Am and Ei
Gd) are connected with the INTG readings (Ami and Gdi)

via CE .

Ei
Am = CE × Ami, (3.4)

Ei
Gd = CE × Gdi. (3.5)

BNL-type Figure 3.17 displays the ratios of Am0 and Gd0 for all 16 channels (ch #64 –
ch #80) of Si #5. As we described in Subsection 2.2.3, Si #2 and Si #5 are BNL-type. Since
only Si #5 in the left-side is calibrated by two sources, we presume Si #2 is comparable level
in the entrance-window thickness to Si #5 by comparing the width of INTG for 241Am source
spectra. We set the error of INTG readings of peak on the Am0 and Gd0 are 1.5 digits. Thus
the mean ratio Gd0/Am0 for the first 10 channels is estimated to be 0.575 ± 0.001. The ratio
of calibration source energy is obtained as EGd/EAm = 0.580 ± 0.001. Here we set the width
of significant energy spectra for calibration sources are 1 keV. (We did not use the channels of
ch #75–ch #80 with empty circles for the asymmetry calculations. Because the waveforms are
not uniform compare to other channels.

Comparing these ratios, we can assume that the energy loss in the entrance window is quite
small and can assume that the energy pedestal would dominate ∆E0

Am and ∆E0
Gd. If we refer to

the energy pedestal as δ0, Equations (3.2), (3.3) are rewritten as

EAm = E0
Am + δ0, (3.6)

EGd = E0
Gd + δ0. (3.7)

Figure 3.18 displays δ0 for 16 channels of Si #5. The estimated δ0 is 50 ± 30 keV. This value
is smaller than the intrinsic pulse-height digitize resolution inside of WFD modules. Thus, we
treat the incident energy is same as the deposit energy for BNL-type detector, TR = ER. Just
for the reference, the energy loss of 50 ± 30 keV corresponds to 0.3 ± 0.2 µm in terms of the
entrance-window thickness.
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Figure 3.17: The ratio of INTG peak position Gd0 and Am0 (We used the channels with filled
circle only)
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Figure 3.18: The energy offset for BNL detector. (We used the channels with filled circle only)
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Hamamatsu-type Double peaks of INTG spectrum in Figure 3.16 implies the double struc-
tures of the entrance-window. Although we do not have accurate design values of the entrance-
window, two types of the entrance-window are possible as displayed in Figure 3.19.

Figure 3.19 depicts the cross-section of Hamamatsu-type.
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Figure 3.19: Cross section of Hamamatsu-type silicon. d1 and d2 are the thickness of 2 different
types of entrance window.

Here we refer to the thickness of two types of entrance-windows as d1 and d2, respectively.
d1 is expected to be around 2 ∼ 3 µm from designed values. In the case that the calibration α
particles penetrate the thickness d1, the spectra will be Am1 and Gd1. The energy loss in the
silicon material is evaluated by use of the stopping-power data as displayed in Figure 3.20 [61].
For example, if 5.486 MeV α particle penetrates the 3 µm thickness silicon, a deposit energy
would be amounted to ∼ 0.6 MeV. The deposit energy in the silicon detector is not same as
the incident kinetic energy but is small. Therefore we can not neglect the energy loss in the
entrance-window in order to satisfy the required energy resolution (better than ∼ 0.1 MeV). And
the estimation of the entrance-window thickness in the order of sub-µm is required.
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injection energy of each particle [61]
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Entrance Window 148Gd (EGd = 3.183 MeV) 241Am (EAm = 5.486 MeV)
i Thickness in µm ∆Ei

Gd (MeV) Ei
Gd (MeV) ∆Ei

Am (MeV) Ei
Am (MeV)

1 d1 = 2.69 ± 0.06 µm 0.55 ± 0.02 2.63 ± 0.02 0.39 ± 0.01 5.10 ± 0.01

2 d2 = 1.79 ± 0.06 µm 0.34 ± 0.02 2.84 ± 0.02 0.24 ± 0.01 5.24 ± 0.01

Table 3.1: The energy loss in the entrance-window and deposit energy in the fiducial volume for
Hamamatsu-type detector.

Assigning i = 1, 2 to Equation (3.2) and (3.3), we have the four ratios:

Gd1

Am1
=

E1
Gd

E1
Am

=
EGd − ∆E1

Gd

EAm − ∆E1
Am

, (3.8)

Gd2

Am2
=

E2
Gd

E2
Am

=
EGd − ∆E2

Gd

EAm − ∆E2
Am

, (3.9)

and,
Gd1

Gd2
=

E1
Gd

E2
Gd

=
EGd − ∆E1

Gd

EGd − ∆E2
Gd

, (3.10)

Am1

Am2
=

E1
Am

E2
Am

=
EAm − ∆E1

Am

EAm − ∆E2
Am

, (3.11)

where ∆Ei
Am and ∆Ei

Am (i = 1, 2) are dominated by the energy loss in the entrance-window.
The energy loss in the entrance-window is estimated to be several hundred of keV assuming the
thickness is order of few µm and on the other hand, the energy pedestal is estimated to be only
several tens of keV as we discussed in the previous section.

Figure 3.3.1 displays the ratios of Equation (3.8) and (3.9). d1 and d2 are estimated using
Equation (3.8), (3.9) and the stopping power in Figure 3.20. Firstly we set some initial value for
the entrance-window thickness, and we repeat the iteration with changing the entrance-window
thickness, then we find the convergence values. Here, Si #1 and Si #3 are also Hamamatsu-type
detectors but they are not calibrated by 148Gd source. Therefore we presume Si #1 and Si #3
are comparable level in the entrance-window thickness to Si #4 and Si #6.

Figure 3.22 displays these ratios of Equation (3.10) and (3.11). The difference of thickness
between d1 and d2 is estimated independently by use of Equation (3.10) and (3.11). This result
is useful for a redundant check. Particularly, Equation (3.11) is applicable for all 4 Hamamatsu-
type detectors.

In a strict sense, the silicon detector is made of silicon, aluminum and SiO2 mainly. Because
the deference for the correction of the incident proton energy between three materials are known
to be small, We estimated the entrance-window thickness in terms of silicon material.

The two types of entrance-window thicknesses d1 and d2 are estimated to be 2.69±0.06 µm
and 1.69 ± 0.06 µm, respectively. The difference between d1 and d2 is estimated to be ∼ 1 µm.
Therefore we have consistent results for d1 and d2 from Equation (3.8) – (3.9), Figure 3.3.1 and
3.22.
The energy loss in the entrance-window (∆E i

Gd, ∆Ei
Am) and the deposit energy in the fiducial

volume (Ei
Gd and Ei

Am) are listed in Table 3.1.
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Figure 3.21: The ratios of Gd1/Am1 and Gd2/Am2 for Si#4 and #6 in Equation (3.8) and
(3.9). d1 and d2 are estimated by use of these ratios to 2.69 ± 0.06 µm and 1.69 ± 0.06 µm.

87



channel #
1 17 33 49 65 81 97

ra
tio

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1 2/Am1Am
2/Gd1Gd

Figure 3.22: The ratios of Gd1/Gd2 and Am1/Am2 for Si #1, 3, 4 and #6. We confirmed the
difference between d1 and d2 is 1 ± 0.06 µm.
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Stability of CE

We can obtain CE by use of Equation (3.4) for all read-out channels. Figure 3.23 displays the
stabilities for CE of 16 read-out channels of Si #1.
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Figure 3.23: The stability of CE of Si #1during RUN-4 period.

CE for all 96 read-out channels are stable: ∆CE ≤ 1 (keV/INTG) during run period.

3.3.2 Energy Loss Correction

TR < 5 MeV region

Taking into account for the entrance-window thickness, the kinetic energy of recoil proton (TR) is
reconstructed. As displayed in Figure 3.20, the energy loss of the proton in the entrance-window
is less than one sixth that of α particles at the same energy. Since the entrance-window thickness
of BNL-type silicon is quite thin, 200± 100 nm and the energy loss of the recoil proton is below
the intrinsic energy resolution, we do not need to correct the energy loss in the entrance-window
of BNL-type. Therefore the kinetic energy of recoil proton is obtained as:

TR = ER = CE × INTG. (3.12)

On the other hand we need to correct the energy loss in the entrance-windows for Hamamatsu-
type. We calculate the energy loss in the entrance-window for three different incident proton en-
ergies, 0.5, 0.75 and 1 MeV using Figure 3.20. The results are summarized in Table 3.2. The first
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TR (MeV) ∆E1
p (MeV) ∆E2

p (MeV) ∆E2
p -∆E1

p (MeV)
0.5 0.16 ± 0.02 0.11 ± 0.01 0.05

0.75 0.14 ± 0.01 0.09 ± 0.01 0.05

1.0 0.11 ± 0.01 0.07 ± 0.01 0.04

Table 3.2: The energy loss comparison between two different entrance-windows with several
incident energies. The first column is the incident kinetic energies TR, the second and third
column are the energy losses, ∆E1

p and ∆E2
p , in the entrance-windows d1 and d2. The forth

column is a difference of the energy losses between two entrance-windows.

column is the incident kinetic energies TR, the second and third column are the energy losses,
∆E1

p and ∆E2
p in the entrance-windows d1 and d2. The forth column is difference of the energy

losses between two entrance-windows.
As TR increases, ∆E1

p and ∆E2
p decreases and the energy loss become negligible in the

TR > 1 MeV region.
The difference of energy losses between d1 and d2 (∆E2

p − ∆E1
p ) is smaller than the en-

ergy resolution (∼ 0.07 MeV). Actually, we can not distinguish which entrance-window the
recoil proton penetrates. The recoil proton is expected to penetrate the two of entrance-windows
equally from the rough schematic as displayed Figure 3.19 and the INTG spectrum as displayed
in Figure 3.16. In this way, we conclude that we take the average of d1 and d2 and use as an
”effective” entrance-window thickness (2.24 ± 0.1 µm). And the conversion function from ER

to TR is obtained as:

TR = −0.0045 × E3
R + 0.0378E2

R + 0.8836ER + 0.1756. (3.13)

The calibration energy uncertainty from dead layer thickness uncertainty (±5 µm) is quite
small ∼ 0.01 MeV.
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TR ≥ 8 MeV Region

Figure 3.24 displays the correlation of the channel number and the deposit energy (ER) of
roughly ToF -selected events. The locus on the left in Figure 3.24 is generated by fully ab-
sorbed protons, while the locus on the right is due to punched-through protons. The red arrow in
Figure 3.24 indicates the channel which is measured the maximum deposit energy, for example,
ch #8 of Si #1. We refer it to a critical channel.

We estimate the fiducial volume thickness by use of the maximum deposit energies. We call
this procedure, (A).

In order to evaluate uniformity of the fiducial thickness among whole detector, we utilized
several channels displayed with blue arrow in Figure 3.24 and rough angle data. We call this
procedure, (B), and refer these channels to punched-through channels. In both procedures, the
fiducial detector thickness is estimated in terms of silicon material using the stopping-power in
Figure 3.20.

We will describe the procedure (A) in the text. The details of procedure (B) are described
in Appendix A.10. As a redundant check for (A), we use the parameterized formula, called (C).
The results of the procedure (A), (B) and (C) agree very well, as we discuss later.
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Figure 3.24: ER and channel number correlation and the explanation of procedure A,B

The Procedure Using the Maximum Deposit Energy ; (A)

Figure 3.25 and -3.26 display the energy spectrum of the critical channels of Hamamatsu-type
(Si#1, #3, #4 and #6) and BNL-type (Si4#2 and #5) silicon detectors. The spectrum have
the steep shoulder at the maximum deposit energy. Actually, the critical channel detects fully
deposit protons and punched through protons simultaneously. But we can not distinguish them
in ToF as we discuss later in Subsection 3.3.2.

Figure 3.27 is the energy spectrum of selected critical channels of Si #1 for the whole run4
period. This figure tells us the stability of the maximum deposit energy during run period and
confirms that the fiducial detector thickness is stable.

91



Deposit Energy in MeV
0 1 2 3 4 5 6 7 8 9 10

E
ve

nt
 c

ou
nt

s

0

20

40

60

80

100

120

140

160

180

200

Maximum deposit 
energy 

Si2 ch25

Si5 ch75

Figure 3.25: Energy spectrum of critical channels of BNL detector (ch#25 and #75)
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Figure 3.26: Energy spectrum of critical channels of Hamamatsu-type detector
(ch #9,#41,#58 and #91)
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Figure 3.27: Maximum deposit energy stability of ch #8 (Hamamatsu-type) for RUN4 period

From these results, the maximum deposit energies are same between the same manufactured
detectors. The maximum deposit energies are 7.0 ± 0.1 MeV for Hamamatsu-type and 7.3 ±
0.1 MeV for BNL-type, respectively. Then we can estimate effective thickness as below.

By use of the stopping-power in Figure 3.20, the estimated results of procedure (A) are
385 ± 5 µm for Hamamatsu and 414 ± 5 µm for BNL, respectively. The resolution ±5 µm is
come from the sharpness of the spectrum.

Comparison of the Estimated Thickness Among (A), (B) and (C)

In addition to the results from (A) and (B), we also used parameterized formula [62] to estimate
the fiducial thickness of silicon with proton deposit energy with good accuracy over the range of
energies E (MeV). We call this procedure (C) and the formula is:

R(mm) = 0.004 + 0.01333 · E1.73. (3.14)

E = 7±0.1 MeV corresponds to R = 389±10µm (Hamamatsu-type), E = 7.3±0.1 MeV
corresponds to R = 418 ± 10µm (BNL-type).

Table 3.3 summarized the estimated fiducial thicknesses by different procedures (A), (B) and
(C).

The results from procedure (A), (B) and (C) agree within the errors. In summary, we fixed
the actual detector thicknesses are 414 µm for Hamamatsu and 385 µm for BNL. Uniformity of
the fiducial volume thickness of whole detector is estimated to be ±10 µm from the results of
procedure (B). The corresponding energy uncertainty differs depend on TR, for example, ±90
keV for TR = 10 MeV and ±200 keV for TR = 16 MeV, respectively.

Actually, the energy resolution for punched-through region is worse than the required en-
ergy resolution. But these energies beyond the expected region of the CNI peak (1 – 5 MeV).
Therefore we do not need to set narrow energy bins and the energy resolution is allowable.
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Procedure type BNL-type (µm) Hamamatsu-type (µm)
(A) 414 ± 5 385 ± 5
(B) 420 ± 10 380 ± 10
(C) 418 ± 10 389 ± 10

Table 3.3: Comparison of the fiducial thickness of silicon detector for Hamamatsu-type and
BNL-type.They agree within the errors

TR reconstruction in Critical Channels

By use of estimated detector thickness, we have an itemized the conversion table between deposit
energy and incident energy. Fitting the correspondence with polynomial function, we got the
functions to convert ER into TR for the punched-through protons. The details are described in
Appendix A.9.

Here we discuss about the treatment of the transition region of ”punched-through” and ”full
deposit” events. We set punched-through channels using Figure 3.24. However, we can not
distinguish the punched-through protons from fully absorbed protons if they are detected in the
”critical” channels. For example, if we apply punch through correction to the proton, whose
deposit energy is ER = 6.0 MeV, the reconstructed incident energy is estimated to be TR =
7.2 MeV. The calculated ToF from the kinetic energy is 23.6 nsec for TR = 6.0 MeV and
21.5 nsec for TR = 7.2 MeV. Since the intrinsic time resolution is 1.19 nsec, it is hard to
distinguish between fully absorbed proton and punched-through proton by ToF in the transition
energy region of energy. Therefore, we do not apply the punched-through correction for the
events of the critical channels but apply for the events of the beyond critical channels. This
made the in-continuity of the TR spectrum around 7.5 MeV.

Figure 3.28 displays energy conversion function from INTG to TR (MeV) for the entire
TR range of one of read-out channel of Hamamatsu-type silicon detector considering the loss
energy in the entrance-window thickness. Black solid line corresponds TR reconstruction for
full-absorbed protons. Red solid line corresponds TR reconstruction for punched-through pro-
tons. Black and red dashed lines correspond to the transition energy protons.

3.3.3 Resolution and Binning

The resolution of the deposit energy is estimated ∼ 0.07 MeV from the calibration source spec-
tra. We applied two different types of energy corrections regarding the incident energies. One is
the entrance-window energy corrections and the other is the punched-through energy correction.
Therefore, we need to estimate the systematic errors regarding the incident energies.

Systematic Errors in Energy Calibration

Lower energy region (< 1 MeV) for Hamamatsu-type silicon detectors To reconstruct the
incident kinetic energy in the lower region of less than ∼ 1 MeV, we need to add the lost energy
in the entrance window. We estimated averaged entrance window thickness is 2.24 ± 0.10 µm.
The possible source for the systematic error in this energy region is the error of entrance window
thickness. And then, the systematic errors is estimated quite small in the order of 0.05 MeV. It is
negligible small value.
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Figure 3.28: Energy conversion from INTG to TR (MeV) for one of read-out channel of
Hamamatsu-type silicon detector considering the loss energy in the entrance-window thickness.
Black solid line corresponds TR reconstruction for full-absorbed protons. Red solid line corre-
sponds TR reconstruction for punched-through protons. Black and red dashed lines correspond
to the transition energy protons.
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Higher energy region (> 8 MeV) For the higher energy resolution more than 8 MeV, we
need to care about punched-through corrections. The silicon detector can not stop completely
the protons more than 7 MeV for BNL-type and 7.3 MeV for Hamamatsu-type. To reconstruct
the incident kinetic energy correctly, we need to add the outgoing energy to the measured deposit
energy. The possible source for the systematic error in this higher energy region is the error of
the depleted thickness. We estimated the depleted thicknesses are 385±10 µm and 414±10 µm
for Hamamatsu-type detectors and BNL-type detectors, respectively. The systematic errors in
the higher energy region is estimated to be ±0.1 MeV for TR < 10.6 MeV and ±0.2 MeV for
TR > 10.6 MeV.

Between 5 – 8 MeV region It is quite difficult to distinguish the proton is full absorbed or
not in this energy region by use of ToF nor angle information. In actual analysis, I do punched-
through correction for the event beyond ”critical channel”. This procedure can make wrong
energy correction in case of wrong event type assignment. For example the proton of 6.5 MeV
in terms of deposit energy, is 7.5 MeV in terms of punched-through corrected energy. The miss
event assignment whether the event was full deposit or not can be a systematic error source. To
reduce this affection, we putted together these energy region events into one binning (5.7 – 7.2
MeV) . And we set the systematic error is ±0.2 MeV

The other region (1 ≤ TR ≤ 5 MeV) In this energy region, the recoil proton is fully ab-
sorbed in the silicon detector and its energy loss in the entrance-window is negligible. Therefore
the incident kinetic energy is obtained from INTG directly:

TR = CE × INTG,

and there is no systematic uncertainty.

Energy Binning

Our energy bin for asymmetry calculation is below table. The energy gaps between bin5 and 6,
bin12 and 13 are to avoid calibration α particles from 148Gd source. The energy gaps between
bin8 and 9, bin9 and 10 are to avoid calibration α particles from 241Am source. The mixture of
full deposit and punched through energy region is bin9.
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Incident Energy TR (MeV)
BIN# minimum maximum Systematic Error

1 0.6 1.0 0.05
2 1.0 1.4 -
3 1.4 1.8 -
4 1.8 2.2 -
5 2.2 2.5 -
– 148Gd α source energy region
6 3.0 (3.2 for BNL- type) 3.5 -
7 3.5 4.2 -
8 4.2 4.7 -
– 241Am α source energy region
9 5.7 7.2 ± 0.2
– 241Am α source energy region (punched-through treatment)

10 8 9.3 ± 0.1
11 9.3 10.6 ± 0.1
12 10.6 12 ± 0.2
– 148Gd α source energy region (punched-through treatment)

13 14.5 16 ± 0.2
14 16 17 ± 0.2

Table 3.4: TR binning
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3.4 ToF of Recoil Protons

In this section, we will discuss how we get ToF of the recoil protons as well as the resolution.

3.4.1 Conversion from Tmeas to ToF

Silicon detectors measure the arrival time of the recoil proton, Tmeas :

Tarrival = Tmeas × CToF (nsec/digit).

where CToF = 1.19 (nsec/digit) is the time scale constant, which is determined by the intrinsic
time resolution of DAQ. The trigger of Tmeas coincides with internal clock of our DAQ system
at the equivalent frequency of 420 MHz. Tarrival is a sum of the collision time between the H-Jet
target proton and RHIC-beam proton (Tcollision), signal process time (Tprocess) and ToF of the
recoil proton.

ToF is written as:

ToF = Tarrival − (Tcollision + Tprocess), (3.15)

and the resolution of ToF is obtained by quadratic sum of possible three possible components
(∆Tevent, ∆Tprocess and ∆Tarrival):

∆ToF = ∆Tcollision ⊕ ∆Tprocess ⊕ ∆Tarrival. (3.16)

It is important to fully understand of these components in order to evaluate ∆ToF .

3.4.2 ToF resolution

Expected Resolution

Tcollision would fluctuate because of:

• RHIC rf-clock might fluctuate < 0.5 nsec.

• RHIC beam bunch size, which measured by WCM σ ∼ 2.2 nsec as displayed in Figure
3.29.

• H-Jet target size ∼ 0.021 nsec (FWHM = 6.5 mm ).

Therefore ∆Tcollision ' 2.2 nsec.
Tprocess consists of:

• Charge correction time in the silicon detector.

• Signal process time at several electric process stages: charge-sensitive preamplifier, shaping-
amplifier and attenuator etc.

• The signal transfer time from the RHIC-ring tunnel to the counting house via twisted pair
cables (∼ 55m).

Thus Tprocess is independent and is slightly different among read-out channels. But it is expected
to be quite stable during data taking period. Therefore ∆Tprocess is negligible.

Tarrival would fluctuate because of:
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Figure 3.29: Typical beam bunch profiles measured Wall Current Monitor (WCM) [53]. Data of
112 bunches and abort gap are superimposed.

• Trigger start timing might fluctuate 2.4 nsec (Internal DAQ clock has the equivalent fre-
quency of 420 MHz). This is common to all read-out channels.

• The intrinsic time resolution of DAQ (1.19 nsec).

• Rise-Time stability of waveforms ∼ 0.7 nsec as discussed in Subsection 3.2.2.

Therefore, ∆Tarrival ' 2.8 nsec.
Substituting ∆Tcollision, ∆Tprocess and Tarrival into Equation (3.16),

∆ToF ∼ 3.6 nsec. (3.17)

Considering these possible components, Tcollision, Tprocess and their resolutions are stable whole
run period. ∆Tarrival is also expected to be stable. Therefore we expect that ∆ToF is also stable
whole run period.

Comparison between ”Expected” and ”Achieved” Resolutions

By use of the kinetic energy TR of recoil proton, the flight path length L and the mass of proton
mp, we calculate ”expected” the time of flight of recoil proton, ToFcalc.

ToFcalc = L ·
√

mp

2 · TR
, (3.18)

In principle, we obtained the sum of Tcollision and Tprocess instead we estimate each of them.
Because both of them are stable, we can treat the sum of them as mere offset value. We refer this
offset value to t0.

We take a difference between Tarrival and ToFcalc for event-by-event and have a distribution
of t0 as displayed in Figure 3.30.

The events around 55 nsec are regard as possible candidates for recoil protons. This figure is
the for one of read-out channels.
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Figure 3.30: t0 distribution for one of read-out channels. The mean value of Gauss fit corre-
sponds to the offset value (= Tcollision + Tprocess).

We applied Gaussian fitting and take mean value of t0, we call t̄0. t̄0 corresponds to the
offset value (= Tcollision + Tprocess). Then we can estimate ToF of each events as Equation
(3.19).

ToF = Tarrival − t̄0 (3.19)

The width of t0 distribution is estimated to be σt0 ∼ 3.9 nsec and is regarded as ToF resolution,
σToF . Thus, the good agreement between the expected ToF resolution using specifications
(∆ToF ' 3.6 nsec) and the measured ToF resolution (σToF ' 3.9 nsec) confirms that we fully
understand for the ToF properties.
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3.5 Elastic Event Selection

As we have discussed in Section 2.1, the recoil particle identification and the mass measurement
of all the rest particles, which we do not detect, are the essentials for the elastic event selection.
In this section, we will describe the specific procedures of particle identifications using TR, ToF
and θR. Firstly we select the events which recoil particles are identified as the proton by use
of TR and ToF correlation. Then we apply further selection using the missing mass squared
spectra and finally we can collect the elastic events.

3.5.1 Recoil Particle Identification

Figure 3.31 displays the correlation of TR and ToF. The dotted curve is calculated by the kine-
matic function of Equation (3.18).

The locus of the recoil proton events is quite clear and agree with the kinematic function
very well. The dotted line shows the results of kinematical function of Equation (3.18). There
are four lines which are shifted ±4, 8 and 12 nsec with respect to the kinematical function.
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Figure 3.31: The correlation between ToF and the incident energy, TR, in one of the silicon
detectors. The dotted curve shows the kinematic function of Equation (3.18). The four lines
corresponds to ±4,±8 and ±12 nsec shifted with respect to the dotted line.

The broadening of ToF was estimated as σToF ∼ 3.9 nsec. This width is well understood
from bunch size of the RHIC-beam and specifications of the read-out electronics. The details
have been discussed in Section 3.4.
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Figure 3.32 displays the mR spectrum in one of the silicon detectors with the energies (0.6−
1.4) MeV, (1.4-2.5) MeV, (3.0-4.7) MeV, (5.7-7.2) MeV, (8.0-12.0) MeV and (14.5-17.0) MeV.
The recoil particles in the blue area are passed (ToFcalc ± 8) nsec cut as displayed in Figure
3.31. We regard these particles are the recoil protons. The width of mR spectrum increases as
TR increases.
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Figure 3.32: mR spectrum of Si#1 for several energies

In order to understand the growth of blue area as TR increases, we estimate the expected
mass spectra for each energies regions with following conditions in Equation (2.3):

• TR and ToF fluctuate as Gaussian shape with σTR
and σToF .

• σToF = 4 nsec. It is independent over all TR.

• σTR
= 0.07 MeV for TR < 5 MeV and

• σTR
= 0.20 MeV for TR > 10 MeV.

• Vertical axis is normalized by peak value of the spectrum.

Red lines, which are superimposed onto the spectra, are the results of this simple estimation.
They agree very well. Using Equation (3.20), we would understand the behavior of the width of
blue areas (∆mR) intuitively.

∆mR

mp
=

∆TR

TR
⊕ 2

∆ToF

ToF
(3.20)
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The dominance of ∆mR by the first and second terms of Equation (3.20) are comparable in
size at TR ∼ 1 MeV. For example, in case of TR ∼ 0.6 MeV, ToF is ∼ 80 nsec and the size of
two terms are ∼ 0.1. On the other hand, the second term becomes dominant in accordance with
TR increases. In case of TR ∼ 17 MeV, ToF is ∼ 16 nsec and the size of the first term is fifty
times smaller than the second term.

The good agreement between the data and the simple simulation confirms that the blue areas
in mR spectra are reasonable and well understood. The events in blue areas in Figure 3.32 are
satisfied with |ToF − ToFcalc| < 8(∼ 2σToF ) nsec. We regard recoil particles in blue areas as
protons. ToF cut width dependence on the raw-asymmetry is included as the systematic errors.

3.5.2 M2
X

measurement

We applied the following event selection for all events which are passed the recoil proton selec-
tion. As we have discussed in Section 2.1, M 2

X is obtained using Equation (3.21):

M2
X = m2

p − 2TR(mp + E1) + 2|~p1|
√

2mpTRθR (3.21)

where this equation is same as Equation (2.4) but we substituted |~pR| =
√

2mpTR, −t = 2mpTR

and sin θR ≈ θR. In case that the forward-scattered particle is proton, MX = mp, Equation
(3.21) becomes:

TR ' 2mpθ
2
R (3.22)

Thus, the correlation between TR and θR comes as a consequence of a forward-scattered proton.
In principle we can obtain the correct θR from channel number and applying the bend angle
correction. The bend angle is smaller than a few mrad but it varies according to TR because
of the holding-magnetic-field in the scattering chamber (See Section 2.7). However, because
of geometrical miss-alignment, the bend angle correction were not common among the silicon
detectors. (The details are described in Appendix A.8.)

Although the correction of bend angle is not perfect, it does not affect the purity for the
elastic event selection. Whether a scattering process is elastic or inelastic, recoil particle is
always proton for either case. And recoil proton is bent in the same way as long as TR is same.

Figure 3.33 displays the correlation between the channel number and TR in one of silicon
detectors (Si #1). Horizontal-axis is the channel number. In Si #1 case, the events less than
ch #9 are thought to be fully absorbed in the detector and the events above and beyond ch #9
punched-through the detector. Then we reconstructed TR from ER event-by-event and applied
|ToF − ToFcalc| < 8 nsec cut. These events are color-coded with 8 colors except for grays.
For example, ch #1 and ch #8 are shown in red. Color-code for 16 channels are same as Figure
3.31. The solid line shows the kinematic function of Equation (3.22), (3.23) and (3.24). The line
is not applied the holding-magnetic field correction to convert θR to channel number.

As we have displayed in Figure 2.17 and mentioned in Subsection 2.2.3, the silicon strip
runs along the z-axis (RHIC-beam direction). Therefore, the hit position, Z , is obtained from the
channel number.

Z = Z0 + ch# × dZ (3.23)

where, Z0 = 8mm, dZ = 4.4mm (See Figure 2.17). In addition to the alignment offset, the
angle data especially for low energy recoiled proton is bent by the Holding-Magnet field, θMgnt.
Therefore, the recoil angle is obtained as:

θR =
Z

L
+ θalign + θMgnt (3.24)
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where, L ∼ 800mm (See Figure 2.17).
We selected ”proper” channels for selecting the forward-scattered protons for 14 TR bins.
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Figure 3.33: TR and channel number correlation in one of the silicon detectors (Si #1). The
events are already selected recoil protons applying |ToF − ToFcalc.| < 8 nsec cut. The solid
line is kinetics function in Equation (3.22), (3.23) and (3.24). The line is not applied the holding-
magnetic filed correction to convert θR to channel number (θMgnt = 0). The clear correlation
suggests that these are the elastic pp scattering events.

In order to confirm whether the channel selection is reasonable, we checked the width of
missing mass squared (M 2

X ) spectra. Figure 3.34 displays M 2
X spectra in one of the silicon

detectors with the energies (0.6− 1.4) MeV, (1.4-2.5) MeV, (3.0-4.7) MeV, (5.7-7.2) MeV, (8.0-
12.0) MeV and (14.5-17.0) MeV. Blue areas correspond to the events from selected channels.
θalign(=1.5 mrad) is added that the means value of blue areas in M 2

X spectra agree with m2
p. The

width of missing mass squared (∆M 2
X ) increases as the kinetic energy increases. The remaining

tails are regarded as backgrounds. They are asymmetric between left-side and right-side because
we used the data from ch #1 – ch #8 for TR < 5 MeV region and we used the data from ch #9
– ch #16 for TR > 8 MeV region. We will mention about backgrounds in the next section.

In order to understand the growth of ∆M 2
X , we estimate the expected missing mass-squared

spectra for each energy region with following conditions in Equation (3.21):

• θR and TR fluctuate as Gaussian shape with σθR
and σTR

• σθR
= 4.2 mrad and independent of over all TR (See Appendix A.8).

• σTR
= 0.07 MeV for TR < 5 MeV and
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Figure 3.34: M 2
X spectrum in one of the silicon detectors with the energies (0.6−1.4) MeV, (1.4-

2.5) MeV, (3.0-4.7) MeV, (5.7-7.2) MeV, (8.0-12.0) MeV and (14.5-17.0) MeV. We corrected
θalign(=1.5 mrad) but did not correct holding magnetic field effect (θMgnt=0). The white areas
are regarded as background tails and asymmetric between left-side and right-side. The reason is
that we used the left half side of detector for TR < 5 MeV regions and we used the right half
side of detector for TR > 8 MeV regions.
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BIN# TR (MeV) Event count Ratio of ”good” waveforms
1 0.6 – 1.0 450, 112 0.982
2 1.0 – 1.4 309, 650 0.989
3 1.4 – 1.8 258, 166 0.977
4 1.8 – 2.2 229, 871 0.964
5 2.2 – 2.5 172, 815 0.954
6 3.0 – 3.5 194, 095 0.951
7 3.5 – 4.2 270, 279 0.933
8 4.2 – 4.7 305, 383 0.900
9 5.7 – 7.2 449, 352 0.843

10 8.0 – 9.3 217, 921 0.860
11 9.3 – 10.6 297, 811 0.955
12 10.6 – 12.0 304, 399 0.961
13 14.5 – 16.0 283, 075 0.975
14 16.0 – 17.0 171, 338 0.980

Table 3.5: The selected event counts and the ratio as a function of TR

• σTR
= 0.21 MeV for TR > 10 MeV.

• Vertical-axis is normalized by peak value of the spectrum.

Red lines, which are superimposed on the spectra, are the results of this simple estimation.
The good agreement between the data and the simple simulation confirms that the M 2

X spectra
are understood and selected channels are reasonable.

We would understand the behavior of ∆M 2
X intuitively. The deviation of M 2

X from m2
p is

obtained as ∆(M 2
X) = M2

X −m2
p. Substituting Equation (2.5) into Equation (3.21), we have the

equation below:
∆(M2

X) ∼= 2|~p1|
√

2mpTR∆θR (3.25)

Table 3.5 shows the selected events count. These events do not include ”bad” waveform
events. The ratio of ”good” waveform events to the total events are also listed in the table.
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3.6 Background Estimation

The elastic pp event selection is carried out confirming that both the recoil particle and the for-
ward scattered particles are proton. However, there might remain some background events which
sneak through recoil proton selection and forward-scattered proton selection. The possible back-
ground sources are:

• Inelastic processes,

• α particles from calibration sources and

• Prompt particles.

In principle, the inelastic scattering process can be discarded by forward-scattered proton selec-
tion. But at the higher TR bins, the width of M 2

X spectrum grows and its tail incursions into the
(mπ + mp)

2 = 1.16 (GeV/c2)2 threshold. Therefore, we studied the tail shape of M 2
X spectrum

carefully to estimate the inelastic processes contribution.
We can estimate the level of α particles in absence of the RHIC-beam and the H-Jet target

condition. Because the calibration α particles are assumed to be emitted randomly, independent
of ToF and stable rate whole run-period.

Prompt particles are possibly pions from the beam-related interaction upstream (beam-origins).
We can assume that they are evenly distributed among the read-out channels and they does
not change dramatically whole run period. But they coincide with RHIC-clock. It is difficult
to distinguish between higher TR recoil protons and”prompt” particles. The background from
”prompt” particles would increase as TR increases in the energy of TR > 8 MeV.

In addition to above sources, we would mention about the contribution which comes from
the H-Jet-target tail-part. In the beginning of RUN4, we had scanned the H-Jet target by RHIC-
beam to fined the H-Jet center position. Once we find the best position, we fixed the positions of
H-Jet target and RHIC-beam. Because the density of H-Jet target is 3-dimensional distribution,
The RHIC-beam would hit the H-Jet target tail as well as the center part as displayed in Figure
3.35. Thus the recoil protons which come from the target-tail would broaden whole channels.
The contribution from the H-Jet target tail-part was studied by scanning the H-Jet target with the
RHIC-beam every 1.5 mm step as displayed in Figure 3.36.

In this section, we will describe the contribution from the inelastic process, firstly. Secondly,
we will estimate the event count of ”side” channels and compare with the H-Jet tail contribution.
Thirdly, we will mention the contribution from the calibration α particles and the RHIC-beam-
gas, respectively.

3.6.1 Inelastic Event Estimation

The inelastic background to pp elastic scattering comes from the diffractive dissociation pp →
Xp of the forward going proton to a state of invariant mass M 2

X (> m2
p). It is sufficient to discuss

how to distinguish the reactions between pp → pp and pp → (p+π)p as displayed in Figure 3.37.
In this figure, the kinematically accessible region for the event: pp → (p+π)p is shown as

red area. There is no inelastic events θR < 55 mrad. The pp elastic events are isolated from the
inelastic processes on the basis of TR and θR correlation.

For the region θR ≥ 55 mrad, the recoil protons from inelastic processes start to be possible.
By comparing the event counts of ”inside” and ”outside” of kinematical boundary of inelastic
region, we can estimate how much we detect inelastic process in energy 4-4.7 MeV and 5.7-7
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Figure 3.35: Explanation of the recoil protons from the H-Jet target-tail
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Figure 3.36: Target profile measurement with the RHIC-beam. We moved H-Jet target every
1.5 mm fixing the RHIC-beam position. The size of RHIC-beam is σ ∼ 1 mm. Once we found
the best condition, we fixed the positions of H-Jet target and RHIC-beam during data taking
period.
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Figure 3.37: recoil proton energy vs. θR of pp → pp and (π+p)p

MeV as shown in Figure 3.38. Events in the blue area are come from ”selected channels”. The
red broken line shows the background level of inside/outside of inelastic boundary. This figure
confirms that the events counts of ”inside” and ”outside” of kinematical boundary are same.
Then we can say the contribution from inelastic background is very small and negligible.
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Figure 3.38: Missing mass spectrum ”inside” and ”outside” of kinematical boundary of inelastic
region for the kinetic energy 4.7 < TR < 4.7 MeV and 5.7 < TR < 7.0 MeV.

3.6.2 Elastic Event from H-jet-target Tail

Figure 3.39 and 3.40 display the event distribution for certain TR ranges from 1.8 to 2.2 MeV
and from 16 to 17 MeV. These events have been applied ∆ToF < 8 nsec cut. In these cases, we
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selected ”proper” channels #3, 4 and 5 for Figure 3.39 and #13, 14, 15 and 16 for Figure 3.40,
respectively.
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Figure 3.39: Channel distribution for TR bin#4
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Figure 3.40: Channel distribution for TR bin#14

We call ”side” channels are the whole channels except for the ”proper” and their neighbors
(both sides). To gain the statistics of backgrounds of the side-channels, we used them maximally
as displayed in arrows in Figure 3.39 and -3.40. In order to estimate the ”base-level” of the full-
deposit energies, we do not apply the punched-through correction for all read-out channels even
beyond the critical channel. Then we took the average among ”side-channels” and regarded as
”base-level”.

On the other hand, to estimate the ”base-level” of the punched-through energy, we do apply
the punched-through correction for read-out channels. Then we took the average among ”side-
channels” and regarded as ”base-level” assuming that the ”base-level” is flat distribution for one
detector. We call the averaged ”base-level” by use of ”side” channels < side >.

We considered that the ”proper” channels also include ”base-level” as well as ”side” chan-
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nels. In order to understand the ”base-level” of ”proper” channels, we took the ratio of event
counts between ”proper” channels, we call N , and the expected < side >. Blue data points
in Figure 3.41 are the ratios between < side > and N as a function of 14-bins (represented as
< side > /N ).
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Figure 3.41: Rside as a function of TR-bin

As we have mentioned previously, we studied the contribution from the H-Jet target ”tail-
part” compare to the ”center-part” as displayed in Figure 3.36. In practice, we studied these
comparison as a function of 14 TR bins. Figure 3.42 and -3.43 display the event distribution
profiles of the H-Jet target. H-Jet target was scanned by the RHIC-beam every 1.5mm step. The
colors correspond to each TR bin.

Position Gage
0 10 20 30 40 50 60 70 80 90 100

310×

E
ve

nt
 C

ou
nt

 (a
.u

.)

0

200

400

600

800

1000

1200
BIN1 0.6-1.0 MeV

BIN2 1.0-1.4 MeV

BIN3 1.4-1.8 MeV

BIN4 1.8-2.2 MeV

BIN5 2.2-2.8 MeV

BIN6 3.0-3.5 MeV

BIN7 3.5-4.2 MeV

BIN8 4.2-4.7 MeV

BIN9 5.7-7.2 MeV

2.5 mm

Figure 3.42: Target Profile BIN#1 − 9
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Figure 3.43: Target Profile BIN#10 - 14

We summed 7 ”center-part” data and 5 ”tail-part” data and normalized by data-taking time.then
took the ratios, Tail/Center. The pink data points in Figure 3.41 are the normalized event
counts ratios between ”tail-part” and ”center-part” as a function of 14-bins (represented as Tail/Center).
The blue and pink data points agree within the errors. Therefore, we confirmed that < side >
can be considered as the sum of these three contributions:

• the H-Jet target ”tail”,

• α particles and

• Beam-origins.

where, we assumed that there is no event from the inelastic process in the target tail-part.

3.6.3 Beam-origins and Calibration α Particles

To estimate these items independently, we took two type of data sets in addition to ordinal physics
run data:

• (A) H-Jet target OFF and RHIC-beam ON condition.
This data tells us the summed contribution of the calibration α particles and ”beam-
origins”.

• (B) RHIC-beam OFF condition and H-Jet target ON
This data tell us the contribution of the calibration α particles.

We took the data of set up (A) and (B) for 5 hours and 8 hours, respectively. The ratio of
the calibration α+”beam-origins” to the total event counts, we call Rα+beam, and the ratio of α,
Rα, to the total event counts are displayed in figure 3.44 as a function of 14-bins. The black data
points are Rα and the red points are Rα+beam.

From this figure, the component of α particles, Rα, is ∼ 2% for TR-bin#1 – 8. It is almost
zero at TR-bin#9, because the bin#9th covers the energy region higher than α particles. For the
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Figure 3.44: The ratios of (”beam-origin”+α) background and total events. (red line)

energy bin#11– 14, the ratio is ∼ 1% and smaller than that of the lower TR-bins. The reason
of this behavior is thought as this way. The reconstructed kinetic energy is not linear to the
deposit energy but shrink as Figure A.17 in Appendix A.9. That is, the energy range ∆1MeV in
terms of incident kinetic energy is less than ∆1 MeV in terms of the deposit energy. Therefore,
Rα become small compare to full-deposit TR-bin region. The component of ”beam-origin”
background is zero-consistent in lower bin#1–10 and about 1% for bin#11–14. The higher
the incident proton energy increase, the smaller ToF become. Thus the beam origin background
increase.

The errors of Rα and Rα+beam are included in the systematic errors on AN .
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Chapter 4

AN , ANN and the Observables

In this chapter, we will describ how to obtain AN and ANN from the spin-dependent elastic
event count. Derivation of Equation (4.29) and (4.42), and the systematic error estimation for
AN and ANN are the main goals of this chapter.

At first, we will discuss the definitions of AN and ANN . Originally, AN and ANN are
defined by the asymmetry of cross-sections with up-down polarization for one or two of the
protons as Equation (1.1) and (1.2) in Section 1.1. We will show the detailed derivation for these
equations in Subsection 4.1.1.

Usually, however, cross-sections are not obtained simply. Since we need to normalize the
event count by the detector acceptance, the luminosity. Instead of using the spin-dependent
cross-sections, we calculated AN and ANN from the the spin-dependent elastic event count
directly. The relationship between spin-dependent cross-section and event count are discussed in
Subsection 4.2.1. And the details of the procedure will be discussed in Subsection 4.2.2 for AN

and Subsection 4.2.3 for ANN . We will also discuss the systematic errors.

4.1 Spin-dependent Cross-sections

The relationship between the spin-dependent cross-section of elastic pp scattering and the asym-
metries is:

d2σ

dtdϕ
=

1

2π

dσ

dt
[1 + ANcosϕ(Pb + Pt) + ASS sin2 ϕPbPt + ANN cos2ϕPbPt] (4.1)

Pt and Pb are the polarization of the H-Jet target and the RHIC-beam, respectively. ϕ denotes the
azimuthal angle for the forward-scattered proton on the x-y plane as defined in Figure 4.1. We
consider only initial state transverse polarization measurements. In the case that the polarization
axis is the y-axis, the proton is polarized transversely. In the case that the absolute polarization
values for up-state and down-state are same, the beam (target) polarizations are Pb(t) = +P̄b(t)

for up-state and Pb(t) = −P̄b(t) for down-state. (Here P̄b(t) is the average value of the absolute
polarization values for up-state and down-state.) AN is a single spin asymmetry with reference
to the y-axis. ASS and ANN are double spin asymmetries with reference to the x-axis and
the y-axis, respectively. It must be noted that σ in this section is not ”invariant” cross-section
strictly but the variable which is proportional to the yield for the collision of the beam with
polarization= Pb and the target with polarization= Pt. The spin-dependent ”invariant” corss-
section is obtained by substituting Pb(t) = 1, − 1.
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In the case that the forward-scattered proton goes to the left direction; ϕ = 0 (or right
direction; ϕ = π), this process is defined as the left-reaction (right-reaction). We consider the
reactions on the x-z reaction plane only (ϕ = 0 or ϕ = π).
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Figure 4.1: The x-y-z-axis definition. RHIC-beam moves along the z-axis. The transverse polar-
ization axis is along the y-axis.

Equation (4.1) is rewritten as follows in accordance with the beam and target polarization
states:

σL
↑↑ =

1

2π

dσ

dt
[1 + AN (P̄b + P̄t) + ANN P̄bP̄t], (4.2)

σL
↑↓ =

1

2π

dσ

dt
[1 + AN (P̄b − P̄t) − ANN P̄bP̄t], (4.3)

σL
↓↑ =

1

2π

dσ

dt
[1 + AN (−P̄b + P̄t) − ANN P̄bP̄t], (4.4)

σL
↓↓ =

1

2π

dσ

dt
[1 + AN (−P̄b − P̄t) + ANN P̄bP̄t], (4.5)

for the left-reactions.

σR
↑↑ =

1

2π

dσ

dt
[1 − AN (P̄b + P̄t) + ANN P̄bP̄t], (4.6)

σR
↑↓ =

1

2π

dσ

dt
[1 − AN (P̄b − P̄t) − ANN P̄bP̄t], (4.7)

σR
↓↑ =

1

2π

dσ

dt
[1 − AN (−P̄b + P̄t) − ANN P̄bP̄t], (4.8)

σR
↓↓ =

1

2π

dσ

dt
[1 − AN (−P̄b − P̄t) + ANN P̄bP̄t], (4.9)
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for the right-reactions. Two arrows in the subscript of σ denote the RHIC-beam polarization state
(left) and the H-Jet polarization state (right), respectively. ↑ (↓) denotes the proton is polarized
plus (minus) direction along the y-axis. L (R) in the superscript of σ denotes the left-reaction
(the right-reaction).

Figure 4.2 and 4.3 depict the reactions for Equation (4.2) and (4.3), respectively.
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Figure 4.2: Definition of the left-reaction with the target and beam protons polarized in the plus
direction (σL

↑↑).

4.1.1 AN and ANN from Spin-dependent Cross-sections

AN and ANN are obtained using 8 equations: Equation (4.2) – (4.9).
AN is obtained with the polarized H-Jet target and the unpolarized RHIC-beam. Substituting

P̄b = 0 and ϕ = 0 or ϕ = π into Equation (4.2) – (4.5), we have 4 spin-dependent cross-sections:

σL
↑↑ + σL

↓↑ = σL
0↑ =

1

π

dσ

dt
(1 + AN P̄t), (4.10)

σL
↑↓ + σL

↓↓ = σL
0↓ =

1

π

dσ

dt
(1 − AN P̄t), (4.11)

σR
↑↑ + σR

↓↑ = σR
0↑ =

1

π

dσ

dt
(1 − AN P̄t). (4.12)

σR
↑↓ + σR

↓↓ = σR
0↓ =

1

π

dσ

dt
(1 + AN P̄t). (4.13)

Figure 4.4 and 4.5 depict the reaction of Equation (4.10) and (4.12), respectively.
We would define an asymmetry, ε, between A and B as:

ε =
A − B

A + B
. (4.14)
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Figure 4.3: Definition of the left-reaction with the target and beam protons polarized in the plus
direction and in the down direction (σL

↑↓).
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Figure 4.4: Definition of the left-reaction with the target proton polarized in the plus direction
(σL

0↑).
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We often call this the ”raw asymmetry” or the ”unnormalized asymmetry”.
Thus AN is obtained by taking asymmetry of the proper combination of spin-dependent

cross-sections:

AN =
1

P̄t

σL
0↑ − σR

0↑

σL
0↑ + σR

0↑

=
1

P̄t

σR
0↓ − σL

0↓

σR
0↓ + σL

0↓

=
εN

P̄t
, (4.15)

where εN is a raw asymmetry for the target polarization.
Alternatively AN can be obtained from the left-reactions or the right-reactions changing the

H-Jet target polarization state periodically.

AN =
1

P̄t

σL
0↑ − σL

0↓

σL
0↑ + σL

0↓

=
1

P̄t

σR
0↓ − σR

0↑

σR
0↓ + σR

0↑

=
εN

P̄t
. (4.16)

Note that Equation (4.29) is reproduced by substituting P̄t = 1.
In the case that the beam proton is polarized and the target proton is unpolarized (P̄t = 0),

we can obtain raw asymmetry for the beam polarization, ε b. Since we utilize the pp elastic
scattering process, AN does not depend on either the target nor beam polarizations:

AN =
εN

P̄t
=

εb

P̄b
. (4.17)

Therefore, we can transfer the target polarization P̄t to the beam polarization P̄b by measuring a
ratio of spin-dependent raw asymmetries:

P̄b =
εb

εN
P̄t. (4.18)

ANN is obtained in the case that the beam and target protons are polarized transversely. In
the case that the absolute polarization values for the beam (target) for the up-state and down-
state are the same except for the sign, they are expressed as Pb(t) = +P̄b(t) for up-state and
Pb(t) = −P̄b(t) for down-state.

For the cross-section for which the polarization states for beam and target are parallel:

σ
L(R)
↑↑ + σ

L(R)
↓↓ =

1

π

dσ

dt
(1 + ANN P̄bP̄t). (4.19)

For the cross-section which the polarization states for beam and target are anti-parallel:

σ
L(R)
↑↓ + σ

L(R)
↓↑ =

1

π

dσ

dt
(1 − ANN P̄bP̄t). (4.20)

Thus, ANN is obtained as:

ANN =
1

P̄bP̄t

(σ
L(R)
↑↑ + σ

L(R)
↓↓ ) − (σ

L(R)
↑↓ + σ

L(R)
↓↑ )

(σ
L(R)
↑↑ + σ

L(R)
↓↓ ) + (σ

L(R)
↑↓ + σ

L(R)
↓↑ )

. (4.21)

Note that Equation (4.21) is reproduced by substituting P̄t = 1 and P̄b = 1
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4.2 AN and ANN Calculations from the Measured Spin-dependent
Yield

4.2.1 Spin-dependent Yield

In the former discussions, we assumed that dσ/dt is well known and the absolute polarization
values for the up-state and the down-state are same.

In practice, it is not easy to measure dσ/dt accurately. One of the reasons is the luminosity,
which might be different among the different polarization-state combinations. The acceptance
between the left-side and right-side detectors is also different. If we write the event yields instead
of the spin-dependent cross-sections, Equation (4.2) – (4.9) are modified as:

For the left side:

NL
↑↑ = N0dΩL[L↑↑{1 + AN (P ↑

b + P ↑
t ) + ANNP ↑

b P ↑
t } + B/4]

NL
↑↓ = N0dΩL[L↑↓{1 + AN (P ↑

b − P ↓
t ) − ANNP ↑

b P ↓
t } + B/4]

NL
↓↑ = N0dΩL[L↓↑{1 + AN (−P ↓

b + P ↑
t ) − ANNP ↓

b P ↑
t } + B/4]

NL
↓↓ = N0dΩL[L↓↓{1 + AN (−P ↓

b − P ↓
t ) + ANNP ↓

b P ↓
t } + B/4] (4.22)

For the right side:

NR
↑↑ = N0dΩR[L↑↑{1 − AN (P ↑

b + P ↑
t ) + ANNP ↑

b P ↑
t } + B/4]

NR
↑↓ = N0dΩR[L↑↓{1 − AN (P ↑

b − P ↓
t ) − ANNP ↑

b P ↓
t } + B/4]

NR
↓↑ = N0dΩR[L↓↑{1 − AN (−P ↓

b + P ↑
t ) − ANNP ↓

b P ↑
t } + B/4]

NR
↓↓ = N0dΩR[L↓↓{1 − AN (−P ↓

b − P ↓
t ) + ANNP ↓

b P ↓
t } + B/4] (4.23)

As we have discussed in Section 3.6, measured event yields include the calibration α particles
and beam-related backgrounds. These backgrounds are independent of beam and target polar-
ization states. We call the sum of them BG.

The components of right-hand side of Equation (4.22) and (4.23) are:

• N0 is numerical constant value.

• dΩL and dΩR are left and right acceptances.

• L↑↑ is spin-dependent luminosity for both polarizations are the up-states; similarly for
L↑↓, L↓↑ and L↓↓.

• P ↑
b(t) denotes the polarization of the RHIC-beam (the H-Jet target) for the up-state.

• −P ↓
b(t) denotes the polarization of the RHIC-beam (the H-Jet target) for the down-state.

• B is the background luminosity, which is, in principle, independent of the RHIC-beam nor
the H-Jet target polarizations. (Actually B has statistical fluctuations, so it is not the same
for each spin combination.)

We would introduce these event yields:

• Total event yield (NL
↑↑ +NL

↑↓ +NL
↓↑ +NL

↓↓ +NR
↑↑ +NR

↑↓ +NR
↓↑ +NR

↓↓) is referred to as N .
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• Total ”background” yield is related to the background luminosity (B); BG = N0(dΩL +
dΩR)B.

• The total ”elastic pp” event yield is referred to as (N − BG).

The numerical values of these yields (NL
↑↑, N

L
↑↓, N

L
↓↑, N

L
↓↓, N

R
↑↑, N

R
↑↓, N

R
↓↑, N

R
↓↓) are summa-

rized in Appendix A.11.
We define asymmetries between P ↑

b(t) and P ↓
b(t):

εPb
=

P ↑
b − P ↓

b

P ↑
b + P ↓

b

=
P ↑

b − P ↓
b

2P̄b
∼ 0.001, (4.24)

εPt =
P ↑

t − P ↓
t

P ↑
t + P ↓

t

=
P ↑

t − P ↓
t

2P̄t
∼ 0.001, (4.25)

where we replace (P ↑
b + P ↓

b ) by 2P̄b, and (P ↑
t + P ↓

t ) by 2P̄t. Both εPb
and εPt are estimated to

be ∼ 0.001. The asymmetry between up-down polarizations of RHIC-beam was obtained from
the pC-polarimeter.

The H-Jet target up-down polarizations were measured to be P ↑
t = 0.923 ± 0.018 and P ↓

t =
0.925 ± 0.018 by the Breit-Rabi polarimeter (BRP, see Subsection 2.2.2). Thus the absolute
polarization is P̄t = 0.924 ± 0.018 and the target polarization asymmetry is εPt ∼ 0.001.

4.2.2 AN

In the following discussion, we will show the extract AN from the measured spin-dependent
event yields. The goal is Equation (4.29).

Substituting P ↑
t = P̄t(1 + εPt) and P ↓

t = P̄t(1 − εPt) into Equation (4.22) and (4.23), we
have:

NL
↑↑ + NL

↓↑ = NL
0↑ = N0dΩL[L0↑{1 + AN P̄t(1 + εPt)} + B/2],

NL
↑↓ + NL

↓↓ = NL
0↓ = N0dΩL[L0↓{1 − AN P̄t(1 − εPt)} + B/2],

NR
↑↑ + NR

↓↑ = NR
0↑ = N0dΩR[L0↑{1 − AN P̄t(1 + εPt)} + B/2],

NR
↑↓ + NR

↓↓ = NR
0↓ = N0dΩR[L0↓{1 + AN P̄t(1 − εPt)} + B/2]. (4.26)

where, L0↑ = (L↑↑ + L↓↑) and so on.
In order to extract AN from Equation (4.26), we employed one of the outputs of the so-called

square-root formula, which cancels out L0↑, L0↓ and dΩL(R). (The details of the square-root
formula and these developments of formula are mentioned in Appendix B.)

εmeas
N =

√

NL
0↑N

R
0↓ −

√

NL
0↓N

R
0↑

√

NL
0↑N

R
0↓ +

√

NL
0↓N

R
0↑

∼= AN P̄t
N − BG

N
. (4.27)

The statistical error of εmeas
N is:

∆εmeas
N

∼= 1
√

NL
0↑ + NL

0↓ + NR
0↑ + NR

0↓

. (4.28)
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Figure 4.6 displays εmeas
N as a function of |t| together with other raw asymmetries which we

will discuss later.
We have ignored contributions beyond the third order of the products AN P̄t, εPt and B/L,

because those are smaller by 10−3.
The final AN values are corrected for α source background and beam-related background,

determined from empty target runs as we have discussed in Section 3.6. The background origi-
nating from the unpolarized residual target gas and the target tail has been already accounted for
a dilution of the target polarization.

Substituting N−BG
N = (1 − R(α+beam)), Equation (4.27) is rewritten as :

AN
∼= εmeas

N

P̄t(1 − R(α+beam))
, (4.29)

where R(α+beam) is mentioned in Section 3.6. We use this expression for the final results.
The statistical error of AN is:

∆Astat
N =

(∆εmeas
N )stat

P̄t(1 − R(α+beam))
∼= 1

P̄t(1 − Rα+beam)

1
√

NL
0↑ + NL

0↓ + NR
0↑ + NR

0↓

. (4.30)

The final AN values and the statistical errors as a function of |t| are provided in Table 4.1.
There are two categories of the systematic uncertainties in the measurement: TR bin-dependent

and overall normalization. These are obtained from the derivation of the first term in Equation
(4.29):

∆Asys
N = AN

(

(∆εmeas
N )sys

εmeas
N

⊕
∆R(α+beam)

1 − R(α+beam)
⊕ ∆P̄t

Pt

)

, (4.31)

where ⊕ denotes the quadratic sum (A ⊕ B =
√

A2 + B2).
The first and the second terms are TR bin-dependent. The first term is related to the false,

acceptance asymmetries (∆Aacc
N ) and the elastic event selection (∆Asel

N ). The second term is
related to the background corrections of α sources and beam gas scattering (∆ABG

N ). The third
term in Equation (4.31) is the uncertainty about the normalization (∆Anorm.

N ).

〈 Error from the acceptance and false asymmetries 〉
∆Aacc

N is estimated from:
∆Aacc

N = |A↑
N − A↓

N |,
where

A↑
N =

1

P̄t

NL
0↑ − NR

0↑

NL
0↑ + NR

0↑

, A↓
N = − 1

P̄t

NL
0↓ − NR

0↓

NL
0↓ + NR

0↓

.

∆Aacc
N is related to the left-right unbalanced acceptance and is provided in Table 4.2. The

1st, 9th and 14th TR bins of ∆Aacc
N are bigger than the other TR bins. As long as the left-

right acceptance asymmetry is less than 0.1, the square-root formula can cancel the acceptance
unbalance. However, for example the 14th TR bin, the event yield of the left-reaction is 1.9 times
lager than that of right-reaction. The 1st and 14th bins correspond to the events from the detector
edge and the acceptance balance is worse. The 9th TR bin is affected by the uncertainty of the
definition whether full-deposit and punched-through proton. This uncertainty is also related to
the acceptance unbalance. The other TR bins are about 10 times smaller than the statistical errors.
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Figure 4.5: Definition of the right-reaction with the target proton polarized in the plus direction
(σR

0↑).

TR −〈t〉 AN ∆Astat
N ∆Anorm

N

MeV (GeV/c)2 stat norm.
0.6 – 1.0 0.0015 0.0348 0.0017 0.0007
1.0 – 1.4 0.0022 0.0422 0.0020 0.0008
1.4 – 1.8 0.0030 0.0493 0.0022 0.0010
1.8 – 2.2 0.0037 0.0442 0.0023 0.0009
2.2 – 2.5 0.0044 0.0430 0.0027 0.0008
3.0 – 3.5 0.0061 0.0423 0.0025 0.0008
3.5 – 4.2 0.0071 0.0363 0.0021 0.0007
4.2 – 4.7 0.0084 0.0388 0.0020 0.0008
5.7 – 7.2 0.0118 0.0348 0.0015 0.0007
8.0 – 9.3 0.0165 0.0272 0.0023 0.0005
9.3 – 10.6 0.0187 0.0242 0.0020 0.0005

10.6 – 12.0 0.0212 0.0227 0.0020 0.0004
14.5 – 16.0 0.0287 0.0271 0.0021 0.0005
16.0 – 17.0 0.0309 0.0263 0.0027 0.0005

Table 4.1: AN as a function of t in 14 TR bins. The statistical errors and normalization errors of
P̄t are also listed.
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Figure 4.6: εmeas
N , εmeas

b and εmeas
NN as a function of t. The errors on the data points are statistical.
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TR −〈t〉 Systematic Error Components
MeV (GeV/c)2 ∆Asys

N (∆Aacc
N ± ∆Asel

N ± ∆ABG
N )

0.6 – 1.0 0.0015 0.0030 0.0029 ± 0.0006 ± 0.0002
1.0 – 1.4 0.0022 0.0007 0.0006 ± 0.0003 ± 0.0002
1.4 – 1.8 0.0030 0.0010 0.0001 ± 0.0010 ± 0.0002
1.8 – 2.2 0.0037 0.0006 0.0002 ± 0.0005 ± 0.0003
2.2 – 2.5 0.0044 0.0004 0.0002 ± 0.0002 ± 0.0003
3.0 – 3.5 0.0061 0.0017 0.0001 ± 0.0016 ± 0.0003
3.5 – 4.2 0.0071 0.0018 0.0003 ± 0.0017 ± 0.0002
4.2 – 4.7 0.0084 0.0023 0.0015 ± 0.0018 ± 0.0002
5.7 – 7.2 0.0118 0.0031 0.0031 ± 0.0003 ± 0.0001
8.0 – 9.3 0.0165 0.0016 0.0016 ± 0.0005 ± 0.0001
9.3 – 10.6 0.0187 0.0013 0.0004 ± 0.0012 ± 0.0001

10.6 – 12.0 0.0212 0.0008 0.0005 ± 0.0006 ± 0.0002
14.5 – 16.0 0.0287 0.0018 0.0016 ± 0.0007 ± 0.0003
16.0 – 17.0 0.0309 0.0065 0.0064 ± 0.0010 ± 0.0003

Table 4.2: The TR-dependent systematic error in AN . ∆Asys
N and three systematic error compo-

nents which are described in the text.

〈 Error from the elastic event selection 〉
∆Asel

N is originated in the criteria of the elastic event selection. In Section 3.5, we have dis-
cussed about the criteria for the recoil proton identification was |ToF − ToFcalc| < 8 nsec. We
have also estimated AN with narrow cut (AN

|ToF−ToFcalc|<6) and wide cut (AN
|ToF−ToFcalc|<10).

The values of subtraction AN
|ToF−ToFcalc|<6 from AN

|ToF−ToFcalc|<10 for the 14TR bins are
smaller than the statistical uncertainty but always positive. Therefore we consider the ToF -cut
width dependence by comparing the results of |ToF−ToFcalc| < 6 nsec and |ToF−ToFcalc| <
10 nsec cases,

∆Asel
N = (AN

|ToF−ToFcalc|<6 − AN
|ToF−ToFcalc|<10),

conservatively. ∆Asel
N is provided in Table 4.2 and is ranging between 0.0002 and 0.0018 for all

TR bins. They are small or comparable in size compared to the statistical errors.

〈 Error from the backgrounds correction 〉
∆ABG

N is originated in the backgrounds correction.

∆ABG
N = AN ·

√

∆Rα
2 + ∆Rbeam

2

∆ABG
N is provided in Table 4.2 and is ranging between 0.0001 and 0.0003 for all TR bins. They

are less than tenth part of the statistical errors. The details of ∆Rα and ∆Rbeam have been
discussed in Section 3.6.

4.2.3 ANN

In the following discussion, we will show the extract ANN from the measured spin-dependent
event yields. The goal is Equation (4.41). The event yields of parallel or anti-parallel polarization
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states are obtained from Equation (4.22) and (4.23) as:

NL
↑↑ + NL

↓↓ = N0dΩL{(L↑↑ + L↓↓)(1 + ANN P̄bP̄t) + (L↑↑ − L↓↓)AN (P̄b + P̄t) + B/2},
NL

↑↓ + NL
↓↑ = N0dΩL{(L↑↓ + L↓↑)(1 − ANN P̄bP̄t) + (L↑↓ − L↓↑)AN (P̄b − P̄t) + B/2},

(4.32)

for the left-reactions and,

NR
↑↑ + NR

↓↓ = N0dΩR{(L↑↑ + L↓↓)(1 + ANN P̄bP̄t) − (L↑↑ − L↓↓)AN (P̄b + P̄t) + B/2},
NR

↑↓ + NR
↓↑ = N0dΩR{(L↑↓ + L↓↑)(1 − ANN P̄bP̄t) − (L↑↓ − L↓↑)AN (P̄b − P̄t) + B/2}.

(4.33)

for the right-reactions. The difference of the second equation and the first equation in (4.32):

(NL
↑↑ + NL

↓↓) − (NL
↑↓ + NL

↓↑) = N0dΩLL{(εLtAN P̄b + εLb
AN P̄t + ANN P̄bP̄t) + εLb

εLt},
(4.34)

where L = (L↑↑ + L↓↓ + L↑↓ + L↓↑), and εLb
, εLt are defined as:

εLb
=

(L↑↑ + L↑↓) − (L↓↑ + L↓↓)

L
, (4.35)

εLt =
(L↑↑ + L↓↑) − (L↑↓ + L↓↓)

L
, (4.36)

and
εLb

εLt =
L↑↑ + L↓↓ − L↑↓ − L↓↑

L
. (4.37)

The sum of the first equation and the second equation (4.32)is:

(NL
↑↑ + NL

↓↓) + (NL
↑↓ + NL

↓↑) = N0dΩLL{1 + B/L + εLtAN P̄b + εLb
AN P̄t}

(4.38)

Because εLb
= 0.0001± < 0.0001, which is measured by WCM, and εLt = −0.0005± <

0.0001, which is measured by BRP, are small, εLb
εLt is in the order of 10−8, (AN P̄tεLb)) and

(AN P̄bεLt) are in the order of 10−6. And we can omit εLb
εLt in Equation (4.34), εLtAN P̄b and

εLb
AN P̄t in Equation (4.38).
Thus the ratio of Equation (4.34) and (4.38) is:

NL
↑↑ + NL

↓↓ − NL
↑↓ − NL

↓↑

NL
↑↑ + NL

↓↓ + NL
↑↓ + NL

↓↑

∼= L

L + B
{ANN P̄tP̄b + εLtAN P̄b + εLb

AN P̄t}, (4.39)

The ratio of event yields of the right-reactions is obtained from Equation (4.33) in the same
way:

NR
↑↑ + NR

↓↓ − NR
↑↓ − NR

↓↑

NR
↑↑ + NR

↓↓ + NR
↑↓ + NR

↓↑

∼= L

L + B

(

ANN P̄tP̄b − εLtAN P̄b − εLb
AN P̄t

)

. (4.40)
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TR (MeV) εmeas
b /εmeas

N εmeas
b /εmeas

N

Fit with Constant value (χ2/ndf)) Accumulate
0.6 – 4.7 0.410 ± 0.026 0.425 ± 0.020

(full-deposit protons only) (9.4/7)
0.6 – 17.0 0.424 ± 0.023 0.445 ± 0.017

(all energy range) (16.5/13)

Table 4.3: The comparison of εmeas
b /εmeas

N in several ways. ANN results are consistent either
way.

Taking the average of Equation (4.39) and (4.40), ANN is obtained :

εmeas
NN =

1

2

(

(NL
↑↑ + NL

↓↓) − (NL
↑↓ + NL

↓↑)

(NL
↑↑ + NL

↓↓) + (NL
↑↓ + NL

↓↑)
+

(NR
↑↑ + NR

↓↓) − (NR
↑↓ + NR

↓↑)

(NR
↑↑ + NR

↓↓) + (NR
↑↓ + NR

↓↑)

)

∼= N − BG

N
ANN P̄bP̄t. (4.41)

Figure 4.6 displays εmeas
NN , εmeas

N and εmeas
b as a function of |t|.

Thus ANN is obtained:

ANN
∼= 1

P̄tP̄b

εmeas
NN

1 − R(α+beam)
(4.42)

where we substituted 1/(1−R(α+beam)) = (L+B)/L. The target polarization is P̄t = 0.924±
0.018, which is measured by BRP. The averaged beam polarization during RUN-4 is obtained
by use of raw-asymmetries for the beam polarization and the target polarization, and the target
polarization,

P̄b = 〈ε
meas
b

εmeas
N

〉P̄t. (4.43)

Because AN of elastic pp elastic scattering does not depend on the reference frame, we can
change the role of which is polarized between target proton and beam proton as we mentioned
in Equation (4.17) and (4.18). Figure 4.7 displays the ratio of εmeas

b and εmeas
N as a function of

|t|. We tried the four ways to get the ratio of 〈εmeas
b /εmeas

N 〉 as shown in Table 4.3. ANN results
are consistent either way we choose.

We adopted the value of this ratio:

〈ε
meas
b

εmeas
N

〉 = 0.425 ± 0.020,

where the error is statistical. The |t| dependence of this ratio is accounted as one of the systematic
error sources, which will be discussed later.

The statistical error of ANN is obtained as follows:

∆Astat
NN =

1

P̄bP̄t

(∆εmeas
NN )stat

1 − R(α+beam)
, (4.44)

and
(∆εmeas

NN )stat ∼ 1√
N
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Figure 4.7: The ratio of εmeas
N and εmeas

b as a function of t. The errors on the data points are
statistical. The lower band represents the total systematic error. The |t| dependence is accounted
as the systematic uncertainty about the beam polarization in the text.
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TR −〈t〉 ANN ∆Astat
NN ∆AnormT

NN ± ∆AnormB
NN

(MeV) (GeV2/c2)
0.6 – 1.0 0.0015 −0.0060 0.0042 0.0001 ± 0.0003
1.0 – 1.4 0.0022 −0.0011 0.0050 0.0000 ± 0.0001
1.4 – 1.8 0.0030 −0.0039 0.0055 0.0001 ± 0.0002
1.8 – 2.2 0.0037 −0.0001 0.0059 < 0.0001± < 0.0001
2.2 – 2.5 0.0044 −0.0046 0.0068 0.0001 ± 0.0002
3.0 – 3.5 0.0061 −0.0027 0.0064 0.0001 ± 0.0001
3.5 – 4.2 0.0071 0.0058 0.0054 0.0001 ± 0.0003
4.2 – 4.7 0.0084 −0.0093 0.0051 0.0002 ± 0.0004
5.7 – 7.2 0.0118 −0.0022 0.0038 < 0.0001 ± 0.0001
8.0 – 9.3 0.0165 −0.0050 0.0060 0.0001 ± 0.0002

9.3 – 10.6 0.0187 0.0006 0.0051 < 0.0001± < 0.0001
10.6 – 12.0 0.0212 0.0006 0.0051 < 0.0001± < 0.0001
14.5 – 16.0 0.0287 −0.0032 0.0053 < 0.0001 ± 0.0002
16.0 – 17.0 0.0309 −0.0014 0.0067 < 0.0001 ± 0.0001

Table 4.4: ANN , the normalization errors and the statistical errors as a function of energy bins.

The final values of ANN and the statistical error as a function of |t| are provided in Table 4.4.
The systematic uncertainty in the measurement are in two categories: TR bin-dependent and

overall normalization. These are obtained from the derivation of the first term in Equation (4.42):

∆Asys
NN

∼= ANN

(

∆εmeas
NN

εmeas
NN

⊕
∆R(α+beam)

1 − R(α+beam)
⊕ ∆P̄t

P̄t
⊕ ∆P̄b

P̄b

)

, (4.45)

where ⊕ denotes the quadratic sum. The first and second terms are TR bin-dependent. The
first term is related to the residual component of AN (∆Ares

NN ) and the elastic event selection
(∆Asel

NN ). The second term is related to the background correction (∆ABG
NN ). The third and

forth terms are the uncertainty about the normalization by P̄t (∆AnormT
NN ) and P̄b (∆AnormB

NN ).
They are provided in Table 4.4. The systematic uncertainty of P̄b is referred as ∆Abeam

NN . The
spin-dependent luminosity, which is ignored Equation (4.34), is estimated to be small.

〈 Systematic uncertainty from the residual AN component 〉
∆Ares

NN is estimated as:

∆Ares
NN =

AN

P̄t

√

(εLt)
2 +

(

εLb
〈ε

meas
N

εmeas
b

〉
)2

∆Ares
NN is provided in Table 4.5 and is negligible for all TR bins compared with statistical errors.

〈 Systematic uncertainty from the elastic event selection 〉
∆Asel

NN is related to the criteria of the elastic event selection. In Section 3.5, we mentioned
the criteria for the recoil proton identification was |ToF − ToFcalc| < 8 nsec. We consider the
ToF -cut width dependence by comparing the ANN results with |ToF − ToFcalc| < 6 nsec and
|ToF − ToFcalc| < 10 nsec cases.

∆Asel
NN = |A|ToF−ToFcalc|<6

NN − A
|ToF−ToFcalc|<10
NN | < ∆Astat

NN .
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∆Asel
NN is provided in Table 4.5 and is ranging between 0.0001 and 0.0034 for all TR bins. They

are small in size to the statistical errors.

〈 Systematic uncertainty from the background correction 〉
∆ABG

NN is related to the backgrounds correction.

∆ABG
NN = ANN ·

√

∆Rα
2 + ∆Rbeam

2

∆ABG
NN is provided in Table 4.5 and is negligible for all TR bins. The details of ∆Rα and

∆Rbeam have been discussed in Section 3.6.

〈 Systematic uncertainty from the RHIC-beam polarization 〉
The RHIC-beam polarization should be independent of TR bins. However, as we have seen

in Figure 4.7, the ratios of εmeas
b and εmeas

N are fluctuated as provided in Table 4.3. In order to
account for this fluctuation, we rewrite Equation (4.42) in this way:

Afluc
NN =

1

P̄t
2

εmeas
N

εmeas
b

εmeas
NN

1 − R(α+beam)
, (4.46)

and we consider the difference between ANN and Afluc
NN as the systematic uncertainty about the

RHIC-beam polarization:

∆Abeam
NN =

εmeas
NN

P̄t
2
(1 − R(α+beam))

√

(

〈ε
meas
N

εmeas
b

〉 − εmeas
N

εmeas
b

)2

∆Abeam
NN is provided in Table 4.5 and is ranging between 0.0001 and 0.0018 for all TR bins. They

are small compared to the statistical errors.

〈 Systematic uncertainty from the spin-dependent luminosity 〉
The effect spin-dependent luminosity is obtained as the product of εLb

and εLt from Equation
(4.34). It is negligible as long as |εLb

| and |εLt | are less than 5 × 10−3.
In order to estimate εLb

and εLt in the different way, we tried to use selected elastic proton
event yields.
εeve
Lb

= (NL
↑0 + NR

↑0 − NL
↓0 − NR

↓0)/(N
L
↑0 + NR

↑0 + NL
↓0 + NR

↓0) = 0.0035 ± 0.0005

εeve
Lt

= (NL
0↑ + NR

0↑ − NL
0↓ − NR

0↓)/(N
L
0↑ + NR

0↑ + NL
0↓ + NR

0↓) = 0.0036 ± 0.0005,
thus the product of εLb

and εLt is in the order of 10−5 and negligible.
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TR −〈t〉 total sys. Components
(MeV) (GeV/c)2 ∆Asys

NN ∆Ares
NN ± ∆Asel

NN ± ∆ABG
NN ± ∆Abeam

NN

0.6 – 1.0 0.0015 0.0012 0.0009 ± 0.0007± < 0.0001 ± 0.0005
1.0 – 1.4 0.0022 0.0034 0.0005 ± 0.0034± < 0.0001 ± 0.0002
1.4 – 1.8 0.0030 0.0016 0.0004 ± 0.0006± < 0.0001 ± 0.0014
1.8 – 2.2 0.0037 0.0014 0.0003 ± 0.0014± < 0.0001± < 0.0001
2.2 – 2.5 0.0044 0.0017 0.0003 ± 0.0017± < 0.0001 ± 0.0002
3.0 – 3.5 0.0061 0.0010 0.0003 ± 0.0001± < 0.0001 ± 0.0009
3.5 – 4.2 0.0071 0.0022 0.0002 ± 0.0020± < 0.0001 ± 0.0009
4.2 – 4.7 0.0084 0.0009 0.0005 ± 0.0005± < 0.0001 ± 0.0005
5.7 – 7.2 0.0118 0.0006 0.0004 ± 0.0003± < 0.0001 ± 0.0001
8.0 – 9.3 0.0165 0.0020 0.0002 ± 0.0006± < 0.0001 ± 0.0018

9.3 – 10.6 0.0187 0.0012 0.0002 ± 0.0012± < 0.0001 ± 0.0002
10.6 – 12.0 0.0212 0.0025 < 0.0001 ± 0.0025± < 0.0001 ± 0.0001
14.5 – 16.0 0.0287 0.0009 0.0003 ± 0.0009± < 0.0001 ± 0.0001
16.0 – 17.0 0.0309 0.0003 0.0002 ± 0.0002± < 0.0001± < 0.0001

Table 4.5: Systematic uncertainties on ANN as a function of TR-bins. The first is total, followed
by the components.
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Chapter 5

Results and Discussion

5.1 AN for the H-jet-target Polarization

5.1.1 Results

The resulting AN is displayed in Figure 5.1 and Table 5.1. The statistical errors, the systematic
errors and the normalization errors for 14 TR bins are listed as well.

The black line is the theoretical prediction with no hadronic spin-flip ( Imr5 = 0 and Rer5 =
0). [1]. This line is obtained from Equation (1.34) and (1.35) with substituting the parameters
from the past experiments: σtot = 38.4 ± 0.5 mb, ρ = −0.08 ± 0.02, δC = 0.02 ± 0.01. And
the parameters from the references: B = 12 (GeV/c)−2 [63] and κ = 1.7938± < 0.0001.

The AN data are compared to the theoretical prediction and the χ2 is 13.4 for 14 degrees of
freedom. The major uncertainty in the CNI prediction comes from the parameterization of the
hadronic amplitudes and the approximate knowledge of the ρ parameter.

The AN data are also fitted with the CNI prediction allowing for a hadronic spin-flip con-
tribution. The blue line shows the fitting results without fixing Imr5 = 0 and Rer5 = 0. The
quality of the fit is similar to the case with no hadronic spin-flip (χ2 = 11.1/12 d.o.f.). The
values obtained for r5 are:

Re r5 = −0.0008 ± 0.0091,

Im r5 = −0.015 ± 0.029

and the correlation parameter between Re r5 and Im r5 is −0.92. The results of the r5 fit are
shown in Figure 5.1. The results of r5 and its associated χ2 contours are displayed in Figure 5.2.

5.1.2 Effects of ρ, δC and σtot on AN

The AN data indicates the tiny deviation in shape and magnitude from the CNI prediction with-
out spin-flip. This deviation is regarded as the r5 contribution. However, the accuracy of CNI
prediction is limited because of the other parameters like σtot, ρ and δC . These were obtained
from the past experimental results with finite uncertainties. And these uncertainties bring a de-
viation on AN shape, as well as r5 does. Therefore we estimate the sensitivity for r5.

B would not affect AN because it acts as an exponential in very small −t. κ is measured very
well within 10−5. Thus, we checked the effect on AN data of ρ, δ and σtot uncertainties. They

131



2-t (GeV/c)
-310 -210

N
A

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 5.1: AN as a function of −t for pp↑ → pp. The results of this experiment ( at
√

s =
13.7 GeV). The errors on the data points are statistical. The lower band represents the systematic
errors. The prediction for AN with the electro-magnetic spin-flip only is superimposed to the data
(black lane). The blue line is a fit to the data allowing for a hadronic spin-flip contribution to
AN .
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Figure 5.2: r5 with the 1-σ, 2-σ and 3-σ confidence contours.
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TR −〈t〉 AN ∆AN

(MeV) (GeV/c)2 (stat. ± sys. ± norm.)
0.6 – 1.0 0.0015 0.0348 0.0017 ± 0.0030 ± 0.0007
1.0 – 1.4 0.0022 0.0422 0.0020 ± 0.0007 ± 0.0008
1.4 – 1.8 0.0030 0.0493 0.0022 ± 0.0010 ± 0.0010
1.8 – 2.2 0.0037 0.0442 0.0023 ± 0.0006 ± 0.0009
2.2 – 2.5 0.0044 0.0430 0.0027 ± 0.0004 ± 0.0008
3.0 – 3.5 0.0061 0.0423 0.0025 ± 0.0017 ± 0.0008
3.5 – 4.2 0.0071 0.0363 0.0021 ± 0.0018 ± 0.0007
4.2 – 4.7 0.0084 0.0388 0.0020 ± 0.0023 ± 0.0008
5.7 – 7.2 0.0118 0.0348 0.0015 ± 0.0031 ± 0.0007
8.0 – 9.3 0.0165 0.0272 0.0023 ± 0.0016 ± 0.0005
9.3 – 10.6 0.0187 0.0242 0.0020 ± 0.0013 ± 0.0005

10.6 – 12.0 0.0212 0.0227 0.0020 ± 0.0008 ± 0.0004
14.5 – 16.0 0.0287 0.0271 0.0021 ± 0.0018 ± 0.0005
16.0 – 17.0 0.0309 0.0263 0.0027 ± 0.0065 ± 0.0005

Table 5.1: AN as a function of −t in 14 TR bins. The first error is the statistical one, followed
by the systematic error, and the normalization error on Pt.

are independent and the total uncertainty is regarded as the quadratic sum of each components.

∆Asum
N =

∂AN

∂σtot
∆σtot ⊕

∂AN

∂ρ
∆ρ ⊕ ∂AN

∂δC
∆δC , (5.1)

∂AN

∂σtot
∆σtot ≈ |AN (σtot + ∆σtot) − AN (σtot − ∆σtot)|

2
, (5.2)

∂AN

∂ρ
∆ρ ≈ |AN (ρ + ∆ρ) − AN (ρ − ∆ρ)|

2
, (5.3)

∂AN

∂δC
∆δC ≈ |AN (δC + ∆δC) − AN (δC − ∆δC)|

2
, (5.4)

Here we set ∆σtot = 0.05 mb from Figure 1.2, ∆ρ = 0.02 from Figure A.3 and ∆δC = 0.01
from the experimental results.

Figure 5.3 displays the deviations from the non spin-flip AN form. Blue solid line corre-
sponds to the deviation, which is obtained from Figure 5.1 comparing blue and black lines (with
and without spin-flip amplitude). The black dashed line represents Equation (5.1). The red-
dotted line, green-dashed and dotted line and pink-thine solid line correspond to Equation (5.2),
(5.3) and (5.4), respectively. Comparing the blue solid line and the black dashed line, the level
of the deviation is comparable, ∼ 0.0001. Thus we conclude that our AN data are consistent
with no hadronic spin-flip within uncertainties from other parameters. AN data do not support
the presence of a large hadronic spin-flip amplitude at this energy.

This measurement represents the first precise confirmation of the predicted dependence of
the analyzing power on the four-momentum transfer squared t in pp elastic scattering, due to the
proton’s anomalous magnetic moment of Schwinger [2], Kopeliovich, and Lapidus [3].
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Figure 5.3: Deviations from the non spin-flip AN form. Blue solid line corresponds to the devia-
tion of AN shape which is obtained from Figure 5.1 comparing blue and black lines (with/without
spin-flip amplitude). The black dashed line represents Equation (5.1). The red-dotted line, green-
dotted and dashed line and pink-thin solid line corresponds to Equation (5.2), (5.3) and (5.4),
respectively.

5.2 ANN for the H-Jet-target and the RHIC-beam Polarizations

5.2.1 Results

At large
√

s and small −t, ANN is expressed as:

ANN
dσ

dt
=

4π

s2
{2|φ5(s, t)|2 + Re[φ1(s, t)

∗φ2(s, t) − φ3(s, t)
∗φ4(s, t)]}

∼= 4π

s2
{2|φhad

5 (s, t)|2 + Re[φ+(s, t)∗φhad
2 (s, t)]}.

By considering φhad
5 (s, t) is consistent with zero by the AN measurement, ANN are sensitive

to hadronic component of double spin-flip amplitude. The resulting ANN is displayed in Figure
5.4 and Table 5.2 with the statistical errors, the systematic errors and the normalization errors for
each energy-bin are listed .

The statistical errors and the systematic errors of εN , εb and εNN have been discussed in the
previous section.

The results of ANN for each measured points are small and consistent with zero. The mean
value of ANN for the region of 0.001 < |t| < 0.032 (GeV/c)2 is < ANN >= −0.0024±0.0015,
and is consistent with zero.

Thus we conclude that our ANN data are consistent with no hadronic double spin-flip within
uncertainties from other parameters. ANN data do not support the presence of a large hadronic
double spin-flip amplitude at this energy.
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Figure 5.4: ANN as a function of −t for p↑p↑ → pp at
√

s = 13.7 GeV. The errors on the data
points are statistical. The lower band represents the total systematic error.

The ANN are satisfied with the equations which have been discussed in Subsection 1.2.1:

φhad
2 (s, t) = −{φ5(s, t)}2

φ+(s, t)
,

and
φhad

2 (s, t) ∝ |t| → 0.

5.2.2 Sensitivity for φhad

2
(s, t)

As we have introduced in Subsection 1.3.2, the sensitivity of the ANN to the double spin-flip
amplitude have been studied theoretically [43]. The striking difference of ANN values depend-
ing on the real-to-imaginary ratio of φhad

2 (s, t) has displayed in Figure 1.13 with assuming the
magnitude to φhad

+ (s, t) is 0.05. Because our ANN data are quite small, we can not extract the
real-to imaginary ration of φhad

2 (s, t). And the magnitude to φhad
+ (s, t) is estimated to be less

than 0.05, even in the extreme case that φhad
2 (s, t) is nearly pure real. In the case that φhad

2 is
nearly imaginary, the magnitude to φhad

2 must be in the order of 10−3.
Recently, as the result of analysis of the data from the pp and pC elastic scattering at the AGS

and at the RHIC, the new model-dependent estimation of the magnitude and energy dependence
of ANN have been discussed [66].
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TR −〈t〉 ANN ∆ANN

(MeV) (GeV2/c2) (stat. ± sys. ± norm.)
0.6 – 1.0 0.0015 −0.0060 0.0042 ± 0.0012 ± 0.0003
1.0 – 1.4 0.0022 −0.0011 0.0050 ± 0.0034 ± 0.0001
1.4–1.8 0.0030 −0.0039 0.0055 ± 0.0006 ± 0.0002

1.8 – 2.2 0.0037 −0.0001 0.0059 ± 0.0014± < 0.0001
2.2 – 2.5 0.0044 −0.0046 0.0068 ± 0.0017 ± 0.0002
3.0 – 3.5 0.0061 −0.0027 0.0064 ± 0.0001 ± 0.0001
3.5 – 4.2 0.0071 0.0058 0.0054 ± 0.0020 ± 0.0003
4.2 – 4.7 0.0084 −0.0093 0.0051 ± 0.0005 ± 0.0005
5.7 – 7.2 0.0118 −0.0022 0.0038 ± 0.0003 ± 0.0001
8.0 – 9.3 0.0165 −0.0050 0.0060 ± 0.0006 ± 0.0003
9.3– 10.6 0.0187 0.0006 0.0051 ± 0.0012± < 0.0001

10.6 – 12.0 0.0212 0.0006 0.0051 ± 0.0025± < 0.0001
14.5 – 16.0 0.0287 −0.0032 0.0053 ± 0.0009 ± 0.0001
16.0 – 17.0 0.0309 −0.0014 0.0067 ± 0.0002 ± 0.0001

Table 5.2: ANN and the errors are listed as a function of energy bins.

In the limit at −t → 0, the ANN is connected to ∆σT and Imφ2(s, 0) :

ANN → −∆σT

σtot
= − 8π

√

s(s − 4m2
p)

Imφ2(s, 0)

σtot
,

therefore we obtain ∆σT at Pbeam = 100 GeV/c:

∆σT = 0.092 ± 0.058 (mb),

where we use σtot = 38.4 mb.
Comparing our data and the past experiments, ∆σT = 0.34 ± 0.07 (mb) at Pbeam = 6

GeV/c [32], our data have consistent tendency regarding the beam momentum dependence. (See
Figure 1.5.) The first measurement of ANN as a function of −t in the CNI region are consistent
with the experimental expectation of ∆σT → 0 and Imφ2(s, 0) → 0 as

√
s → ∞.
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√
s (GeV) σtot (mb) ρ B (GeV/c)−2

13.7 34.0 −0.03 12.0

19.4 38.4 −0.08 12.0

200 41.6 0.13 16.3

Table 5.3: The input parameters for Equation (1.34), (1.35) and (1.36) with different center-of-
mass energies.

5.3 Comparison of r5 with Other Experiments

5.3.1 Elastic p↑p Scattering

Figure 5.5 displays the results of AN from this experiment, the E704 experiment and the PP2PP
experiment. Our AN data are measured at

√
s = 13.7 GeV. The E704 experiment at FNAL and

PP2PP experiment at BNL measured AN for p↑ p elastic scattering in CNI region at
√

s = 19.4
GeV and

√
s = 200 GeV, respectively. The prediction for AN with electro-magnetic spin-flip

only for different center-of-mass energies are superimposed to the data. The red-solid line is
for

√
s = 13.9 GeV, the dashed-black line is for

√
s = 19.4 GeV and the dashed-dotted-green

line is for
√

s = 200 GeV. The prediction lines are obtained setting Imr5 = 0 and Rer5 = 0
in Equation (1.34), (1.35) and (1.36). The some of the other parameters are a function of the
center-of-mass energy as we have displayed in Figure 1.2, A.3 and A.4. The values which are
used in Figure 5.5 and 5.7 are summarized in Table 5.3.

As we have discussed in Subsection 1.3.1, the presence of a hadronic spin-flip amplitude
(φhad

5 (s, t)) interfering with the electro-magnetic non-spin-flip one (φem
+ (s, t)) introduces a de-

viation in shape and magnitude from AN calculated with no hadronic spin-flip [1].
Figure 5.5 displays the comparison of AN with different

√
s.

• The results of the PP2PP are consistent with the CNI prediction without hadronic spin-flip
amplitude. (However they insisted in the paper that the data indicate a deviation which are
suggestive of a hadronic spin-flip amplitude at

√
s = 200 GeV.)

• The results of E704 at
√

s = 19.4 GeV can not provide constraints on a hadronic spin-flip
amplitude because of their limited accuracy.

• Our data do not suggest the presence of a large hadronic spin-flip amplitude at
√

s = 13.7
GeV.

The theoretical works in finding a way to understand the
√

s dependence of hadronic spin-flip
are ongoing [64].

We will concentrate on the similar
√

s region in the following discussions. Figure 5.6 dis-
plays the result of r5 with the 1-σ contour of the associated χ2 for both results. The fitting
results of them are displayed in Figure 5.7. The precision in the AN and r5 measurement was
significantly improved by this experiment, compared with the results measurement by E704 ex-
periment.

5.3.2 Elastic p↑C Scattering

AN data from proton-carbon elastic scattering over a similar kinematic range at the same [9]
and lower [6] energies, on the contrary, deviate substantially from the simple CNI prediction and
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Figure 5.5: AN as a function of t for pp → pp. The results of this experiment which are
measured at

√
s = 13.7 GeV are indicated by the filled-red circles. The empty circles are

measured at
√

s = 19.4 GeV by the E704 experiment at FNAL. The filled-green circles are
measured at

√
s = 200 GeV by the PP2PP experiment at BNL. The errors on the data points are

statistical. The red solid, black dashed and green dotted-dashed lines are the functions without
allowing for a hadronic spin-flip contribution to AN for these

√
s, respectively.
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Figure 5.6: Hadronic spin-flip amplitude, r5, with the 1-σ contour of the associated χ2 obtained
from AN for pp elastic scattering at

√
s = 13.7 GeV (blue line, this experiment) and

√
s = 19.4

(green line, E704), respectively.
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Figure 5.7: AN as a function of t for pp → pp. The results of this experiment ( at
√

s =
13.7 GeV) are indicated by the filled-red circles. The empty circles are measured at

√
s =

19.4 GeV (E704 experiment at FNAL). The errors on the data points are statistical. The blue
and green lines are fit to the data allowing for a hadronic spin-flip contribution to AN for this
experiment and E704 [5], respectively.
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require a substantial hadronic spin-flip contribution.
The pC elastic scattering is described with two independent helicity amplitudes of the spin-

nonflip amplitude F++(s, t), and the spin-flip amplitudes, F+−(s, t). The analyzing power, AN ,
and the differential cross section, dσpC/dt, are written as [65]:

AN
dσpC

dt
= 2ImF++(s, t)F+−(s, t)∗,

dσpC

dt
= |F++(s, t)|2 + |F+−(s, t)|2. (5.5)

Each amplitude, Fj (j = ++,+−), can be decomposed as

Fj(s, t) = F em
j (s, t) + e−iδpC F had

j (s, t),

where F em
j (s, t) and F had

j (s, t) are the electro-magnetic part and hadronic part of each amplitude
respectively. δpC is the Coulomb phase.

The amplitudes are normalized by using total cross-section, σpC
tot , through the optical theorem

as
σpC

tot = 4
√

πImF had
++ (s, 0).

The hadronic spin-flip amplitude for the pC elastic scattering, rpC
5 , is defined by

rpC
5 (t) =

mp√
−t

F had
+− (s, t)

ImF had
++ (s, t)

. (5.6)

ρpC(t) =
ReF had

++

ImF had
++

.

Figure 5.8 displays the AN data of the elastic pC scattering at 21.7 GeV/c and rpC
5 is obtained

by fitting the AN data using Equation (5.6).
Using the relationship between rpC

5 and r5

r5 =
1 − iρ

1 − iρpC(t)
rpC
5 (t),

where ρpC(t) is the ratio of the real-to-imaginary parts of the hadronic amplitude for pC elastic
scattering, We have r5 of the elastic pC scattering process as displayed in Figure 5.9.

Recently high statistics AN data for Pbeam = 100 GeV/c were reported [9] as displayed
Figure 5.10. A significant strong spin flip has been observed for proton-carbon CNI scattering.

Although ApC
N data from proton-carbon elastic scattering and App

N data from proton-proton
elastic scattering cover a similar momentum transfer squared |t| range at the similar

√
s, bother-

ing issue is there. It is a surprise because theorists predicted that the proton-proton result should
also have a similar hadronic spin flip term. The discrepancy between them is thought to fully
come from the target nucleus. Proton is iso-vector (I = 1) and Carbon is iso-scalar (I = 0). The
new theoretical works, which are trying to find a way to understand the ”mystery” of hadronic
spin-flip, are ongoing [64]. Further measurements are also required to fully disentangle the role
of the hadronic spin-flip amplitudes, their energy dependence and the different behavior between
proton and nuclear targets.
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Figure 5.8: (a) The analyzing power, AN
pC , for p↑C elastic scattering in the CNI region at

Pbeam = 21.7 GeV/c [6]. The error bars on the data points are statistical only. The solid line is
the fitted function from theory [65]. The dotted lines are the 1-σ error band of the fitting result.
The dashed line is the theoretical function with no hadronic spin-flip amplitude (r5 = 0). (b)
The error bars represent the statistical errors. The brackets represents the systematic errors in the
raw asymmetry. The dotted lines represent the systematic error in the beam polarization.
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from AN
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Figure 5.10: AN
pC as a function of t for p↑C → pC at Pbeam = 100 GeV/c. The errors on the

data points are statistical. The blue line is the fit to the data with the theoretical function [11]
which is allowing a hadronic spin-flip contribution. The dotted line is the electro-magnetic spin-
flip only (Re r5 = 0, Im r5 = 0).
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Chapter 6

Conclusion

The spin-dependent asymmetries, AN and ANN for pp elastic scattering in the small momentum
transfer region, 0.001 < −t < 0.032 (GeV/c)2, at

√
s = 13.7 GeV were measured using a

polarized proton beam and a polarized hydrogen gas jet target. The polarized hydrogen gas jet
target system and the recoil spectrometer were installed in the RHIC-ring, and the experiment
was carried out in 2004.

In this −t region, the electro-magnetic force and the hadronic force become same in strength
and interfere with each others. We call this interference the Coulomb Nuclear Interference (CNI).
The AN and ANN in the CNI region have been studied as the sensitive probe of the hadronic
single and double spin flip amplitudes. The AN is predicted theoretically, however, the accu-
racy of predicted AN is limited by poor knowledge of the spin-flip hadronic amplitude. The
precise measurements of AN and ANN in the CNI region were expected to provide significant
constraints for various theoretical approaches and models. In addition to the physics interests,
the precise measurement for AN is also extremely important as a calibration tool for the pC-CNI
polarimeter, which determines the beam polarization at the RHIC.

The hydrogen gas jet target system provided highly polarized atomic hydrogen, Pt = 0.924±
0.018. The residual hydrogen molecules in the scattering chamber was measured to be 3.5±2.0%
in terms of hydrogen atoms. The target size was 6.5mm FWHM and the thickness along RHIC
beam axis was measured to be (1.3 ± 0.2) · 1012atoms/cm2. These values were highly satisfied
with the designed values.

The recoil spectrometer, which consisted of the three left-right symmetric pairs of silicon
detectors, was newly developed for this experiment. The recoil spectrometer was designed to
identify the pp elastic scattering inside the RHIC ring by detecting only recoil protons. The
covered kinetic energy range for a recoil proton was 0.6 < TR < 17.5 MeV (0.001 < −t <
0.032 (GeV/c)2). The flight length of the recoil protons was 0.8 m and ToF ranged between 13
– 80 nsec. The recoil protons were well separated from beam-related backgrounds by ToF . The
silicon strip runs along the incident RHIC-beam direction and the hit position was obtained from
the channel-number. The covered recoil angle range per one arm was 10 –100 mrad and each
read-out channel covered 5.5 mrad.

The off-line data analysis was performed with emphasis on the identification of pp elastic
scatterings only with the recoil protons. The recoil particle identification was performed by use
of ToF and measured kinetic energy TR. The forward scattered missing particle identification
was performed by use of recoil angle and TR. We had accumulated 4 million elastic pp scattering
events in TR = 0.6 – 17.5 MeV. The momentum transfer, −t, was obtained by the measured
kinetic energy TR. The energy loss in the silicon entrance-window, the detector resolutions
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(ToF and recoil angle), the background estimation were studied. Extraction of AN and ANN

from selected signal events were discussed.
AN for pp elastic scattering in the CNI region of 0.001 < −t < 0.032 (GeV/c)2 has been

measured with high statistical precision ∆Astat
N /AN ∼ 0.05 for each TR bin. The systematic

uncertainty is comparable with the statistical error. We measured the peak shape of AN due
to CNI for the first time. The hadronic spin-flip component was obtained by fitting the data as
follows,

Re r5 = −0.0008 ± 0.0091,

Im r5 = −0.015 ± 0.029.

The AN data are consistent with no hadronic spin-flip at
√

s = 13.7 GeV within uncertainties.
ANN for the pp elastic scattering in the CNI region of 0.001 < −t < 0.032 (GeV/c)2 has

been measured for the first time. ANN is sensitive to the hadronic double spin-flip amplitude
(φhad

2 (s, t)) but there is no conclusive understanding for its −t dependence nor magnitude to
φhad

+ (s, t) [43].
The results of ANN for each measured points are small and consistent with zero. The sys-

tematic uncertainty was smaller than the statistical error. The mean value for the region of
0.001 < −t < 0.032 (GeV/c)2 is < ANN >= −0.0024 ± 0.0015. Our data do not support the
presence of a large double spin-flip amplitude at this energy.

Extrapolating ANN data to the limit of −t → 0, we have extracted the difference between to-
tal cross sections for anti-parallel and parallel transverse-spin states, ∆σT = 0.092±0.058 (mb).
Our ∆σT is consistent with zero. The past experimental data, which were measured in the region
of small momentum beam up to Pbeam = 6 GeV/c, indicated that ∆σT decreased as the beam
momentum increased. Our data at Pbeam = 100 GeV/c still keep consistent tendency.

Although our AN and ANN data for the pp elastic scattering do not support the presence of
single nor double spin-flip amplitudes, ApC

N data at Pbeam = 21.7 –100 GeV/c for the proton-
carbon elastic scattering indicated sizable hadronic spin-flip amplitude. The discrepancy between
pp and pC scattering remind as the open question and the new theoretical works are ongoing [64].
Further measurements are required to fully disentangle the role of the hadronic spin-flip ampli-
tudes, their energy dependence and the different behavior between proton and nuclear targets.
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Appendix A

Transition Amplitudes

A.1 Helicity amplitudes and Transversity amplitudes

The helicity amplitudes are the simplest, useful and urged by the parity restrictions. However
transition amplitudes are also valuable, in particular transversity amplitudes. Both amplitudes
are consist from five independent amplitudes. Five independent ”helicity” amplitudes are dis-
played in Figurefig:Helicty. Five independent ”transversity” amplitudes are displayed in Figure-
fig:Transversity. In this section, we write helicity amplitudes as φi instead φi(s, t) (i=1 –5) for
simplicity.

The relationships between helicity amplitudes and transverse amplitudes are given as fol-
lows:

φ1 =
1

4
{α + β + 2(γ − δ − ε)},

φ2 =
1

4
{α + β + 2(γ + δ + ε)},

φ3 =
1

4
{α + β + 2(−γ − δ + ε)},

φ4 =
1

4
{−α − β + 2(γ − δ + ε)},

φ5 =
i

4
{α − β}. (A.1)

AN =
σ↑0 − σ↓0

σ↑0 + σ↓0

=
σ↑↑→↑↑ − σ↓↓→↓↓

σ↑↑→↑↑ + 2σ↑↑→↓↓ + 2σ↑↓→↑↓ + 2σ↑↓→↓↑ + σ↓↓→↓↓

=
|α|2 − |β|2

|α|2 + |β|2 + 2(|γ|2 + |ε|2 + |δ|2)

=
−2Imφ∗

5(φ1 + φ2 + φ3 − φ4)

|φ1|2 + |φ2|2 + |φ3|2 + |φ4|2 + 4|φ5|2
, (A.2)
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Figure A.1: Five independent helicity amplitudes: φ1 and φ3 are non-spin-flip amplitudes. φ2

and φ4 are double-spin-flip amplitudes. φ5 is single-spin-flip amplitude

155



'()*,+-+-./+0+1234657598:595

;<=>@?9?BADC9C EFGHJILKNMOILK

PQRSUTLVNWXVLT

Y
Z

[

Figure A.2: Five independent transverse amplitudes
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where

σ↑0 = σ↑↑ + σ↑↓

σ↑↑ = Σklσ↑↑→kl = σ↑↑→↑↑ + σ↑↑→↓↓

σ↑↓ = Σklσ↑↓→kl = σ↑↓→↑↓ + σ↑↓→↓↑

σ↓0 = σ↓↓ + σ↓↑ (A.3)

σ↓↓ = Σklσ↓↓→kl = σ↓↓→↑↑ + σ↓↓→↓↓

σ↓↑ = Σklσ↓↑→kl = σ↓↑→↑↓ + σ↓↑→↓↑ = σ↑↓. (A.4)

Therefore

σ↑0 − σ↓0 = σ↑↑→↑↑ − σ↓↓→↓↓

σ↑0 − σ↓0 = σall = σ↑↑→↑↑ + 2σ↑↑→↓↓ + 2σ↑↓→↑↓ + 2σ↑↓→↓↑ + σ↓↓→↓↓

ANN =
(σ↑↑ + σ↓↓) − (σ↑↓ + σ↓↑)

σall

nominator = σ↑↑→↑↑ + σ↓↓→↓↓ + 2(σ↑↑→↓↓ − σ↑↓→↑↓ + σ↑↓→↓↑

= |α|2 + |β|2 + 2(|γ|2 − |ε|2 − |δ|2) = Re[φ∗
1φ2 − φ∗

3φ4] + 2|φ5|2. (A.5)

A.2 Spin-dependent asymmetries

Using only initial state transverse polarization, with one or both particles polarized, we can
measure seven spin dependent asymmetries.

AN
dσ

dt
= − 4π

s(s − 4m2
p)

Im [φ∗
5(φ1 + φ2 + φ3 − φ4)], (A.6)

ANN
dσ

dt
=

4π

s(s − 4m2
p)

[2|φ5|2 + Re (φ∗
1φ2 − φ∗

3φ4)], (A.7)

ASS
dσ

dt
=

4π

s(s − 4m2
p)

Re [φ1φ
∗
2 + φ3φ

∗
4], (A.8)

ASL
dσ

dt
=

4π

s(s − 4m2
p)

Re [φ∗
5(φ1 + φ2 − φ3 + φ4)], (A.9)

ALL
dσ

dt
=

4π

s(s − 4m2
p)

[|φ1|2 + |φ2|2 − |φ3|2 − |φ4|2]. (A.10)

A.3 ρ and b-slope
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Figure A.3: ρ as a function of
√

s [20]. The solid curve shows the results of the fitted func-
tion [21] suggested by Regge theory.
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Figure A.4: B as a function of
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A.4 Read-out electronics in details

A.4.1 Capacitance and leak current of single strip for BNL-type and Hamamatsu-
type

As is mentioned before, we employed two different types of silicon detector which were fabri-
cated by the Hamamatsu Photonics, K. K. and fabricated by the BNL Instrumentation Division.

Capacitance Figure A.5 displays an example of single strip capacitance measurement of BNL-
type as a function of bias voltage. The measured values varied among strips because of bench-test
condition. The detector is full depleted around 160 V and the capacitance is around 20 ∼ 25 pF.
Then the capacitance of 4strips gathered is ∼ 100 pF.

Bias voltage (v)
0 25 50 75 100 125 150 175 200 225 250

C
ap

ac
ita

nc
e/

st
ri

p 
(p

F)

10

210

BNL #1325

Figure A.5: Single strip capacitance measurement in a function of bias voltage for BNL-type
detectors (measured by author)

Figure A.6 displays the capacitance of the sum of all strips of BNL-type as a function of bias
voltage. From this figure, the detector is full depleted at 70 V and the capacitance of single strip
is ∼ 1.5 pF (=∼ 1101/720 (pF/strips)). Then the capacitance of 40 strips gathered is ∼ 60 pF.

Leak current at operating voltage The operating voltages were set high enough: 160 V for
BNL-type and 200 V for Hamamatsu-type. The measured leak current at operating voltage were
5 ∼ 10 nA for BNL-type and ∼ 10 nA.
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Figure A.6: Detector body capacitance measurement in a function of bias voltage for Hamamatu-
type detector (data from Hamamatsu)
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A.5 AGS CNI polarimeter
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Figure A.7: Analyzing power versus −t (GeV/c)2 from the 2004 run. The beam energies of each
measurement are indicated in the plot. The solid line represents a theoretical fit to E950 data [6].
The error bars are given by the statistical error and systematic error added in quadrature.
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A.6 How to make reference Waveform

Figure A.8 and A.9 explained the detailed method for making averaged waveform. We made 96
waveforms for every independent read-out channel extracted from ∼ 1000 Waveform samples.
The method of averaged waveform shape for each independent read-out channel is:

1. Collect about 1000 waveform sample for each channel. (We sampled 1000 Waveforms
which passed rough eye selection in order to reject discernibly bad waveforms.)

2. Divide 1 bin digit into 10 bins. Waveform has 90 digits as an original. Then it changes to
90 × 10 digits waveform.(1 digit ∼ 2.38 nsec)

3. Calculate the center of gravity (G) from 900 digits

G =

∑900
i=1 i × ph(i)
∑900

i=1

4. Normalize the pulse-height of Waveform by area from (G-17) to (G+13) integration.

5. Accumulate all Waveforms (more than 1000 samples)

6. Slice along the x-axis and apply Gaussian fit in the y-axis. (Repeat Gaussian fitting for
900 times)

7. Extract the mean values for 900 points of Gaussian fitting results.

8. Repeat above steps for all read-out channels.

Figure A.8: The procedure of making averaged
Waveform

Figure A.9: Continued

The top left plot in Figure A.10 displays the accumulated Waveforms more than 1000 sam-
ples.

A.7 INTG − Tmeas plots of background study run

Figure A.11 displays the correlation of INTG and Tmeas of the empty-target run. Figure A.12
displays the correlation of INTG and Tmeas of the empty-target and no-beam run.
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Figure A.10: Slice y-axis of accumulated waveform
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Figure A.11: EMPTY target . INTG vs. Tmeas from channel #3
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A.8 Angle estimation

The angle data is obtained from the silicon detector channel number (position). We set the
incident RHIC-beam direction as the z-axis. The silicon strip runs along the z-axis. In principle
the channel number is linear to the angle from the x-axis.

Actually, the angle have some offset value because of the H-Jet target chamber rotate slightly
from the correct direction as displayed in green θoffset in Figure A.13. The base axis of the
detector is also rotated to the x’-axis. Therefore, if proton is recoiled to θ direction from the
x-axis, the left-side detector measures the recoiled angle as θLeft = θ− θoffset. θLeft is colored
in red.

If proton is recoiled to π − θ direction from the x-axis, the right-side detector measures the
recoiled angle as θRight = π − θ + θoffset, colored in blue.

Figure A.13: Misalignment of H-Jet target system

In addition to the alignment offset, the angle data especially for low energy recoiled proton
is bent by the Holding-Magnet field.

θoffset = θalign + θfield

Thus, the accuracy of the absolute angle is limited by the detector alignment and the holding
magnetic field effect. To evaluate the degree of misalignment and the holding magnetic field,
we changed the holding magnetic field configuration and took data of NO-field and REVERSED-
field to compare with NORMAL-field data.

A.8.1 The offset angle estimation from the Holding Magnetic field study

Figure A.14 displays the left-right pair detectors comparison at NO-field condition. This figure
tell us the degree of misalignment. θalign is evaluated to same as 1channel (∼ 5 mrad). Actually,
we found this misalignment in the middle of run4-period, but we could not rotate the H-Jet target
system. As for run5 case, we made the most of this studies. We examined the same study at the
early stage and correct the alignment in the beginning of the run5 period.
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Figure A.14: Left-Right sides comparison at Non-Holding magnetic field OFF

Figure A.15 displays the left-right pair detectors comparison at NORMAL-field condition.
This figure tell us the sum of misalignment and the holding magnetic field. Comparing NOR-
MAL-field and NO-field cases, it seems that the effects of the holding magnetic field are not
symmetrical for the left-right sides detectors. θoffset is evaluated be 2channel (∼ 10 mrad) for
protons of less than 1 MeV.

This behavior replicates by comparing REVERSED-field and NO-field cases. Figure A.16
displays the left-right pair detectors comparison at REVERSED-field condition. The effect of
the holding-magnetic field is not symmetrical and θfield of right-side is lager than left-side one.
θfield of right-side is evaluated to be 5 mrad for protons less than 1 MeV.

Originally, the angle data is intended to use to distinguish between the elastic events and the
inelastic events. In both case, the recoiled particles are proton and would be bent in the same
way. Therefore, we do not need a precise absolute angle but need a fine resolution.
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Figure A.15: Left-Right sides comparison at Normal-Holding magnetic field
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Figure A.16: Left-Right sides comparison at Reversed-Holding magnetic field
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A.9 Conversion from Deposit to Incident Energy Conversion Table
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Figure A.17: Conversion function from deposit
energy to incident energy
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Figure A.18: Incident energy reconstruction
function for BNL type

A.10 procedure B

The procedure using the fractional deposit energy and angle ; B

The second procedure B is using measured fractional deposit energy of several channels and
predicted incident energy from angle. As shown fig 3.24, ch# 9-16 detected deposit energy
fraction. By use of rough angle data which is estimated from ch#, we calculated the ”predicted”
incident energy of these channels. Comparing the ”predicted” incident proton energy (Ein) and
measured ”fractional” proton energy (Emes), we estimated the actual detector thickness.
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Figure A.19: channel# vs. energy correlation with rough ToF cut (4ToF ≤ 10 nsec)

dE/dx is the stopping power of proton in silicon as shown in fig 3.20. Thus, each of detector
thickness is calculated from punched-through channels independently. Figure A.20 displays the
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detector thickness distribution of Si# 1. And Figure A.21 displays the same for Si# 2. The
estimated actual detector thickness from several punched-through channels agree very well.
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Figure A.20: The thickness of each independent
channels of Si# 1 by procedure B
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Figure A.21: The thickness of each independent
channels of Si# 2 by procedure B

The sum of the thickness distribution of these punched-through channels, we have the av-
eraged detector thickness as shown Figure A.22 for Si# 1 − 3 and Figure A.23 for Si# 4 − 6,
respectively. The peaks around 400 µm are the estimated thickness from punched through proton
events. The tail on the left side is of prompt events. The results of procedure B are 380 ± 10 µm
for Hamamatsu-type detectors and 420 ± 10 µm for BNL-type detectors.
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Figure A.22: The thickness of Si# 1−3 by pro-
cedure B
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Figure A.23: The thickness of Si# 4 − 6
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A.11 Event Selection

The selected events count are listed in the table below.

TR Bin # Total Si# 1 Si# 2 Si# 3 Si# 4 Si# 5 Si# 6

1 450112 71373 64948 70761 80694 87235 75101

2 309650 52533 55109 49139 51378 55601 45890

3 258166 41571 46907 40452 41309 47974 39953

4 229871 36808 44586 33979 35658 44999 33841

5 172815 25028 39081 22716 25240 39557 21193

6 194095 6826 25519 34591 36690 26882 33587

7 270279 43935 49783 42434 43291 50043 40793

8 305383 42598 75247 40546 43258 68513 35221

9 449352 86196 120174 78244 71621 93117 74087

10 217921 50468 − 58439 60344 − 8670

11 297811 76781 − 74562 76519 − 69949

12 304399 73674 − 75440 79028 − 76257

13 283075 78609 − 71068 78525 − 54873

14 171338 56185 − 50062 40113 − 24978

The above event have been already discard strange Waveforms. The ratio of the good wave-
forms to the events which passed the kinematical cuts.
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A.12 t0 estimation

t0 distribution for all 96 channels are listed in Appendix. The mean values and the sigma values
for all 96 read-out channels are displayed in Figure A.24 and Figure A.25. Red points are from
non-good read-out channels which we do not use for the asymmetry calculation.
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Figure A.24: mean t0 distributions
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Figure A.25: σt0 distribution

The mean values of t0 for channel-by channel

The mean values of t0 are fluctuated around 50 ± 4 nsec. Each of t0 are quite stable and do not
change more than 1 nsec for whole run period. This agrees the postulation of t0. Then we can
calculate t0 backwardly and fix them for further analysis.

There are two reasons why t0 fluctuate channel-by-channel. One is the read-out cable length
and the other is Risetime. To confirm how much the cable length is fluctuated channel-by-
channel, I tried to measure the cable length using the signal reflection of the rectangle shaped
pulse. Figure A.24 displays the fluctuation of the cable length. (To compare with t0 distribution,
50 nsec offset is added.)

The cable length difference between channel-by-channel can explain the fluctuation of t0.
But the some discrepancy remains in Si# 2 which are not explained by the cable length differ-
ence. The reasonable explanation is found in Risetime distribution of channel by channel. If
Risetime is bigger than other channels, t0 can be estimated bigger qualitatively. In the waveform
analysis in Section 3.2, Risetimeof Si# 2 were obviously bigger than the others.
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Appendix B

Square Root Formula

B.1 Raw Physics Asymmetry

The first quantity of square root formula is obtained as follows.
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R
0↓ −
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0↓N

R
0↑

√
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0↑N
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0↓ +
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R
0↑

∼= AN P̄t

(

1 − B
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4... (B.1)

where L = (L0↑ + L0↓)/2.
As for complements:

√

NL
0↑N

R
0↓ = C0

[

L0↑{1 + AN P̄t(1 + εAN
)(1 + εPt)} + B

]
1

2 ·
[

L0↓{1 + AN P̄t(1 − εAN
)(1 − εPt)} + B

]
1

2

∼= C0

√

L0↑L0↓

[

(1 + AN P̄t) + AN P̄tεAN
εPt + δ1

4 +
B

L

]

(B.2)

√

NL
0↓N

R
0↑

∼= C0

√

L0↑L0↓

[

(1 − AN P̄t) + AN P̄tεAN
εPt + δ1

4 +
B

L

]

(B.3)

(B.4)

where C0 = N0

√
dΩLdΩR and we have ignored the forth order of the products AN P̄t, εAN

, εPt ,
(L0↑ − L0↓)/(L0↑ − L0↓) and B/L.

Thus, AN is obtained as one of the quantities of the square root formula, we call Raw Physics
Asymmetry: ε PHYS. Conventionally one writes εPHYS = εN .

Except for backgrounds dilution, the accuracy of this procedure is estimated to be third order
of δ1. δ1 can be εAN

, εPt or P̄tAN . The Raw physics asymmetry and the estimated error on this
procedure are:
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where, we set δεN > δ1
3 ∼ AN P̄tεAN

εPt for the conservative.
The statistical error of εN is obtained as:
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Here, 4 independent numbers are huge and similar : N L
0↑ ∼ NL

0↓ ∼ NR
0↑ ∼ NR

0↓.

∆εN ∼ 1
√

NL
0↑ + NR

0↓ + NR
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0↓

(B.6)

B.2 Luminosity Asymmetry

We ignore the background components for simplifications. The second quantity of square root
formula is obtained as follows.
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where, ε2 can be εAN
or P̄tAN .

Thus, the second quantity is related to the geometrical asymmetry : εLUMI., which is in the
amount of intensity for two polarization states.

The accuracy of this procedure is estimated to be third order of δ1. δ1 can be εAN
, εPt or

P̄tAN . The Raw physics asymmetry and the estimated error on this procedure are:
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In this case, δb can be εBT .

B.3 Acceptance Asymmetry

The third quantity of square root formula is obtained as follows.
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where,
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where, ε3 can be εIt .
The third quantity is related to the acceptance asymmetry, we call it εGEOM , which is in the

solid angle times efficiency for two-sides detectors.
The statistical error of εGEOM is obtained as follows:
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In the three square root asymmetries ,εN , εGEOM and εLUM , the quantities P̄tAN , εAN
,

εIt , εdΩ and εPtare all assumed small and about the same magnitude. The physically interesting
asymmetry is εPHY S .
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