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Abstract

In 2013, the existence of the 𝑛𝑛Λ bound state with a binding energy of about
0.5 MeV was claimed by the HypHI collaboration at GSI. Considering that the
ground-state binding energy of hypertriton that is the isosinglet state (I = 0) is as
small as 130 keV, the 𝑛𝑛Λ (I = 1) state is hard to be bound. In contrast, several
theoretical calculations suggest the existence of a resonant state near the threshold.
Therefore, it is desirable to conduct 𝑛𝑛Λ search experiments that can explore a wide
range from the bound region to the resonance region. In the electro-production
of hypernuclei, the 𝑛𝑛Λ state can be investigated by using a tritium target (𝑝𝑛𝑛)
by changing a proton to Λ. We performed a search experiment for the 𝑛𝑛Λ states
using the 3H(𝑒 , 𝑒′𝐾+)X reaction at the experimental Hall A in Jefferson Laboratory.

The experiment was performed using a 4.32-GeV electron beam. The momenta of
the scattered electron and 𝐾+ were measured by the existing spectrometers, HRS-L
and HRS-R, respectively. The central momenta of the scattered electron and 𝐾+

were set to cover the expected kinematics of 𝑛𝑛Λ production, which were 2.22 and
1.82 GeV/c, respectively. To estimate the various efficiency and correction factors
required for cross-section analysis, a Monte Carlo simulation was newly developed
to reproduce the experimental data in the framework of Geant4.

There seemed some enhancement around the energy threshold of the 𝑛𝑛Λ bound
state in the cross-section spectrum for the 3H(𝛾∗ , 𝐾+)X reaction. However, no
clear peak structures were observed. Therefore, spectral fits with assumed peak
position (𝐵Λ) and decay width (Γ) were performed to quantitatively discuss the
excess above the expected background distribution. Typical theoretical predictions
that show the small and large decay widths were used for the fits, which are
(−𝐵Λ , Γ) = (0.25, 0.8) MeV and (0.55, 4.7) MeV. As a result of the fitting, no peak
structure with a statistical significance exceeding 3𝜎 was observed. The upper
limit of the differential cross section at the 90%-confidence level was obtained to
be 21 and 31 nb/sr, respectively, when (−𝐵Λ , Γ) = (0.25, 0.8) and (0.55, 4.7) MeV
were assumed. In addition, the cross-section upper limit with various 𝐵Λ and Γ
other than the above fixed assumptions were obtained to provide data that are
independent on the theoretical predictions.

The upper limit of the 𝑛𝑛Λ production cross section was obtained for the first
time. In the theoretical calculations, the existence of the 𝑛𝑛Λ resonant state strongly
depend on the models of the Λ𝑛 interaction and calculation methods. The present
result would constrain the interaction models and calculation methods. Theoretical
calculations of the 𝑛𝑛Λ production cross section to be compared with the present
result are highly desirable.
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Chapter 1

Introduction

1.1 Baryon-Baryon Interactions

A nucleus is composed of protons and neutrons; they are called necleons. Nucleon–
nucleon interactions are well understood through scattering experiments, and in the 1990s,
several groups succeeded in constructing a realistic nucleon–nucleon interaction model that
reproduced the scattering data in 𝜒2 ∼ 1 [1–3]. There exists only one two-body bound system,
deuteron, which consists of a proton and a neutron. There are no bound systems in 𝑝–𝑝 and
𝑛–𝑛 systems. This property makes our present world as what it is today. If the nucleon forces
were different from those in this universe, our world would be completely different, and there
is a high possibility that stars and life would not be created. Is this exquisite fine tuning really
a coincidence?

To answer this question, it is important to extend the world of SU(2), which consists of
u-quarks and d-quarks, to the world of SU(3), which consists of u-quarks, d-quarks, and
s-quarks. By adding one more degree of freedom, we can see nucleon interactions from a
higher perspective view. The Λ particle is the lightest baryon that includes an s-quark, and it
is important to understand the Λ-nucleon interaction. The Λ particle decays in only 263 ps,
which makes scattering experiments difficult. Therefore, the interaction betweenΛ-particles
and nucleons has been mainly obtained by creating Λ hypernuclei, which are bound states of
Λ-particles and nucleons. Since the discovery of hypernuclei in 1953, numerous hypernuclei
have been investigated.

1.2 Few body hypernulcear system
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Many-body calculations based on the baryon-baryon interactions are available for few-body
systems due to the recent improvements of super computer power. The ΛN interaction can
be precisely extracted by comparing with the few-body hypernuclear structures. While these
studies have yielded various results, new puzzles have arisen that cannot be explained by the
simple ΛN interaction alone.

The established s-shell hypernuclei are 3
ΛH, 4

ΛH, and 4
ΛHe. In the four-body (A = 4) system,

two types of hypernuclei—4
ΛH and 4

ΛHe—have been found, and two states with spins of 0
and 1 have been measured, in each system. The existence of charge symmetry breaking
(CSB) has been reported in recently developed high-precision measurements [4,5]. Figure 1.2
shows level schemes of the A = 4 hypernuclei. Although there is no CSB in the excited
state with 𝑆 = 1, there is a CSB of Δ𝐵Λ = 350 keV in the ground state. Considering that
Δ𝐵(3He−3 H) = 70 keV in ordinally nuclei, the effect of CSB is very large in hypernuclei. Any
theoretical explanation for this effect has not yet been found, and further theoretical work is
needed.

To resolve this problem, confirmation and improvement
of experimental data on CSB are also necessary. Since
systematic errors are not well evaluated in the old emulsion
data for BΛ, new data, ideally also gathered by different
experimental methods, have been awaited. Recently, the π−

momentum in the 4
ΛH → 4Heþ π− weak decay was pre-

cisely measured at MAMI-C [5], and the obtained value of
BΛ(

4
ΛHð0þÞ) ¼ 2.12� 0.01ðstatÞ � 0.09ðsystÞ MeV is

consistent with the emulsion value.
The BΛ difference for the excited 1þ states provides

additional important information on the spin dependent
CSB effect from which the origin of CSB can be studied.
The BΛ values for the 1þ state are obtained via the
1þ → 0þ γ-ray transition energies. The 4

ΛH γ ray was
measured three times, and the 4

ΛHð1þ; 0þÞ energy spacing
was determined to be 1.09� 0.02 MeV as the weighted
average of these three measurements (1.09� 0.03 MeV
[6], 1.04� 0.04 MeV [7], and 1.114� 0.030 MeV [8]), as
shown in Fig. 1 (on the left). On the other hand, observation
of the 4

ΛHe γ ray was reported only once by an experiment
with stopped K− absorption on a 7Li target, which claimed
the (1þ, 0þ) energy spacing to be 1.15� 0.04 MeV [7].
This result suggests a significantly large CSB effect also in
the 1þ state with ΔBΛð1þÞ ¼ 0.29� 0.06 MeV. However,
this 4

ΛHe γ-ray spectrum is statistically insufficient, and
identification of the 4

ΛHe hyperfragment through high
energy γ rays attributed to the 4

ΛHe →
4Heþ π0 weak

decay seems to be ambiguous.
In order to clarify this situation, we performed a γ-ray

spectroscopic experiment for 4
ΛHe at J-PARC [9], in which

the 1þ excited state of 4
ΛHe was directly produced via the

4HeðK−; π−Þ reaction with a 1.5 GeV=cK− beam, and γ
rays were measured using germanium (Ge) detectors with

an energy resolution one order of magnitude better than that
of the NaI counters used in all of the previous 4

ΛH and
4
ΛHe γ-ray experiments. In this Letter, we present the result
which clearly supersedes the previously claimed γ-ray
transition energy and firmly establishes the level scheme
of 4

ΛHe, as shown in Fig. 1 (on the right).
The J-PARC E13 experiment was carried out at the K1.8

beam line in the J-PARC Hadron Experimental Facility
[10]. The 4HeðK−; π−Þ reaction was used to produce
4
ΛHeð1þÞ, which was populated via the spin-flip amplitude
of the K− þ n → Λþ π− process. A beam momentum of
1.5 GeV=c was chosen considering the elementary cross
section of the spin-flip Λ production and the available
beam intensity. A 2.8 g=cm2-thick liquid 4He target was
irradiated with a total of 2.3 × 1010 kaons. A K− beam
(K−=π− ¼ 2 ∼ 3) was delivered to the target with a typical
intensity of 3 × 105 over a 2.1 s duration of the beam spill
occurring every 6 s. Incident K− and outgoing π− mesons
were particle identified and momentum analyzed by the
beam line spectrometer and the Superconducting Kaon
Spectrometer (SKS) [11], respectively. In addition, γ rays
were detected by a Ge detector array (Hyperball-J) sur-
rounding the target. Through a coincidence measurement
between these spectrometer systems and Hyperball-J, γ
rays from hypernuclei were measured. The detector system
surrounding the target is shown in Fig. 2.
The detector setting in SKS was configured for γ-ray

spectroscopic experiments via the ðK−; π−Þ reaction
(SksMinus). SksMinus had a large acceptance
(∼100 msr) for detecting the outgoing pions in the labo-
ratory scattering angle range of θKπ ¼ 0°–20°. The

FIG. 1 (color online). Level schemes of the mirror hypernuclei,
4
ΛH and 4

ΛHe. Λ binding energies (BΛ) of 4
ΛHð0þÞ and 4

ΛHeð0þÞ
are taken from past emulsion experiments [2]. BΛ(

4
ΛHeð1þÞ) and

BΛ(
4
ΛHð1þÞ) are obtained using the present data and past γ-ray

data [6–8], respectively. Recently, BΛ(
4
ΛHð0þÞ) ¼ 2.12�

0.01ðstatÞ � 0.09ðsystÞ MeV was obtained with an independent
technique [5].

FIG. 2 (color online). A schematic view of the experimental
setup around the liquid 4He target (side view). SKS is a super-
conducting dipole magnet (2.5 T); BH2 is a plastic scintillation
counter hodoscope; BAC1,2 and SAC1 are aerogel Čerenkov
counters with n ¼ 1.03; SDC1,2 are drift chambers. SP0 is an
electromagnetic shower counter to tag high energy photons from
π0 decay. Hyperball-J consists of 27 Ge detectors, each sur-
rounded by PWO counters for background suppression.

PRL 115, 222501 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
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Figure 1.1 Level schemes of the A=4 hypernuclear system [5].

A currently established hypernucleus in the A = 3 system is 3
ΛH. 3

ΛH is the lightest
hypernucleus consisting of 𝑝, 𝑛, and Λ with spin 1/2 and isospin 0. Its binding energy was
measured to be 𝐵Λ = 130±50 keV by emulsion experiments [6]. Considering that the binding
energy of the deuteron composed of 𝑝 and 𝑛 is 2.22 MeV, we assume that 3

ΛH is a system in
which the deuteron and Λ are weakly bound. In contrast, the recent STAR experiment using
relativistic heavy ion collisions has claimed that 𝐵Λ = 0.41 ± 0.12 ± 0.11 MeV [7], and further
experimental confirmation is desirable. Given the shallow bound state of 3

ΛH, as shown
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in Fig. 1.2, the existence of other three-body hyper-nuclei (𝑁𝑁Λ) is unlikely. However, as
mentioned above, there are still many puzzles left to be answered in few-body hypernuclei.
Λ𝑁𝑁 three-body forces or Λ𝑁-Σ𝑁 conversion, which are not yet well understood, may be
the key to solve these problems. Such effects may lead to the emergence of new bound
and resonant states of 𝑁𝑁Λ. In particular, the 𝑁𝑁Λ state with I=1 and S=1/2 has been
an important topic in hyper-nuclear physics since the 2010s, starting from the experimental
results by HypHI collaboration described in the next section.
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Figure 1.2 Level schemes of the A=3 hypernuclear system.

1.3 𝑛𝑛Λ experiment by HypHI collaboration

The HypHI collaboration at GSI attempted to produce hypernuclei using a relativistic ion
beam. A 2A GeV beam of 6Li was irradiated onto a 12C target. The initial goal of the
experiment was to generate Λ, 3

ΛH, and 4
ΛH to demonstrate the feasibility of the production

method. The results have been reported in Refs. [8–10]. In the same dataset, the 𝑛Λ and 𝑛𝑛Λ
bound states were searched by measuring 𝑑+𝜋−, 𝑡 +𝜋− invariant masses [11]. The results are
shown in Figure 1.3. The upper figures show the invariant mass distributions of 𝑑 + 𝜋−, and
the lower figures show the invariant mass distributions of 𝑡+𝜋−. On the left, the decay vertex
was selected at −10 < Z < 30 cm, and on the right, at −2 < Z < 30 cm. Here, the target was
set at −6 < Z < −2 cm. In this experiment, the existence of both bound states of 𝑛Λ and 𝑛𝑛Λ
is reported. In particular, the 𝑛𝑛Λ bound state was observed with a significance of 5.0𝜎 in the
wide Z region (b1) and 5.2𝜎 in the narrow Z region (b2). The width at (b2) was 5.4± 1.4 MeV,
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and the binding energy was −𝐵Λ = −0.5 ± 1.1 ± 2.2 MeV.

RAPID COMMUNICATIONS

C. RAPPOLD et al. PHYSICAL REVIEW C 88, 041001(R) (2013)

and identify hypernuclei by means of the invariant mass
method [22].

We performed an experiment with 6Li projectiles at 2A GeV
with an intensity of 3 × 106 ion per second bombarding on a
carbon (12C) graphite target with a thickness of 8.84 g/cm2.
The data collection occurred during a period of 3.5 days with
an integrated luminosity of 0.066 pb−1. The main goal of the
experiment was to identify and study the production and the
decay of light hypernuclei, 3

�H and 4
�H, as well as � hyperons

in order to demonstrate the feasibility of such hypernuclear
spectroscopy. Within the same data set other possible final
states can be studied to search for extremely neutron-rich and
neutral hypernuclei such as a bound state of two neutrons
with a � hyperon, 3

�n. The observation of a 3
�n state was

not feasible in the previous emulsion technique and bubble
chamber experiments since this bound state has no charge and
could not be distinguished from the background induced by the
� hyperon. Garcilazo et al. studied theoretically the nn� state
and revealed that it should be unbound [23]; however, recent
lattice QCD calculations for three-body states [24] indicate
that 3

�n might be bound. Additional considerations from Dalitz
and Downs [25] show possible decay channels of such a state,
3
�n → p + n + n+π− and 3

�n → t + π− and the first
calculation on its binding energy. In a revised calculation
presented in Ref. [26], they concluded again that the existence
of 3

�n was improbable. In the later publication by Dalitz and
Levi Setti on the possible unusual light hypernuclei [27],
the possibility of 3

�n existence was still discarded; however,
experimental evidences were welcome, and they discussed the
possibilities of 5

�n and 4
�n as well.

The experiment involved tracking systems of scintillating
fiber detector arrays and two drift chambers for the secondary
vertex determination. Four scintillating hodoscope walls were
adjoined to the tracking systems for tracking and time-of-flight
measurements of charged particles across a large acceptance
dipole magnet. The tracking system for vertexing was placed
in front of the dipole magnet around the expected decay
volume of hypernuclei. Behind the magnet, two separated
arms of the detection apparatus were situated in such a way
to measure disjointedly positively and negatively charged
particles.

The four-vectors of the detected particles and fragments
were determined after the particle identification based on
tracking across the magnet as well as measurements of the
time-of-flight and the energy deposit with the hodoscope
walls. After the decay vertex finding, the invariant mass
of final states of interest was calculated, and a lifetime
estimation was inferred based on the observed decay vertex
position. The feasibility of the experimental method was
already demonstrated by observing �, 3

�H, and 4
�H, whose

physics results are discussed in Ref. [28]. In this Rapid
Communication, we report on the analyses and discussions
of the observed final states of d + π− and t + π− that might
be associated with 3

�n.
Using the track and event reconstruction procedures, the

particle identification for positively charged fragments was
first determined by the correlation between the measured
energy deposit and the deduced momentum from the track
fitting. The performance for the helium isotope separation was

reasonable, and the 3He contamination in the 4He identifica-
tion was estimated to be 1.7%, while the contamination of 4He
into the identification of 3He was 1.8% [28]. Additionally, for
the hydrogen isotopes and π− mesons the correlation between
the estimated momentum and the velocity β calculated from
the time-of-flight measurement was employed, as detailed
in Ref. [28]. The selection cuts used for the deuteron and
triton determination required their respective momenta to
fall in the ranges 4.3 ∼ 6.5 and 6.5 ∼ 10.0 GeV/c and
their respective masses to be within 0.935 < md < 2.785 and
1.455 < mt < 4.105 GeV/c2. A fair separation between the
hydrogen isotopes was achieved. The contamination of protons
and tritons in the deuteron selection is 0.75% and 2.7%,
respectively. For the triton selection the proton contamination
was negligible, while the deuteron contamination amounted to
1.9%. Cut conditions for triton and deuteron species were wide
enough so that there is no narrowing of the projectile rapidity
region, cross-checked with the rapidity regions of detected
helium and lithium isotopes.

After the identification of the particles and fragments of
interest, the invariant mass distributions of d + π− and t + π−
were studied with the identical rules for the secondary vertex
selections applied in the case of �, 3

�H, and 4
�H [28]. Figure 1

shows the resultant invariant mass distributions of d + π− in
panels (a1) and (a2) and t + π− in panels (b1) and (b2). The
longitudinal decay vertex position (Z) was requested to be set
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FIG. 1. (Color online) Invariant mass distributions of d + π−

final-state candidate in panels (a1) and (a2) and of t + π− in panels
(b1) and (b2). Panels (a1) and (b1) are for −10 cm < Z < 30 cm,
and panels (a2) and (b2) are for −2 cm < Z < 30 cm. Observed
distributions are represented by the filled-in circles. The hashed
orange (gray) region represents one standard deviation of the fitted
model centered at the solid blue (gray) line of the total best fit.
The black and colored dotted lines respectively show the separate
contributions of the signal and the background. The open triangle
represents the data corresponding to invariant mass distribution of
the mixed event analysis.

041001-2

Figure 1.3 Invariant mass distributions of 𝑑+𝜋− and 𝑡+𝜋− at GSI [11]. The upper figures
show 𝑑 + 𝜋− and the bottom figures show 𝑡 + 𝜋− invariant mass. The difference between
the left and right is the production vertex cut.

1.4 Theoretical calculations for 𝑛𝑛Λ state

Various theoretical calculations have been performed to investigate the existence of the 𝑛𝑛Λ
three-body system. If its binding energy is defined as −𝐵Λ = 𝑀𝑛𝑛Λ−2𝑀𝑛 −𝑀Λ, the observed
state can be a bound state with −𝐵Λ < 0 or a resonant state with −𝐵Λ > 0. In the following
sections, these two possibilities will be described for each of the theoretical studies so far. The
details of the theoretical studies are summarized in Appendix A.

1.4.1 Bound state



Chapter 1 Introduction 13

Many calculations on the bound state of 𝑛𝑛Λ have been carried out by using various interac-
tion models and techniques of few-body calculation. The currently established hypernuclei,
in particular 3

ΛH, 4
ΛH, and 4

ΛHe, were used as a reference to see whether the bound state of
𝑛𝑛Λ can exist or not.

The first theoretical calculation for a three-body system including hyperons was reported
by Downs and Dalitz [12] in 1958, only six years after the discovery of the hypernuclei. The
calculations were carried out with a variational method. They concluded that it is difficult
to bound the 𝑁𝑁Λ system with I = 1. After that, the first calculation incorporating Λ-Σ
conversion was performed by Miyagawa et al. [13]. Faddeev method was used to calculate the
𝑁𝑁Λ three-body system. The interaction due to Λ-Σ conversion was found to be attractive
and played an important role in the binding of hypertriton. In the case of (𝐼 , 𝐽) = (1, 1/2),
which is the same quantum number as the 𝑛𝑛Λ state, it was also found to be attractive, but
still not enough to bind it.

After the report by HypHI collaboration, theoretical calculations were carried out by
Hiyama [14], Gal [15] and Garcilazo [16, 17] to explain the result with novel interaction
models. They used different interactions and calculation methods. For instance, Hiyama
et al. performed variational calculations with NSC97f as YN interaction which incorporate
Λ𝑁-Σ𝑁 coupling. Garcilazo et al. used the chiral constituent quark model to derive the inter-
actions [16, 17]. In this model, a baryon is represented as a three-body cluster of constituent
quarks, and its mass is generated by spontaneous breaking of chiral symmetry. The Faddeev
equation was solved to calculate the 𝑛𝑛Λ bound state using this interaction. However, all
calculations show that the existence of the bound state is difficult to explain within our current
understanding of hypernuclei.

On the other hand, Ando et al. considered the possibility of 𝑛𝑛Λ bound states from the
new perspective of Effimov states. The 𝑛𝑛Λ state was calculated by solving the coupled
integral equation using pion-less effective field theory (Z𝜋 EFT) of the leading order [18]. As a
consequence of the calculation, the possibility of the existence of Effimov states was suggested.
However, since the experimental data to determine the parameters of three-body forces are
very scarce, no quantitative discussion has been presented.

As mentioned above, almost all theoretical calculations have shown that the existence of
bound states is difficult. Theoretical studies on bound states are summarized in Tab. 1.2.

1.4.2 Resonant state
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Table 1.1 Theoretical calculation of complex resonance energies taken from Refs. [19].

Λ𝑛 potential A B C
E0 (MeV) 0.551- 𝑖24.698 0.456- 𝑖24.885 -0.149- 𝑖25.783

A calculation of resonant states is more difficult than the bound state, so the calculation
results are limited. The resonant states in 𝑛𝑛Λ three-body systems were studied by Belyaev
et al. [19] for the first time. The resonant state was searched for by calculating the zeros of the
three-body Jost function. Three Λ𝑛 potentials were proposed by Nemura [20] et al., denoted
A, B, and C. Figure 1.4 shows the potential of the S-state under the assumption of these
potentials. In all of them, there is a pocket of weak attraction. The results of the calculation
with these potentials are shown in Tab. 1.1. It can be seen that there is a broad resonance in
A and B, while there is no resonance in C.

218 V.B. Belyaev et al. / Nuclear Physics A 803 (2008) 210–226

Fig. 3. The hypercentral potential defined by Eq. (30) for the system Λnn with the three choices (A, B, and C) of the Λn

interaction.

called the hypercentral approximation, [L] = [Lmin]. We assume that the two-body subsystems
are in the S-wave states (�1 = �2 = 0), which means that

λ = λmin = 3

2
.

So, in the minimal approximation, instead of the infinite system (14), we remain with only one
equation,[

∂2
r + k2 − λmin(λmin + 1)

r2

]
u(E, r) = 2M〈U 〉u(E, r), (29)

where all unnecessary subscripts are dropped, and the brackets on the right-hand side mean the
following integration

〈U 〉(r) =
∫

Φ
jjz∗
[Lmin](ω)(U12 + U13 + U23)Φ

jjz

[Lmin](ω)dω. (30)

From the mathematical point of view, Eq. (29) looks exactly like the two-body radial Schrödinger
equation. The only difference is that the angular momentum is not an integer number.

The explicit expression for the integral (30) is given in Appendix B. The hypercentral po-
tentials 〈U 〉 for the systems Λnn and ΛΛn are shown in Figs. 3 and 4. With these hyperradial
potentials the corresponding differential equations determining the three-body Jost functions,
were numerically solved with complex values of the energy. The results of these calculations are
discussed next.

5. Numerical results and conclusion

When looking for zeros of the three-body Jost functions, we found that there were no such
zeros at real negative energies. In other words, neither the system Λnn nor ΛΛn have bound
states.

For the system Λnn, the only zero we found was located on the unphysical sheet of the
energy surface, in the resonance domain. The energy of this resonance (for the three choices of

Figure 1.4 The hypercentral potential for the 𝑛𝑛Λ system [19]. The differentΛ𝑛 potentials
are shown as A, B, and C.

Immediately after the HypHI report, three calculations on resonant states were reported by
Afnan et al. [21], Filikhin et al. [22] and Kamada et al. [23]. They came to different conclusions.
Afnan et al. performed a Faddeev calculation using a separate potential. The calculation
result was 𝐸 = −0.107 − 𝑖0.622 MeV, and no resonant state existed. However, by multiplying
the strength of 1𝑆0, 3𝑆1 components by 1.05, a resonant state appeared. On the other hand,
Filikhin reported a resonant state of rather wide width of 𝐸 = 0.2 − 𝑖1 MeV with NSC97f
potential. Kamada also reported a resonant state of 𝐸 = 0.25 − 𝑖0.40 MeV with YN Nĳmegen
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potential (Nĳmegen89).
Theoretical calculations using the pionless effective field theory (Z𝜋EFT) were recently re-

ported by Schäfer et al. [24, 25]. No 𝑛𝑛Λ bound state was found, but there existed a resonant
state depending on the interaction. The interaction models NSC97f and Chiral EFT (NLO)
showed the existence of resonant states, while Alexander B and Chiral EFT (LO) showed no
resonant states. The pole position of the resonant state differs depending on the model, but it
exists in the energy range of 𝐸 ≤ 0.3 MeV and the width range of 1.16 ≤ Γ ≤ 2.00 MeV. These
calculations on resonant states are summarized in Tab. 1.3.

Table 1.2 Theoretical calculations for the bound state.

Author Method YN interaction Bound Regards

Downs [12] variational method exponential × -
Miyagawa [13] Faddeev Nĳmegen89 × -
Hiyama [14] variational method NSC97f × -

Gal [15] Faddeev NSC97e,f × -
Garcilazo [16, 17] Faddeev CCQM × -

Ando [18]
coupled

integral equation
Z𝜋EFT 4 Efimov state

Belyaev [19]
hyperspherical

harmonics
Minesota × V ↑ 50% bound

Afnan [21] Faddeev Yamaguchi etc. × Λ𝑛 ↑ 25% bound
Filikhin [22] Faddeev NSC97f × -
Kamada [23] Faddeev Nĳmegen89 × YN ↑ 20% bound

Table 1.3 Theoretical calculations of the resonant state.

Author Method YN interaction Resonance Regards

Belyaev [19]
hyperspherical

harmonics
Minesota © -

Afnan [21] Faddeev Yamaguchi etc. × Λ𝑛 ↑ 5% resonance
Filikhin [22] Faddeev NSC97f © -
Kamada [23] Faddeev Nĳmegen89 © -

Schäfer [24, 25] IACCC, CSM NSC97f etc. © -

1.5 Current status of study on 𝑛𝑛Λ state
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The present experimental data other than 𝑛𝑛Λ are consistent and does not accept the
existence of 𝑛𝑛Λ bound state. As mentioned in the previous section, almost all theoretical
calculations have shown that the existence of 𝑛𝑛Λ bound states is difficult. In contrast, many
papers suggest the existence of 𝑛𝑛Λ resonant states, but there are large uncertainties in their
binding energies and widths. Therefore, an experiment for investing 𝑛𝑛Λ state is desired.

There are many experimental difficulties in the 𝑛𝑛Λ production. It is difficult to detect
neutron-rich hypernuclei such as 𝑛𝑛Λ in an emulsion experiment that captures trajectories.
In the conventional counter experiments using (𝜋+ , 𝐾+) or (𝐾− ,𝜋−) reactions, the unstable
target (𝑛𝑛𝑛)was required because the neutron is converted toΛ as shown in Fig. 1.5. Since the
invariant mass methods such as the GSI experiment or emulsion methods detect weak decayed
particles, only bound states can be searched for. Furthermore, since ion-beam reactions are
rather new reactions to be used for hyper-nuclear productions, the feasibility of the reaction
should be investigated.
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Figure 1.5 The reaction process of Λ production.

1.6 Our experiment
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In this study, the electro-production of 𝑛𝑛Λ in the 3H(𝑒 , 𝑒′𝐾+)X reaction is presented.
Since the (𝑒 , 𝑒′𝐾+) reaction converts a proton to Λ, the experiment can be performed using
the 3H target. The use of the 3H target is very restricted due to its radioactivity. We can,
however, use it at the Jefferson Laboratory (JLab) thanks to thorough safety control. JLab can
provide electron beams with high accuracy. The advantages of hypernuclear production in
the (𝑒 , 𝑒′𝐾+) reaction are as follows:

• Excitation of spin-flipped states,
• Absolute energy measurement using the 𝑝(𝑒 , 𝑒′𝐾+)Λ/Σ0 reactions,
• High mass resolution.

Figure 1.6 shows the momentum transfer of the Λ particle by (𝐾− ,𝜋−), (𝐾+ ,𝜋+), and (𝑒 , 𝑒′𝐾+)
reactions. In the (𝐾− ,𝜋−) reaction, where the momentum transfer is small, Λ is generated
on the same orbit as the neutron causing the reaction. In contrast, in the (𝑒 , 𝑒′𝐾+) reaction,
the momentum transfer of Λ is large. It is relatively easy to produce a deeply bound state
of Λ or spin-flipped states. In addition, the Λ (1115.683 ± 0.006 MeV) and Σ0 (1192.642 ±
0.024 MeV) produced by the 𝑝(𝑒 , 𝑒′𝐾+)Λ/Σ0 reactions can be used to accurately calibrate the
mass. Since there is no appropriate target in the (𝐾− ,𝜋−) and (𝜋+ , 𝐾+) reactions, the binding
energy of 12

Λ C measured in the emulsion is used as a reference. The electron beam used in
the (𝑒 , 𝑒′𝐾+) reaction is a primary beam, which allows measurements with higher energy
resolution than hadronic beams, which are secondary beams. Therefore, sub-MeV resolution
has been achieved in previous experiments, and the best resolution can be achieved in counter
experiments.

In contrast, the disadvantages of the (𝑒 , 𝑒′𝐾+) reaction are as follows:

• Low production cross section,
• High background event due to electromagnetic reaction.

The (𝑒 , 𝑒′𝐾+) reaction has a much lower cross section than the hadronic reaction due to the
property of the electromagnetic reactions. This is compensated by using a high intensity
electron beam at JLab. In addition, it is important to remove background events such as
M𝜙ller scattering and bremsstrahlung, which occur at a very high rate. Even a very low
fraction of background can be a serious problem since a very high intensity beam is required
in electro-hypernuclear production.

Hypernuclear studies using electron beams started in 2000. Four experiments (E89-009 [26],
E91-016 [27,28], E01-011 [29], E05-115 [30–34]) were performed in Hall C and one experiment
(E94-107 [35]) was performed in Hall A to establish the hypernuclear production by the
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(𝑒 , 𝑒′𝐾+) reaction. In particular, in the most recent E05-115 experiment, various hypernuclei
in the light- to medium-heavy nuclear regions were successfully produced, and a resolution
of 0.5 MeV (FWHM) was achieved [30].

O. Hashimoto, H. Tamura / Progress in Particle and Nuclear Physics 57 (2006) 564–653 571

Fig. 4. Hypernuclear production cross section for typical reactions versus momentum transfer.

Table 1
Comparison of Λ hypernuclear production reactions

�Z = 0 �Z = −1 Comment
Neutron to Λ Proton to Λ

(π+, K+) (π−, K 0) Stretched, high spin

In-flight (K−, π−) In-flight (K−, π0) Substitutional
Stopped (K−, π−) Stopped (K−, π0)

(e, e′ K 0) (e, e′K+)
Spin-flip, unnatural parity

(γ, K 0) (γ, K+)

that are used for Λ hypernuclear spectroscopy. Typically, larger momentum transfers
correspond to smaller hypernuclear cross sections. Characteristics of these reactions for
meson and electromagnetic beams are also compared in Table 1. Each reaction has its
own advantages and plays its role in a complete program of hypernuclear spectroscopy.
However, only the (K −, π−) and (π+, K +) reactions have been used extensively, and the
feasibility of the (e, e′K +) reaction has only been demonstrated recently, as described in
Section 4.

The momentum transferred to the recoiling hypernucleus is shown in Fig. 5 as a function
of incident beam momentum. The (K −, π−) reaction has a “magic momentum” where the
recoil momentum becomes zero. It thus preferentially populates substitutional states, in
which a nucleon is converted to a Λ hyperon in the same orbit with no orbital angular
momentum transfer (�L = 0). On the other hand, the (π+, K +) reaction and also the

Figure 1.6 Momentum transfer and hypernuclear cross section for each Λ production
process. The figure is taken from Ref. [36].

1.7 Purpose of this paper

Bound states of 𝑛𝑛Λ were reported by GSI collaboration, but the theoretical calculations
are dominated by negative results. However, there are many positive theoretical calculations
on the existence of the resonant state, and experimental results obtained using other methods
are strongly desired. The counter experiment at JLab using the (𝑒 , 𝑒′𝐾+) reaction is the
only method that can produce 𝑛𝑛Λ in a missing-mass spectroscopy. This method has been
established by experiments in the past 20 years, and bound and resonant states can be searched
for with very high sensitivity.

In this study, we report the results of the cross section measurements of the 3H(𝑒 , 𝑒′𝐾+)X
reaction. In Chapter 2, the properties of the (𝑒 , 𝑒′𝐾+) reaction and its experimental setup are
described. After that, an analysis of the obtained data is performed in Chapter 3. In Chapter
4, Monte Carlo Simulations, necessary for the analysis of this experiment, are explained.
Chapter 5 contains the results and discussion, and the summary is given at the end.
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Chapter 2

Experiment

2.1 (𝑒 , 𝑒′𝐾+) reaction

In the experiment, the Λ hypernucleus was produced by the (𝑒 , 𝑒′𝐾+) reaction using the
high-energy electron beam. A schematic diagram of this reaction is shown in Fig. 2.1. The
electron beam is scattered from the target and virtual photons are emitted at a certain prob-
ability. Hyperons are produced by the reaction of a nucleon in the nucleus with the virtual
photon. In this process, 𝐾+s are produced to preserve strangeness. We measured the incident
electron, scattered electron (𝑒′), and 𝐾+ in this experiment. By measuring the momentum
and energy of these three particles, the mass of the hypernucleus 𝑀𝑋 is reconstructed with
the missing mass method, as follows:

𝑀𝑋 =
√
(𝐸𝑒 +𝑀𝑡 − 𝐸𝑒′ − 𝐸𝐾)2 − (®𝑝𝑒 − ®𝑝𝑒′ − ®𝑝𝑌)2 , (2.1)

where ®𝑝 and 𝐸 represent the momentum vector and the energy, and the subscripts show the
particle. 𝑀𝑡 is the mass of the target.

The hyperon was produced with the following elementary reactions,

𝛾∗ + 𝑝 → 𝐾+ +Λ, (2.2)
𝛾∗ + 𝑝 → 𝐾+ + Σ0 , (2.3)
𝛾∗ + 𝑛 → 𝐾+ + Σ−. (2.4)

For the Λ hypernuclear production, Eq. (2.2) was used. In this reaction, a proton in the
nucleus was converted to Λ. Other reaction methods such as (𝜋− ,K−), (K+ ,𝜋+) convert a
neutron to Λ. These various reactions can be used to perform complementary hypernuclear
studies because there are only a limited number of stable nuclei that can be used as targets.

Furthermore, a major advantage of this reaction is that Λ and Σ0 particles can be measured
using a proton target, as shown in Eqs. (2.2) and (2.3). Since the masses of these particles have
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been measured very accurately, we can use these masses to achieve spectrometer calibration
with high accuracy.

e

e’

K+

Λ,Σ0γ*

𝜙𝐾𝜃𝑒𝑒′

𝜃𝛾𝐾
p

Figure 2.1 A diagram of (𝑒 , 𝑒′𝐾+) reaction. The diagram assumes a one-photon approximation.

2.1.1 Kinematics

The triple differential cross section of (𝑒 , 𝑒′𝐾+) reaction is defined as

𝑑3𝜎
𝑑𝐸𝑒′ 𝑑Ω𝑒′ 𝑑Ω𝐾

= Γ

(
𝑑𝜎𝑈
𝑑Ω𝐾

+ 𝜖𝐿
𝑑𝜎𝐿
𝑑Ω𝐾

+ 𝜖
𝑑𝜎𝑃
𝑑Ω𝐾

+
√
𝜖𝐿(1 + 𝜖) 𝑑𝜎𝐼

𝑑Ω𝐾

)
(2.5)

= Γ

(
𝑑𝜎
𝑑Ω𝐾

)
, (2.6)

where 𝜎𝑈 , 𝜎𝐿, 𝜎𝑃 , and 𝜎𝐼 are the unpolarized transverse, longitudinal, polarized transverse,
and interference cross section, respectively [37–39]. Ω𝑒 and Ω𝐾 are the solid angle of the
spectrometer for each particle. 𝑑𝜎/𝑑Ω𝐾 is the differential cross section for (𝛾(∗) , 𝐾+) reaction.
Here, Γ is a parameter introduced to convert the cross section of electron-production to that
of photo-production,

Γ =
𝛼

2𝜋2𝑄2

𝐸𝛾

1 − 𝜖

𝐸𝑒′

𝐸𝑒
, (2.7)

where 𝛼 is the fine structure constant, 𝐸𝛾 is the effective photon energy (𝐸𝛾 = 𝜔 + 𝑞2/2𝑚𝑝),
and 𝑄2 is defined as 𝑄2 = −𝑞2. The transverse polarization 𝜖 and longitudinal polarization
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𝜖𝐿 are defined as follows:

𝜖 =

(
1 + 2|®𝑞 |2

𝑄2 tan2 𝜃𝑒′

2

)−1

, (2.8)

𝜖𝐿 =
𝑄2

𝜔2 𝜖, (2.9)

where 𝜔 and 𝑞 are the energy and momentum of the virtual photon, which are defined as

𝜔 = 𝐸𝑒 − 𝐸𝑒′ , (2.10)
®𝑞 = ®𝑝𝑒 − ®𝑝𝑒′ . (2.11)
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図 1.6 p(γ,K+)Λ反応微分断面積の理論計算 [16–19]と実験データ [22–25] (角度依存性)
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Figure 2.2 The angle dependence of the cross section of Λ photo-production [40].

The 𝐾+ momentum in this experiment were determined to maximize the yield of Λ. The
angular dependence of the 𝑝(𝛾, 𝐾+)Λ reaction [40] is shown in Fig. 2.2. The cross section
increases in the forward region (𝜃CM

𝛾𝐾 ∼ 0◦). Although there are few experimental data and
the theoretical calculations depend on the calculation methods, most of them support an
increase of the cross section in the very forward region. Therefore, we adopted 𝜃CM

𝛾𝐾 ∼ 0◦

as the central angle. The center-of-mass energy dependence of the 𝑝(𝛾, 𝐾+)Λ reaction cross
section [41] at the forward angle (cos𝜃CM

𝛾𝐾 = 0.9) is shown in Fig. 2.3. The cross-section reaches
the maximum around𝑊(= √

𝑠) = 1.8 GeV and then gradually decreases in the higher energy
region. To reduce the 𝐾+ decay in a spectrometer, we adopted𝑊 = 2.1 GeV, which is a sightly
larger energy region. The momentum of 𝐾+ under these conditions is 1.82 GeV/c.

The virtual photon flux increases as it becomes more forward as shown in Eq. (2.7). At the
same time, background events from bremsstrahlung and M𝜙llor scattering also increase at the
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DIFFERENTIAL CROSS SECTIONS FOR γ + p → K+ + Y . . . PHYSICAL REVIEW C 73, 035202 (2006)

FIG. 18. (Color online) Energy distributions for γ + p → K+ + � for selected c.m. kaon angles. CLAS results (blue circles) are shown
with statistical and yield-fit uncertainties. Data from SAPHIR (open stars [18] and triangles [8]) and older experiments [41] (black squares) are
also shown. The curves are for effective Lagrangian calculations computed by KAON-MAID [5] (solid red) and Ireland et al. [12] (dashed black)
and for a Regge-model calculation of Guidal et al. [20,21] (dot-dashed blue).

035202-17

Figure 2.3 The energy dependence of the cross section of 𝑝(𝛾, 𝐾+)Λ reaction [41]. W(=
√
𝑠)

represents the center-of-mass energies.

forward region. Owing to the mechanical constraints of spectrometers, they can only move
in a range over 12.5◦ relative to the beam. These background events are sufficiently small at
this angle. Therefore, to set the 𝜃CM

𝛾𝐾 ∼ 0◦, the angle of the spectrometer was determined to
be 13.2◦ for both the electron and 𝐾+ measurements.

Under the kinematic range mentioned above, the momenta of 𝑒′ and 𝐾+ pair are plotted
in Fig. 2.4. Each point is the pair of electron and 𝐾+ momentum obtained by a simulation.
The black points represent 3H(𝑒 , 𝑒′𝐾+)𝑛𝑛Λ events, the green points represent 𝑝(𝑒 , 𝑒′𝐾+)Λ,
and the red points represent 𝑝(𝑒 , 𝑒′𝐾+)Σ0 events. First, the central momentum of 𝑒′ was set
to cover the expected kinematics of 𝑛𝑛Λ production, which was 2.22 GeV/c. The kinematics
setting is called the Physics-Mode (𝑀phys.), and the momentum acceptance is shown with the
red line in Fig. 2.4. We also used the 𝑝(𝑒 , 𝑒′𝐾+)Λ and 𝑝(𝑒 , 𝑒′𝐾+)Σ0 events as calibration. Since
the 𝑝(𝑒 , 𝑒′𝐾+)Σ0 event is almost out of acceptance in the Physics-Mode, we took data in the
Calibration-Mode (𝑀calib.). In this mode, the momentum of 𝑒′ is reduced to 2.10 GeV/c. The
momentum acceptance in the calibration mode is shown with the blue line in Fig. 2.4. Here,
the momentum of 𝑒′ instead of 𝐾+ was lowered in the calibration-mode to avoid increasing
the decay fraction of 𝐾+. The parameters in these settings are listed in Tab. 2.1.

2.2 Electron beam provided by Jefferson Laboratory
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Figure 2.4 Momentum correlations of 𝑒′ and 𝐾+ for the reactions in this experiment.
The 𝑝(𝑒 , 𝑒′𝐾+)Λ, 𝑝(𝑒 , 𝑒′𝐾+)Σ0 and 3H(𝑒 , 𝑒′𝐾+)𝑛𝑛Λ reactions are shown in green, red and
black dots, respectively. Blue dashed line and red solid line show the acceptances of the
calibration (𝑀calib.) and the physics modes (𝑀phys.), respectively.

The experiment was carried out at the Thomas Jefferson National Accelerator Facility (JLab)
in Virginia, USA. The continuous electron beam accelerator (CEBAF) at JLab was used to
extract high-energy electrons. The electrons accelerated by the CEBAF accelerator are injected
into one of four experimental Halls A, B, C, or D. Figure 2.5 shows the drawing of the CEBAF
accelerator and four experimental halls.

2.2.1 CEBAF

The CEBAF can provide a continuous beam of 100% duty with an intensity of up to 200 𝜇A.
A schematic diagram of the CEBAF is shown in Fig. 2.5. First, the electrons are accelerated to
123 MeV by the injector. The electrons are then injected into a ring with a circumference of
approximately 1400 m. The ring consists of two parts: a linear accelerator for acceleration and
a circular ring for circumference. Each time the electrons passe through the linear accelerator,
they are accelerated by 1.1 GeV and are ejected into each experimental hall. The orbiting
ring consists of five different paths, and electrons take different paths depending on their



Chapter 2 Experiment 24

Table 2.1 Major reaction parameters of the present experiment. The 𝑝(𝑒 , 𝑒′𝐾+)Λ reaction
was assumed for calculations of

√
𝑠 and the momentum transfer 𝑞.

Calibration Mode Physics Mode
(Mcalib.) (Mphys.)

Reaction 𝑝(𝑒 , 𝑒′𝐾+)Λ/Σ0 𝑝(𝑒 , 𝑒′𝐾+)Λ
3H(𝑒 , 𝑒′𝐾+)𝑛𝑛Λ

𝑝cent.
𝑒′ (GeV/c) 2.100 2.218
𝑝cent.
𝐾 (GeV/c) 1.823
𝑄2 (GeV/c)2 0.479 0.505
𝜃𝑒𝛾 (deg) 11.9 13.2
𝑞 (GeV/c) 0.497 0.389√
𝑠(=𝑊) (GeV) 2.13 2.07

𝜖 0.769 0.794
𝜖𝐿 0.075 0.092

energy. The maximum energy was originally 6 GeV, but it was upgraded to 12 GeV. Electrons
of 4.32 GeV were used in this experiment. The beam current was limited to 22.5 𝜇A for the
safety of the tritium target.

2.2.2 Beam measurement

In this section, the methods of measuring the position, direction, energy, and charge of
the incident electron beam are described. The beam position was measured using the beam
position monitor (BPM). Two BPMs were installed, located at 7.524 m and 1.286 m upstream
of the target, respectively. The BPM consisted of four antennas, which were pointed in the
direction of the beam. Each time the beam passed by, the BPM measured its voltage. This
allows the BPM to achieve a position accuracy of 100 𝜇m. The directions of the beam can also
be determined using information from the two BPMs. Although the BPM is a nondestructive
measurement device, the harp must first be used to calibrate the BPM, which is a destructive
measurement. The harp was scanned in the direction perpendicular to the beam axis, and
the absolute position was determined by reading the signal of the wire.

In this experiment, we adopted a raster system in which the electrons moved periodically
in the x- and y-axes to avoid thermal effects on the target cell. The raster is caused by four
dipole magnets placed 2 m upstream of the target. Two of each are used for the horizontal
and vertical directions. The period is 25 kHz, and the electrons are shaken in the range of
2 × 2 mm2. The BPM was used to compensate for this effect as shown in Sec. 3.4.2.



Chapter 2 Experiment 25

Figure 1: CEBAF schematic, the injector sends the beam to two linear acceler-
ators (linacs), which deliver the beam to the Halls A, B, C or D.

2. ARC Measurement Method

The ARC used for the energy measurement comes from the
south linac and goes to Hall A, as is layout in Figure 1. It is a
40 m beam section with 9 dipole magnets, as shown in Figure
2. Eight of the magnets are used to deflect the beam, the bend-
ing angle is of approximately 34.3◦ and it has been surveyed
several times during the past several years, Table 2 summarizes
the results of the surveys.

Figure 2: ARC beam line section. Eight magnets are used to bend the beam
34.3◦, the ninth magnet is used as reference to perform a direct field measure-
ment.

The measurement of the bending angle is done by wire scan-
ners called SuperHarps. In practice, the wires of the Super-
Harps are moved across the beam path, and when the beam
hits the wire, the signal is collected by a photomultiplier tube
(PMT). Based on the signal, the exact position of the beam is
reconstructed. There are two SuperHarps in the ARC; one at
the entrance and one at the exit of the ARC. Both are used to
reconstruct the bend angle.

During the actual operation of the experiments, it is not prac-

tical to use the SuperHarps since they do an absolute but in-
trusive measurement. Instead, beam position monitors (BPMs)
are used. A BPM consists of a cavity with four wire antennas
oriented parallel to the electron beam; the radio-frequency (RF)
signal from each antenna is converted into a DC signal, which
is proportional to the distance between the beam and the an-
tenna. From these four signals, the position of the beam can be
determined [11]. The BPMs provide a relative measurement of
the position and need regular harp scans from the SuperHarps
to be calibrated and properly used.

Surveyed Arc Uncertainty
Year Angle (◦) Angle (◦)
1999 34.302 0.001
2001 34.295 0.001
2002 34.399 0.001
2014 34.259 0.001
2018 34.257 0.001
2021 34.259 0.001

Table 2: Bending angle of the ARC measured by the Jefferson Lab Alignment
Group throughout the years.

The ARC measurement is based on the fact that the elec-
tron moves in a circular trajectory in a magnetic field [12]. The
momentum of the electrons depends on the magnitude of the
magnetic field and its bending angle,

E = k


∫
~B · d~l

θ

 (1)

where k = 0.299792 GeV rad/T-m is the speed of light,
∫
~B · d~l

is the field integral of the dipole magnets in T-m, and θ is the
bending angle of the beam in radians. The magnetic field is
measured using the ninth dipole, which is located outside the
beam line.

The energy measurement can be done either when the beam
is in dispersive or achromatic mode. The dispersive mode re-
quires the quadrupoles to be off, and the energy determination
will follow Equation 1. However, quadrupoles are required for
precise alignment and focus of the beam, therefore, corrections
to Equation 1 have to be made. As a consequence, during pro-
duction runs the quadroples are in used in an achromatic mode,
and in some occasions, the quadrupoles are turned off in a dis-
persive mode for Energy measurements checks.

2.1. Determining ARC Field Integral

The field integral is determined by using an identical 9th
dipole magnet located in a building above the beam line as
shown in Fig. 3. This magnet is powered in series with the
other dipoles, and is used as a reference. It is not possible to
measure the field integral of the 8 dipoles in the arc as their gap
is fully occupied by the vacuum pipe of the beam.

The fringe effects are accounted in the reference dipole by
the use of two translating coils [9]. This pair of coils are wired
in series and precisely spaced from one another. As the coils are

2

Figure 2.5 The schematic view of CEBAF [42].

The electron energy was measured using the arc method [42,43]. Dipole magnets were used
to bend the electrons when they are transported from CEBAF to Hall A. Four harps, two each
at the front and rear of the magnet, were installed. By measuring the position of the particle
with the harp, the bending angle of the particle can be obtained. Furthermore, the energy
of the electrons can be derived by measuring the integrated 𝐵Δ𝑙 of the magnet. Since the
magnetic field of the magnets in the arc cannot be measured directly, another magnet (Ninth
Dipole in Fig. 2.6), which is connected to the magnets in series with the power supply, is
prepared externally. By constantly measuring this magnetic field, the energy of the electrons
can be calculated.

The beam charge was measured using a beam current monitor (BCM). The BCM comprises
an Unser Monitor located in the center with RF cavities located upstream and downstream.
The amount of charge can be measured as an oscillation frequency. The advantage of Unser
is that it is self-calibrated, but it cannot be used for a long period of time because the offset
due to drift current changes in a few minutes. In contrast, RF is not self-calibrated, but it
is very stable and can maintain an accuracy of 0.5% for several months. The BCM achieves
high accuracy by combining these. First, the RF is calibrated using the results of the Unser
calibration. This RF is then used to measure the amount of charge. This allows the amount
of charge to be determined within an accuracy of 1.0 %.
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Figure 1: CEBAF schematic, the injector sends the beam to two linear acceler-
ators (linacs), which deliver the beam to the Halls A, B, C or D.

2. ARC Measurement Method

The ARC used for the energy measurement comes from the
south linac and goes to Hall A, as is layout in Figure 1. It is a
40 m beam section with 9 dipole magnets, as shown in Figure
2. Eight of the magnets are used to deflect the beam, the bend-
ing angle is of approximately 34.3◦ and it has been surveyed
several times during the past several years, Table 2 summarizes
the results of the surveys.

Figure 2: ARC beam line section. Eight magnets are used to bend the beam
34.3◦, the ninth magnet is used as reference to perform a direct field measure-
ment.

The measurement of the bending angle is done by wire scan-
ners called SuperHarps. In practice, the wires of the Super-
Harps are moved across the beam path, and when the beam
hits the wire, the signal is collected by a photomultiplier tube
(PMT). Based on the signal, the exact position of the beam is
reconstructed. There are two SuperHarps in the ARC; one at
the entrance and one at the exit of the ARC. Both are used to
reconstruct the bend angle.

During the actual operation of the experiments, it is not prac-

tical to use the SuperHarps since they do an absolute but in-
trusive measurement. Instead, beam position monitors (BPMs)
are used. A BPM consists of a cavity with four wire antennas
oriented parallel to the electron beam; the radio-frequency (RF)
signal from each antenna is converted into a DC signal, which
is proportional to the distance between the beam and the an-
tenna. From these four signals, the position of the beam can be
determined [11]. The BPMs provide a relative measurement of
the position and need regular harp scans from the SuperHarps
to be calibrated and properly used.

Surveyed Arc Uncertainty
Year Angle (◦) Angle (◦)
1999 34.302 0.001
2001 34.295 0.001
2002 34.399 0.001
2014 34.259 0.001
2018 34.257 0.001
2021 34.259 0.001

Table 2: Bending angle of the ARC measured by the Jefferson Lab Alignment
Group throughout the years.

The ARC measurement is based on the fact that the elec-
tron moves in a circular trajectory in a magnetic field [12]. The
momentum of the electrons depends on the magnitude of the
magnetic field and its bending angle,

E = k


∫
~B · d~l

θ

 (1)

where k = 0.299792 GeV rad/T-m is the speed of light,
∫
~B · d~l

is the field integral of the dipole magnets in T-m, and θ is the
bending angle of the beam in radians. The magnetic field is
measured using the ninth dipole, which is located outside the
beam line.

The energy measurement can be done either when the beam
is in dispersive or achromatic mode. The dispersive mode re-
quires the quadrupoles to be off, and the energy determination
will follow Equation 1. However, quadrupoles are required for
precise alignment and focus of the beam, therefore, corrections
to Equation 1 have to be made. As a consequence, during pro-
duction runs the quadroples are in used in an achromatic mode,
and in some occasions, the quadrupoles are turned off in a dis-
persive mode for Energy measurements checks.

2.1. Determining ARC Field Integral

The field integral is determined by using an identical 9th
dipole magnet located in a building above the beam line as
shown in Fig. 3. This magnet is powered in series with the
other dipoles, and is used as a reference. It is not possible to
measure the field integral of the 8 dipoles in the arc as their gap
is fully occupied by the vacuum pipe of the beam.

The fringe effects are accounted in the reference dipole by
the use of two translating coils [9]. This pair of coils are wired
in series and precisely spaced from one another. As the coils are

2

Figure 2.6 The schematic view of arc method [42].
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Figure 3-3: Schematic of the Hall-A Beam Current Monitor (BCM).

immediately after, and subsequently monitoring the current using the RF cavities.

The calibration process for these devices is described in section 3.3.1.

The charge delivered by the incoming electron beam is determined by integrating

the measured current over time.

3.1.3 Tritium target assembly

The Hall-A target system consists of a “ladder” that moves vertically to align a given

target with the incoming electron beam (see Fig. 3-4). The ladder is equipped with

five gas cells followed by a series of solid targets. The gas cells include tritium,

deuterium, hydrogen, helium-3, and an empty cell for background studies. The solid

targets are a 25-cm dummy and optics targets, and the carbon hole, raster, aluminum,

carbon, titanium, and BeO targets.

Gas cells

The gas cells used in this experiment (see Fig. 3-5) correspond to sealed containers

in which the gas is not circulated. This is different from the standard Hall-A high-

current circulating-fluid target cells. The cell was designed to minimize the amount

of tritium required and to provide several layers of tritium confinement. The cells

were fabricated from aluminum 7075-T651. Additional considerations for the cell de-
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Figure 2.7 The schematic view of BCM. The figure is taken from Ref. [44]

2.3 Spectrometer

In Hall A, there are two existing spectrometers, High Resolution Spectrometers (HRSs).
These two spectrometers have almost the same configuration; the one on the left is called
HRS-L, and the one on the right is called HRS-R. A schematic diagram of the HRS installed in
Hall A is shown in Fig. 2.8. We measured the scattered electron in HRS-L and 𝐾+ in HRS-R.

The HRS was designed as a multipurpose spectrometer to achieve high momentum reso-
lution (Δ𝑝/𝑝 = 1.0 × 10−4, FWHM) over a wide range of momentum (0.3–4.0 GeV/c). The
configuration of the HRS spectrometer is shown in Tab. 2.2. The magnets used in HRS-L
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HRS-L HRS-R

Figure 2.8 High Resolution Spectrometers in Hall A. The electron beam is directed from
the left to right.

and HRS-R are identical. Both have a QQDQ configuration with three quadrupole magnets
and one dipole magnet. Originally, the QQQDQQ configuration was required to achieve a
high performance. Instead, by using an index dipole containing a Q component as D, suffi-
cient performance with the QQDQ configuration could be achieved. Q1, Q2, D, and Q3 are
superconducting magnets and are always cooled with liquid helium.

One of the most important features of this spectrometer is that it is vertically bent. A major
advantage of vertical bending is that there is little deterioration in resolution when a long
target is used in the beam axis direction. In horizontal bending, the momentum resolution
deteriorates because the shift in the z-axis direction appears in the dispersive direction. In
contrast, in vertical bending, the deviation in the beam axis direction appears as the deviation
in the non-dispersive direction, which reduces the deterioration of resolution. Therefore, high
resolution can be achieved even with a gas target such as the one used in this experiment. The
experimental resolution is discussed in Sec. 5.2. A layout of the magnets is shown in Fig. 2.9.
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Figure 2.9 The magnetic configuration of HRS.

Table 2.2 Design value of HRS.

Bending angle 45◦

Optical length 23.4 m
Momentum range 0.3–4.0 GeV/c

Momentum acceptance |𝛿𝑝/𝑝 | < 4.5%
Momentum resolution Δ𝑝/𝑝 = 1.0 × 10−4 (FWHM)

Solid angle 6.0 msr

2.4 Target

The targets were tritium and hydrogen. In addition, 2H, 3He, empty and carbon targets
were also installed. Since the tritium and hydrogen target are gaseous, a cigar-type cell with a
length of 25 cm in the beam direction was used. Tritium was subject to very strict regulations
due to its radiation. Therefore, a sealed-off type cell was used, which was designed to prevent
gas leakage. The cell was cooled to 40 K to avoid cell breakdown due to heat, and the pressure
at this condition was 0.3 MPa. The thickness of the gas was 84.8 ± 0.8 mg/cm2 for tritium
and 70.8 ± 0.4 mg/cm2 for hydrogen. The heat generated in the target by the electron beam
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irradiation causes convection in the gas, which changes the local density of the target [45].
This will be discussed in Sec. 3.2.2. A picture of the target is shown in Fig. 2.10. Each target
was set in the direction of gravity, and the electron beam was irradiated to the target by
moving it in this direction.

electron

3H

2H

1H

3He

empty

C

25 cm

Figure 2.10 The target assembly used in this experiment. This figure is taken from [45].

2.5 Detectors

The charged particles entering the spectrometer were detected by a set of detectors located
at the far end. Figure 2.5 shows an overview of the HRS-L and HRS-R detector array. Each
uses mostly the same detectors, but the detectors for particle identification (PID) are different
in the HRS-L and HRS-R.

Two identical vertical drift chambers (VDCs) are installed in front of the HRS-L detector
array to reconstruct the momentum and angle of the particles by measuring their positions
and angles. Scintillation counters, S0 and S2, are installed behind the VDCs. These are used
to make the trigger and measure the timing of particles. Between S0 and S2, a gas Cherenkov
detector is installed to remove 𝜋−, which are background events. In HRS-R, VDCs, S0, and S2
are installed in the same configuration as in HRS-L. Instead of the gas Cherenkov detectors,
two aerogel detectors (AC1 and AC2) are installed to remove 𝜋+ and 𝑝 background events.
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Figure 2.11 A schematic diagram of HRS detectors. Left and right figures show HRS-L
and HRS-R detectors, respectively.

2.5.1 Tracking detectors

VDCs are used for particle tracking [46]. They are installed on the focal plane of the
HRS optics. Each spectrometer has two VDCs—upper VDC and lower VDC—as shown in
Fig. 2.12, which are placed horizontally at a distance of 33.5 cm. The central trajectory particle
is incident on the VDC in the 45◦ direction since the particle is bent by the dipole magnet.
The VDC consists of two layers, u- and v-layers 2.6 cm apart, and they are orthogonal to each
other. 368 wires are attached at intervals of 4.24 mm, and the effective area is 211.8 cm in the
dispersive direction and 28.8 cm in the non-dispersive direction. The VDCs have an applied
voltage of −4 kV, and the gas composition is Ar (62%) and ethane (38%). The amount of
material per VDC is 7.8 × 10−4 𝑋0 (radiation length). The position and angle resolution are
𝜎𝑥(𝑦) ∼ 100 𝜇m and 𝜎𝑥′(𝑦′) ∼ 0.5 mrad, respectively. Here, 𝑥(, 𝑦), 𝑥′(, 𝑦′) are the position and
angle of (non-)dispersive direction.

A special method called the cluster method was employed for particle tracking. VDCs are
tilted in the direction of 45◦ relative to the direction of the particle trajectory, so that multiple
wires coherently emit signals for a single particle. The number of wires that emit signals is an
average of 3 ∼ 7 wires for each particle. Since these wires emit signals in the order in which
the particles pass, the time information can be used to determine the position and angle of
the incident particles. Since this can be done in the u- and v-layers, the position and angle
of the particle can be determined completely using a single VDC. The second VDC can also
measure the position and angle of the particles and was used for a consistency check.
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All outside surfaces of the Stesalit frames are
plated with a 70 mm thick layer of copper to
suppress RF pickup and static charge buildup.

Further, after assembly, the entire chassis is
covered with an outer sheathing of 125 mm thick
copper. The individual copper plates forming this

Fig. 1. Schematic layout of the VDCs (not to scale). The rectangular area of each wire frame aperture is 2.118m� 0.288m (see Section
3.2.1). The U and V sense wires are orthogonal to each other and lie in the horizontal plane of the laboratory. They are inclined at an

angle of 451 with respect to both the dispersive and non-dispersive directions. The lower VDC coincides (essentially) with the

spectrometer focal plane. The vertical offset between like wire planes in 0.335m.

K.G. Fissum et al. / Nuclear Instruments and Methods in Physics Research A 474 (2001) 108–131110

Figure 2.12 Schematic diagram of the vertical drift chamber [46].

2.5.2 Cherenkov counters

The measured particles were electrons in HRS-L and 𝐾+ in HRS-R. However, a very large
number of background events were also present. Therefore, Cherenkov detectors suitable for
each spectrometer were installed.

The main background particles in HRS-L are 𝜋−. Therefore, a gas Cherenkov detector
(atmospheric pressure, 𝑛 = 1.00041) filled with CO2 was installed to reject 𝜋− [47]. Since only
electrons emit photons in the momentum region of this experiment (2.1 ∼ 2.3 GeV), the𝜋− was
rejected by selecting photon emission events. Basic information regarding the gas Cherenkov
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detector is shown in Tab. 2.3. The average of the number of photo-electrons at high energy
electrons is approximately 7.3. The calculation results of the number of photo-electrons in
the GC are shown on the left of Fig. 2.13. The momentum region of this experiment is shown
by the gray shaded area.

The background particles for HRS-R are 𝑝 and 𝜋+. In general, the production cross section
of 𝐾+ is considerably low compared to the background particles, so a more powerful PID
is required in HRS-R. Therefore, two aerogel Cherenkov detectors—AC1 and AC2—were
installed [48]. The basic information of ACs is shown in Tab. 2.3. The average number of
photo-electrons for high energy electrons is typically 8 for AC1 and 30 for AC2. The calculation
results of the number of photo-electrons in AC1 and AC2 with the respective particles are
shown in Fig. 2.13. The momentum region of this experiment (1.7 ∼ 1.9 GeV) is shown by the
gray shaded area. AC1 emits photons for 𝜋+ and 𝐾+ and AC2 for 𝜋+.

Table 2.3 Basic information of the Cherenkov detectors.

refractive index radiator length (cm) PMT 𝑁PMT

GC 1.00041 120 ET 9390 KB 10
AC1 1.015 9 Burle RCA 8854 24
AC2 1.055 5 Photonis XP 4572B 26
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Figure 2.13 Momentum dependence of the number of photo-electrons in the Cherenkov
detectors. Left and right show the number of photo-electrons of the gas Cherenkov (GC)
detector and aerogel Cherenkov (AC) detectors, respectively. The gray shaded areas show
the momentum region of this experiment.
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2.5.3 Scintillation counters

There are two scintillation counters, S0 and S2. These were installed for particle timing
information and triggering. S0 is one large plate made from plastic scintillator (BICRON 408)
and is placed just after the VDC. The signal is read from PMTs (3-inch XP2312B) in both
sides. The active area is 190 × 40 cm2 and the thickness is 10 cm. S2 is located at the far
end of the spectrometer. The timing information of S2 is used to calculate the coincidence
time (Sec. 3.3.1). S2 is composed of 16 scintillators made from plastic scintillator (EJ-230).
The schematic diagram is shown in Fig. 2.14. The signal is read from PMTs (2-inch Photonis
2282B) in both sides. The active area is 220 × 54 cm2 and the thickness is 2 inch.

2.6 DAQ

Data from the detectors were taken using the FASTBUS and VME modules with ADC and
TDC. The DAQ trigger was formed with NIM modules. These DAQ trigger events were
processed with CODA (CEBAF Online Data Acquisition). The beam information was stored
using EPICS software.CHAPTER 12. TRIGGER SCINTILLATOR COUNTERS 93

Discriminator Splitters

F = 60 lbs

88 in

17
 in

etc.

Figure 12.2: The layout on the frame of the S2 paddles and electronics.

from each PMT are sent to a passive 90/10% splitter, with the greater and lesser portions
sent to the on-frame discriminator and Fastbus ADCs,respectively. The discriminator is
a Phillips-Scientific model 706 with the threshold set at 10mV. Both NIM outputs are
used on each channel, with one line as input for the trigger-logic and the other going
to a TDC after passing through a NIM-ECL converter and a delay of some 880ns. The
average resulting timing resolution for a single PMT was measured to be better than
σpmt < 150ps.

The geometry of S0 counter limits its timing resolution. In 1999 the resolution was
measured to be σt ≈ .2ns.

LeCroy HV 1460 modules are used to supply HV power for the trigger counters.
The HV can be controlled from a VT100 terminal connected through a terminal server
or through the EPICS [6] system based on the HAC computer. Current HV settings for
the trigger counters should be found from a printout of the EPICS control in the last
experimental logbook.

Figures 12.3 and 12.4 give examples which are included for guidance only. The
settings used in the plots may be not correct.

12.3 PMT operation monitoring

There are two ways to monitor PMT/detector performance. The first is based on a scaler
display program which provides information about PMT counting rates and coincidence
counting rates. A large variation of the rates between paddles is an indication of a possible

Figure 2.14 Schematic diagram of S2 [49].
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The scintillators, S0 and S2, were used for triggering. The trigger conditions are shown in
Tab. 2.4. T1 and T4 were used for data acquisition in a single arm. T1 is for HRS-L and T4 for
HRS-R, and the condition for data acquisition is S0⊗S2 in each spectrometer. In contrast, T5
is the trigger for the coincidence condition, and the condition for data acquisition is that S0
and S2 of the left and right spectrometers emit the signal simultaneously. The main data were
acquired by T5. T1 and T4 were acquired to measure the properties of the single spectrometer.
These were acquired simultaneously with the T5 data. The rates were typically 1 kHz, 2 kHz,
and 60 Hz for T1, T4, and T5, respectively. An overview of the trigger timing is shown in
Fig. 2.6. The signal widths for S0 and S2 were set at 50 ns for HRS-L and 150 ns for HRS-R,
respectively, and the timing was adjusted so that the HRS-L signal came later.

Table 2.4 Trigger condition.

T1 (S0⊗𝑆2)L
T4 (S0⊗𝑆2)R
T5 (S0⊗𝑆2)L ⊗ (𝑆0 ⊗ 𝑆2)R

HRS-L

HRS-R

150 ns

50 ns

trigger 

timing

Figure 2.15 Trigger timing with T5 condition.
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Chapter 3

Analysis

In this chapter, the detail of a data analysis to calculate the cross section of the
3H(𝑒 , 𝑒′𝐾+)𝑛𝑛Λ reaction is described. First, the optics calibration to obtain the missing
mass spectrum is explained. After that, event selections to improve the signal to noise ratio
(S/N) are described. The efficiencies that originate from the various event selections and
hardware specifications etc., and other correction factors are described. There are correction
factors which need to be evaluated by using a Monte Carlo simulation. Details about the MC
simulation, and the correction factors that we evaluated by the MC simulation are described
in the next Chapter (Chap. 4).

3.1 Optics calibration

The missing mass was reconstructed with the following equation,

𝑀𝑋 =
√
(𝐸𝑒 +𝑀𝑡 − 𝐸𝐾 − 𝐸𝑒′ )2 − ( ®𝑝𝑒 − ®𝑝𝑘 − ®𝑝𝑒′ )2. (3.1)

Here, ®𝑝 and 𝐸 represent the momentum vector and the energy, and the subscripts show the
particle. 𝑀𝑡 is the mass of the target. The momentum and the angle at the production point
were reconstructed with the backward transfer matrix (BTM) for which the inputs are the
particles position and angle at VDC. The BTM is defined as follows:

𝑥′𝑇 =
𝑛1∑

𝑎+𝑏+𝑐+𝑑+𝑒=0
𝐶𝑥′(𝑎, 𝑏, 𝑐, 𝑑, 𝑒)𝑥𝑎𝑥′𝑏𝑦𝑐𝑦′𝑑𝑧𝑒𝑇 (3.2)

𝑦′𝑇 =
𝑛2∑

𝑎+𝑏+𝑐+𝑑+𝑒=0
𝐶𝑦′(𝑎, 𝑏, 𝑐, 𝑑, 𝑒)𝑥𝑎𝑥′𝑏𝑦𝑐𝑦′𝑑𝑧𝑒𝑇 (3.3)

𝑝𝑇 =
𝑛3∑

𝑎+𝑏+𝑐+𝑑+𝑒=0
𝐶𝑝(𝑎, 𝑏, 𝑐, 𝑑, 𝑒)𝑥𝑎𝑥′𝑏𝑦𝑐𝑦′𝑑𝑧𝑒𝑇 , (3.4)
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where 𝑥(, 𝑦), 𝑥′(, 𝑦′), 𝑝, 𝑧𝑇 are the position and angle of (non-)dispersive direction, the
momentum and the vertex positon along the beam direction. The angles 𝑥′ and 𝑦′ are defined
as 𝑝𝑥/𝑝𝑧 and 𝑝𝑦/𝑝𝑧 , respectively. The variables with and without the subscript T are the ones
at the production point and those at VDC, respectively. The 𝑛 stand for the powers of each
polynomial function. 𝐶𝑥′ ,𝑦′ ,𝑝 are the parameters to be optimized in the calibration.

At first, the production point 𝑧𝑇 is required to calculate Eqs. (3.2), (3.3), (3.4). 𝑧𝑇 is recon-
structed with the following equation,

𝑧𝑇 =
𝑛4∑

𝑎+𝑏+𝑐+𝑑=0
𝐶𝑧(𝑎, 𝑏, 𝑐, 𝑑)𝑥𝑎𝑥′𝑏𝑦𝑐𝑦′𝑑 (3.5)

The parameters of Eq. (3.5) were optimized with carbon multi foil data. Ten thin foils
(45 mg/cm2) were placed at 2.5 cm intervals, and the reconstructed data are shown in Fig. 3.1.
These optimizations were performed so that the events make peaks at the ideal foil positions.
The MINUIT package in ROOT framework [50, 51] was used to minimize 𝜒2 of the result of
Eq. (3.5). In this analysis, the 3rd-order parameters (𝑛4 = 3) were used.

The angle parameters of Eqs. (3.2) and (3.3) were calibrated with sieve slits, which have
multi holes. A drawing of the sieve slit is shown in Fig. 3.2. The slit has two types of holes—
large holes with a radius of 3.0 mm and small holes with a radius of 2.0 mm. There are two
large holes, which are convenient for checking the direction. These slits were placed in front
of the Q1 magnet and are shown in Fig. 3.3. Sieve-slit patterns of HRS-L and R with the initial
parameters of Eqs. (3.2) and (3.3) are shown in Fig. 3.4. The black points show the position
of the small hole, and red points show the position of the large hole. The reconstructed hole
images at the sieve-slit for both HRS-L and HRS-R were not at the right position with the
initial parameters. The parameter optimization needed to be performed taking into account
the finite size of the beam and the finite thickness of target. The particle-position images at
the sieve slits after the optimization are shown in Fig. 3.5 in which the right and left panels
are for HRS-L and HRS-R, respectively. The hole image is much clear in HRS-L because the
electrons have larger energy loss due to the radiation and more probability to be stopped
in the slit plate compared to the hadron particles in HRS-R. The hadron particles punched
through the sieve slit, and they caused large backgrounds in the HRS-R image. The 4th-order
polynomials (𝑛1,2 = 4) were used to optimize the angle parameters. Here, the parameters
related to 𝑧𝑇 were limited up to the second order; the parameters tuned to be zero if the power
of 𝑧𝑇 became more than 2.

Finally, missing mass distribution of the elementary process from the hydrogen target was
used to optimize the momentum parameters of Eq. (3.4). Two spectrometer settings were
used in the experiment: 𝑀phys. and 𝑀calib. as shown in Tab. 2.1. The 𝑛𝑛Λ production data
were taken with𝑀phys.. However, only 𝑝(𝑒 , 𝑒′𝐾+)Λproduction which is the energy calibration
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Figure 3.1 The carbon foil profile reconstructed with Eq. (3.5). Ten carbon foils were used
as targets. The targets were placed at 2.5 cm intervals. No foil was placed at 𝑧 = 7.5 cm.

source was in the acceptance. For purpose of better calibration, data with the lowered central
momentum for 𝑒′ detection (𝑀calib.) were taken to simultaneously measure the Λ and Σ0

productions as shown in Fig. 2.4. The parameters were tuned so that the events make Λ and
Σ0 peaks are at PDG values [52]. The missing mass distribution obtained by the optimization
are shown in Fig. 3.6. The 5th order of polynomials (𝑛3 = 5) were used for the momentum.
The parameters with the power of more than 2 for 𝑧𝑇 were set to zero as were for the angle
polynomial functions. It is noted that the parameters for the momentum function (Eq. (3.4)) in
𝑀phys. and 𝑀calib. are the same, but, for a conversion, a scale factor was applied by 2.218/2.210
which is the ratio of the central momentum settings. The missing-mass resolution of the peak
of 𝑝(𝑒 , 𝑒′𝐾+)Λ reaction after the all above calibrations was 𝜎 = 1.3 ± 0.1 MeV/c2 when a fit
was performed with a Gaussian function over a range of |MX − MΛ | < 2 MeV/c2.

3.2 Number of target nuclei

A gas target was enclosed in an aluminum cell with a length of 25 cm along the beam line.
When the density is 𝜌 mg/cm2, the Avogadro number is 𝑁𝐴, and the atomic weight is A, the
number of targets 𝑁targ with the unit of cm−2 is expressed by the following equation:

𝑁targ =
𝜌𝑁𝐴

A (3.6)
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Figure 3.2 A drawing of the sieve slit.

The density of tritium gas was 84.8 ± 0.8 mg/cm2 and A = 3.016 [53], so the number of target
nuclei is (1.69 ± 0.02) × 1022 cm−2. The number of target nuclei used for the analysis were
reduced from this value due to the vertex cut, effects of a density reduction and tritium decay
as shown in the following sections (Sec. 3.2.1–3.2.3).

3.2.1 Vertex cut

The vertex 𝑧𝑇 can be reconstructed for each spectrometer using Eq. (3.5). The vertex 𝑧𝑇
reconstructed by using the tracking information of HRS-L is denoted as 𝑧𝐿, and the vertex 𝑧𝑇
reconstructed by HRS-R as 𝑧𝑅. The vertex resolution can be improved by taking the average
of both,

𝑧mean =
𝑧𝐿 + 𝑧𝑅

2 . (3.7)

Figure 3.7 shows the correlation between 𝑧mean and 𝑧diff = 𝑧𝐿 − 𝑧𝑅. The region in the red box
corresponds to the events originating from the target nuclei, whereas the region in the black
box corresponds to the events originating from the aluminum (Al) cell. The other events are
considered to be accidental coincidence events originating from the cell and the target. The
Al cell has atoms with the larger proton number than the gas target, which leads to the larger
amount of electromagnetic background. In the region where 𝑧diff is larger than the vertex
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Figure 3.3 Picture of sieve slits set in front of the Q1 magnet. The sieve slits were removed
in the production data taking.
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Figure 3.4 The sieve slit patterns reconstructed with the initial angle parameters of
Eqs. (3.2) and (3.3). The left and right panels show the 𝑥 vs. 𝑦 images for HRS-L and
HRS-R, respectively. The markers show the expected position of the hole. The black and
red markers represent the positions for the small and large holes, respectively.

resolution, it consists of the following three elements of accidental coincidence:

Alleft&Alright , (3.8)
Alleft&Target, (3.9)

Alright&Target. (3.10)
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Figure 3.5 The sieve slit patterns reconstructed with the optimized parameters of Eqs. (3.2)
and (3.3). Left and right panels show the 𝑥 vs. 𝑦 image for HRS-L and HRS-R, respectively.
The markers show the expected position of the holes. The black and red markers represent
the positions for small and large holes, respectively.
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Figure 3.6 H(𝑒 , 𝑒′𝐾+)Λ/Σ0 missing mass spectrum reconstructed by pre and post opti-
mized parameters of Eq. (3.4).

Therefore, a cut condition of 𝑧diff was required to remove these background events. The
survival ratio due to the 𝑧diff cut was estimated by using Λ production events from the
hydrogen gas target. The |𝑧diff | cut dependence of the survival ratio is shown in Fig. 3.8. In
this analysis, the events in the range of |𝑧diff | < 2.0 cm were selected. This resulted in a target
survival ratio of 84.3 ± 6.6%.

In addition, a 𝑧mean cut was required to exclude the aluminum events from the entrance and
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Figure 3.7 Correlation of subtraction (𝑧𝐿− 𝑧𝑅)and average (𝑧𝐿+ 𝑧𝑅)/2 of the vertex profile
in the log scale. The selected area and Al cell region are shown with red and black boxes,
respectively.

exit of the Al cell. Figure 3.9 shows the 𝑧L and 𝑧R distributions when the above 𝑧diff cut was
applied. The peaks around ±12.5 cm are events from the Al cell, and those in between are
events from the gas target. A spectral fit was performed to evaluate the survival ratio of the
gas component after the Al-cell events are cut out with the 𝑧𝑇 selection. A Gaussian function
was assumed for events from the Al cell. For the gas target, a convolution of a quadratic
function and a Gaussian function were used as shown in the following equation.

N(z) =
∫ ∞

−∞
𝑑𝑧 𝑓 (𝑧′)𝐺(𝑧 − 𝑧′, 𝜎) (3.11)

where 𝑓 (𝑧) is the quadratic function and 𝐺(𝑧 − 𝑧′, 𝜎) denotes the Gaussian. We assumed that
the width parameter of𝐺(𝑧−𝑧′, 𝜎) is the same as that of the Gaussian for the Al cell. Fit results
for 𝑧L and 𝑧R are shown in Fig. 3.9. The thickness of the Al cell is thin enough (∼ 400 𝜇m)
that the width of the Gaussian represents the vertex resolution. Obtained vertex resolution
were 𝜎𝑧𝐿 = 0.53 ± 0.02 cm and 𝜎𝑧𝑅 = 0.50 ± 0.02 cm. Similarly, the vertex resolution for 𝜎𝑧mean

was found to be 0.38 ± 0.02 cm. The survival ratio of the gas component as a function of
X𝑧mean (; |𝑧mean | < X𝑧mean ) is shown in the right panel of Fig. 3.10. The survival ratio was found
to be 84.7 ± 0.8% with X𝑧mean = 10 cm which is the condition used in the present analysis.
The contamination of the Al-cell events was evaluated to be less than 0.1% relative to the
remaining events in the case of X𝑧mean = 10 cm.
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Figure 3.8 𝑧diff dependence of the survival ratio of the tritium target.

The excess of events can be seen on the left and right sides of the Al peaks. This is the area
where the Gaussian function cannot represent the Al cell. Considering the possibility that
this event also occurs inside the Al cell, we took this event as a systematic error. The difference
between the data and the fitting function in the outer region of the cell was taken and inverted
around the position of the cell, and the contamination rate was calculated assuming that
the same amount of contribution from aluminum exists in the inner region of the cell. The
systematic error of the survival ratio in this test was less than 0.1%. Combining the above
cuts for 𝑧diff and 𝑧mean, the efficiency for vertex cuts was estimated to be 71.5 ± 5.6% and the
Al contamination was less than 0.1% relative to the remaining events with these cuts.

3.2.2 Density change

The gas target was irradiated by a large number of electron beams. In this process, energy
is lost at the cell entrance, cell exit and target, and heat of 15 W is produced. In contrast,
the heat from tritium decay is negligible at 50 mW. The heat on the path of beam caused a
density reduction of gas [45]. This effect depends on the beam current and target. The local
density reaches equilibrium in a few seconds after the electron beam irradiates the cell, and
if the current is constant, the local density remains constant.

This effect has already been estimated by measuring the electron scattering using HRS-
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Figure 3.9 Distribution of 𝑧𝐿 and 𝑧𝑅 when 𝑧diff cut was applied. The fitting results are
also shown. See the text for the functions.
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Figure 3.10 Survival ratio of the target with the 𝑧mean cut. (Left) Distribution of 𝑧mean
(Right) Survival ratio of target and Al. These were calculated with the fitting result of the
left figure.

L [45]. The density change of the gas was evaluated from a change of counting rate in the
spectrometer. The results are shown in Fig. 3.11. The figure shows the density correction 𝑓

when the beam current 𝐼beam was set to one at 0 𝜇A. The blue points are the data points, and
the solid line is the value of the density correction 𝑓 fitted by a quadratic function.

𝑓 (𝐼beam) = 𝑎𝐼2beam + 𝑏𝐼beam + 𝑐 (3.12)

For the tritium target, 𝑎 = (1.06 ± 0.36) × 10−4, 𝑏 = (−6.8 ± 0.89) × 10−3, and 𝑐 = 1. ± 0.003.
The 95% confidence interval due to statistical error is shown in the blue band, and the one
including the systematic error is shown in the gray hatched area. This error is mainly due
to the uncertainty in the current measurement of the BCM. The density is evaluated to be
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reduced to 0.901 ± 0.03 at the beam current of 22.5 𝜇A.

Figure 3.11 The change of the tritium gas density as a function of beam current. The
local heat along the beam path caused the density reduction. The experiment for the 𝑛𝑛Λ
measurement was performed at the beam current of 22.5 𝜇A. The figure is taken from
Ref. [45].

3.2.3 3H decay and contamination

Tritium nuclei decay in the weak decay mode as follows,

3H → 3He + e− + 𝜈e. (3.13)

Therefore, the loss of the 3H nuclei and the contamination of the 3He nuclei need to be
considered as

𝑛3H(𝑡) = 𝑛0
3H𝑒

−𝑡/𝜏3H (3.14)

𝑛3He(𝑡) = 𝑛0
3He + 𝑛0

3H(1 − 𝑒−𝑡/𝜏3H), (3.15)

where 𝜏3H = (12.32 ± 0.02 years)/ln(2) is the lifetime of 3H and 𝑛 is the number of nuclei.
The initial contamination of 3He when the cell was filled with tritium gas was reported in
Ref. [54];

𝜖0 =
𝑛0

3He(𝑡)
𝑛0

3He(𝑡) + 𝑛0
3H(𝑡)

= 0.059%. (3.16)
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Our experiment was conducted approximately 90 days after the gas was filled. From Eq. (3.14),
we estimated that 1.4 ± 0.3% of the tritium had already decayed at the experiment.

3He nuclei also produces a background event because a Λ is produced with the 𝑝(𝑒 , 𝑒′𝐾+)Λ
reaction. The 3He contamination in the tritium cell was estimated to be 1.4 ± 0.3% from
Eq. (3.15). The number of 3He shown above is the number of nuclei and must be multiplied
by the cross-section ratio. For this, we refer to Ref. [55]. This reports the Fermi momentum
dependence of the proton in R(p) = 𝜎3He(𝑝)/𝜎3H(𝑝). We calculated the weighted average of R
according to the Fermi momentum of tritium nucleus [56] and estimated as Rave = 2.12±0.03.
The number of 3He events in the 3H(𝑒 , 𝑒′𝐾+)𝑋 reaction was estimated to be 3.0 ± 0.7%.

The tritium cell also contained a small amount of hydrogen nuclei. TheΛ production events
from the hydrogen target produce a broad peak at −𝐵Λ = 40 ∼ 50 MeV on the 3H(𝑒 , 𝑒′𝐾+)X
spectrum and does not affect the region of interest (−𝐵Λ = −20 ∼ 20 MeV). It is noted that the
events can be used for energy calibration as shown in Sec. 5.3.2.

3.3 Particle identification

Various particles other than electron and 𝐾+ enter the HRS-L and HRS-R. In the HRS-L, 𝜋−

is major background, and in the HRS-R, 𝜋+ and 𝑝 are major background. Therefore, particle
identification (PID) must be performed to remove them. PID was performed by analysis
of time measurement (coincidence time analysis shown in Sec. 3.3.1) and light yields in the
Cherenkov counters (Sec. 3.3.2).

3.3.1 Coincidence time method

We define 𝑡0 as the timing when the hyperon production event occurs. Since the electrons
and 𝐾+ pass through the spectrometer (∼ 23 m), the timings for the detector to measure
the particles differ from 𝑡0. These timings are denoted as 𝑡𝑒 ,det and 𝑡𝐾,det. The velocity can
be calculated by using the mass of the particles and the momentum reconstructed by BTM.
Finally, the timing at the hyperon production can be calculated in each spectrometer (𝑡𝑒 ,0, 𝑡𝐾,0)
by using the velocity and the trajectory of the particle. If the particle assumptions are correct,
the estimated timing should be the same (𝑡𝑒 ,0 = 𝑡𝐾,0). Therefore, if we define the coincidence
time as follows:

𝑡coin = 𝑡𝐾,0 − 𝑡𝑒 ,0 , (3.17)

the coincidence events for electron and 𝐾+ can be selected by choosing those with coincidence
times near 0 ns. Figure 3.12 shows the calculation results of coincidence time when the electron
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and 𝐾+ mass were assumed. The peak near 0 ns is the coincidence event between the electron
and 𝐾+. In contrast, the peak on the left (𝑡coin ∼ −3 ns) is the coincidence events between the
electron and 𝜋+ , and the peak on the right (𝑡coin ∼ 8 ns) is the coincidence events between the
electron and 𝑝. There is also a periodic structure every 2 ns. This is accidental coincidence
events due to the fact that the incident electron has a bunch structure every 2 ns. Since this
structure also exists in the region of electron and 𝐾+ coincidence events, we estimated the
number of accidental coincidence events in the region using side-band data. Here, we selected
four bunches in the region of 𝑡coin = [3–5], [13–15], [15–17], [17–19] ns as side-band data. The
black line in Fig. 3.12 shows the bunch structure estimated from the side-band data. The time
resolution was estimated to be 0.3 ns by fitting the (𝑒′, 𝐾+) coincidence peak. The events of
|𝑡coin | < 0.7 ns were selected to avoid 𝜋+ contamination. The efficiency of the coincidence
time cut is described in the next section.
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Figure 3.12 Coincidence time distribution without Cherenkov cut. The blue line shows
the experimental data. The black line shows the accidental background evaluated by
collecting some accidental bunches.

3.3.2 Cherenkov cut

The gas Cherenkov detector (GC) at HRS-L identified the electrons, and the aerogel detectors
(AC1 and AC2) at HRS-R identified 𝐾+. Figures 3.13 and 3.14 show the correlation between
the number of photo-electrons and the coincidence time in AC1 and AC2. Events in the blue
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boxes are considered to be 𝜋+ and 𝑝. 𝐾+ events are seen in the red box around 𝑡coin = 0 ns.
The following conditions were applied in the analysis to improve the purity of 𝐾+:

n.p.e. (AC1) < 3.0,
1 < n.p.e. (AC2) < 23.0.

The 𝐾+ efficiency with the Cherenkov cuts was obtained using events from the
𝑝(𝑒 , 𝑒′𝐾+)Λ/Σ0 reactions. First, a missing mass distribution for (𝑒′, 𝐾+) coincidence events
was obtained without the Cherenkov cuts. The blue line in Fig. 3.15 shows the distribution.
The background from (𝑒′,𝜋+) coincidence events exist in this distribution. Therefore, a
missing mass distribution was reconstructed with (𝑒′,𝜋+) coincidence events to remove 𝜋+

contamination. This distribution was scaled to 𝜋+ contamination ratio as shown in Fig. 3.15
and was subtracted from the distribution for the (𝑒′, 𝐾+) coincidence events. This distribution
was compared to the distribution with the Cherenkov cuts. The scale with the smallest
residuals of these distributions were searched for. This scale indicate the 𝐾+ efficiency. While
changing the 𝜋+ contamination ratio, the scale where residuals were the smallest was set as
the 𝐾+ efficiency. The 𝐾+ efficiency with the Cherenkov cuts was estimated to be 91.4± 6.3%.

The efficiency of coincidence time cut and 𝜋+ contamination ratio were evaluated by fitting
the coincidence time distribution. Here, the 𝜋+ contamination ratio was defined as 𝑁𝜋/(𝑁𝜋 +
𝑁𝐾). The fitting result with the double-Gaussian functions is shown on the left of Fig. 3.16.
The accidental coincidence components have already been subtracted. The result shows that
there are residual events to the right of 𝐾+ peak. The 𝜋+ peak may be distorted from the
Gaussian function because the coincidence time was reconstructed with the assumption of
𝐾+ mass for particles in HRS-R as shown in Sec. 3.3.1. A exponential function was added to
represent this event, since the events on the right side of 𝐾+ peak were assumed to be the tail
due to 𝜋+ events. The fitting result with the function with the exponential tail for 𝜋+ is shown
on the right of Fig. 3.16. We took the average of the cases with and without the exponential
function. From these fittings, the contamination of 𝜋+ was estimated to be 2.4 ± 1.8%. In
contrast, the contamination from protons was negligibly small.

In addition, we selected the events with |𝑡coin | < 0.7 ns to improve 𝐾+ purity. The efficiency
of the event selection was estimated to be 98.4± 0.5% from the fitting of Fig. 3.16. In addition,
the data of the timing information was partly broken. Some bunch of events could be found
where the coincidence time was shifted on the order of 𝜇s. When the number of events in a
bunch is large enough, we could increase the statistics by correcting the coincidence time for
proper timing. Some bunches had so few events that it was difficult to correct the coincidence
time. These events were cut and taken into account as an efficiency, which was estimated to
be 97.7 ± 0.2%. A total efficiency due to the coincidence-time event selections was estimated
to be 96.1 ± 0.5%.
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Figure 3.13 Correlation between the number of photo-electrons and the coincidence time
of AC1. The typical regions of 𝜋+, 𝐾+ and 𝑝 are shown in solid boxes.

3.4 Beam electron

The number of electrons incident on the target was counted for the cross-section analysis
as shown in the following Section 3.4.1. The electron beam was periodically deflected in 𝑥

and 𝑦 directions (raster) to make the beam spot large enough to avoid damage on the target
cell due to the heat (we called it raster beam). The beam spot size with the raster 2 × 2 mm2

although the original beam size at Hall A is about rms = 100 𝜇m which is negligibly small for
beam optics analysis of spectrometers. The beam size due to the raster needed to be corrected
event by event in the analysis as shown in Sec. 3.4.2.

3.4.1 Beam charge

The beam charge on the target was measured by BCM (Sec. 2.2.2). The amount of charge ir-
radiated to each target was obtained by integrating the BCM data. The results are summarized
in Tab. 3.1. The error was mainly due to the accuracy of the BCM.

3.4.2 Raster correction
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Figure 3.14 Correlation between the number of photo-electrons and the coincidence time
of AC2. The typical regions of 𝜋+, 𝐾+, and 𝑝 are shown in solid circles.

Table 3.1 The total beam charge irradiated to each target obtained by accumulating the
BCM information on each run.

Target Charge (C)
H2 4.71±0.05
T2 16.95±0.17

The incident electrons were bent by the magnetic field and irradiated to the target with
a distribution of 2 × 2 mm2 in the 𝑥𝑦-plane to avoid heat concentration from the electron
beam. Here, 𝑥 and 𝑦 directions are dispersive and non-dispersive directions, respectively. The
distribution is shown in Fig. 3.17. Experimental analysis was performed under the assumption
that events were produced at (𝑥, 𝑦) = (0, 0) mm. The vertex position was corrected with the
𝑦 position as follows,

𝑧′𝑇 = 𝑧𝑇 + 𝑦
𝑦′ (3.18)

Here, 𝑧 and 𝑧′ are the vertex position before and after the correction and 𝑦′ is the angle (𝑝𝑦/𝑝𝑧)
of the particle at the target.
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Figure 3.15 Missing-mass distribution of 𝑝(𝑒 , 𝑒′𝐾+) reaction without Cherenkov cut and
that of 𝑝(𝑒 , 𝑒′𝜋+) reaction.
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Figure 3.16 Coincidence time before and after Cherenkov cut. The left shows the fitting
result assuming the Gaussian function as the 𝜋+ peak. The right shows the fitting result
assuming the Gaussian function and exponential tail as the 𝜋+ peak.

3.5 Others

In this section, we discuss the efficiency evaluation, which has not been discussed above.
In Sec. 3.5.1, tracking efficiency of VDCs will be discussed. In Sec. 3.5.2, the treatment of
multiplicity data is described. A cut was applied to data with multiplicity of 2 or more
because the multiplicity was small in this experiment. We will discuss the efficiency of the
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Figure 3.17 Beam image of 𝑥 vs. 𝑦 at the target, which was reconstructed by using the
BPM information.

multiplicity cut. In Sec. 3.5.3, we will discuss DAQ efficiency.

3.5.1 Tracking efficiency

The VDCs were used for tracking, as described in Sec. 2.5.1. Tracking efficiency was
estimated from the experimental data. First, as shown in the left panel of Fig 3.18, a wire
efficiency was determined based on whether the center wire had a hit when neighbored wires
at both sides of the wire had hits. The wire efficiency of a typical run is shown in the right
panel of Fig. 3.18. The efficiency near the center is almost 1, and the efficiency decreases
toward the edge. The hit distribution of the particles and the number of wires per hit were
also estimated from the experimental data. The hit distribution of the particles is shown in
Fig. 3.19.

The efficiency per layer (Plane efficiency) of each VDC was calculated using a MC simulation
by using the wire efficiency. Here, we assumed that the wire efficiencies were independent
with each other. The wire hit information is given to the wire in MC simulation according
to the particle distribution as shown in Fig. 3.20. Then, the wire is set to be inefficient with
a certain probability based on the wire efficiency. If the cluster is broken by this process,
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the efficiency decreases. By repeating this procedure, a plane efficiency of each VDC layer
was obtained. The tracking efficiency per spectrometer was obtained as the product of the
plane efficiency of each VDC layer. The efficiency for a typical run is summarized in Tab. 3.2.
The tracking efficiency for each run was calculated and the result is shown in Fig. 3.21. The
average result was 98.1% with an error of less than 0.1%.
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Figure 3.18 The estimation of the wire efficiency. (Left) Example of a wire hit pattern.
(Right) Example of the wire efficiency of a layer.
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Figure 3.19 VDC hit information estimated from experimental data. (Left) Wire hit posi-
tion in a layer. (Right) Cluster size of one particle.

3.5.2 Multiplicity
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Figure 3.20 Strategy of MC simulation for plane efficiency estimation.

Table 3.2 VDC plane efficiency and tracking efficiency in a typical run.

Layer LHRS Efficiency (%) RHRS Efficiency (%)
VDC1 u 99.72 99.78
VDC1 v 99.65 99.64
VDC2 u 99.80 99.78
VDC2 v 99.73 99.80

Tracking efficiency 98.90+0.12
−0.18 99.18+0.09

−0.19

In this experiment, multiple particles may come into each spectrometer for one trigger.
Since we are using multi-hit TDC, these events were recorded. The multiplicities per event
of the left and right spectrometers are denoted as 𝑀𝐿 and 𝑀𝑅, respectively. The multiplicity
was low in this experiment, so data analysis was performed only in the case of 𝑀𝐿 = 1 and
𝑀𝑅 = 1. The loss of signals which is due to the cut of multiple hits needed to be taken
into account for the cross-section analysis. The ratio of remaining events to that of the total
number of signals after the multiple-hit cuts is defined as 𝜖multi.
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Figure 3.21 Run dependence of tracking efficiency.

First of all, we consider (𝑀𝐿 , 𝑀𝑅) = (2, 1), (1, 2) as the excluded event. For example, in the
case of (𝑀𝐿 , 𝑀𝑅) = (2, 1), two tracks (𝑝𝐿1 , 𝑝𝐿2) were recorded in HRS-L and one track (𝑝𝑅1) in
HRS-R. The possible events at this time are 𝑝𝐿1 × 𝑝𝑅1 and 𝑝𝐿2 × 𝑝𝑅1.

First, the case (𝑀𝐿 , 𝑀𝑅) = (1, 2) is considered. The timing information is shown in the
upper part of Fig. 3.22. The coincidence time is calculated by considering the time difference
between the trigger timing and 𝐾+. Since the trigger timing is determined by the electrons,
the coincidence time can be correctly calculated in both cases. The left panel of Fig. 3.23
shows the coincidence time when the event (𝑀𝐿 , 𝑀𝑅) = (1, 2) is selected. It shows the sum of
the distributions of 𝑝𝐿1 × 𝑝𝑅1 and 𝑝𝐿1 × 𝑝𝑅2. The distribution of coincidence time is different
from (𝑀𝐿 , 𝑀𝑅) = (1, 1), and no clear peak structure of 𝐾+ could be observed in this condition.
This may be because multiple events are mostly secondary particles that have been created
by collisions with detectors or magnets, and the physical quantities such as momentum have
changed. Therefore, the region of 𝐾+ was fitted with an exponential function representing
BG and a Gaussian function representing the 𝐾+ events. The upper limit of the integral of the
signal was estimated to be 0.86% and set as a systematic error.

Next, the case (𝑀𝐿 , 𝑀𝑅) = (2, 1) is considered. The timing information in this case is
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shown in the lower part of Fig. 3.22. In the first event 𝑝𝐿1 × 𝑝𝑅1, the coincidence time was
calculated correctly, but in the second event 𝑝𝐿1 × 𝑝𝑅2, the coincidence time could not be
calculated correctly because the time difference between the electron and 𝐾+ could not be
used. However, the probability that a true event is included is the same for both 𝑝𝐿1 × 𝑝𝑅1 and
𝑝𝐿1 × 𝑝𝑅2. Therefore, the upper limit was determined in 𝑝𝐿1 × 𝑝𝑅1, and the upper limit was
doubled. The calculation was performed in the same manner as in (𝑀𝑅 , 𝑀𝑅) = (1, 2) and the
systematic error was estimated to be 0.42%.

The number of events with multiplicity higher than the above is several times less, so the
difference in efficiency due to cutting these events is negligible. By taking the sum of both
(𝑀𝐿 , 𝑀𝑅) = (1, 2) and (𝑀𝐿 , 𝑀𝑅) = (2, 1), the error due to the multiplicity was estimated to be
1.3%.

(ML, MR) = (1, 2) e1

K1

K2

e1

K1

(ML, MR) = (2, 1)

e2

Figure 3.22 TDC timing information when a multiple hit event occurs.

3.5.3 DAQ efficiency

The run dependence of the DAQ dead time is shown in Fig. 3.24. The DAQ dead time
differs between the initial runs and the subsequent runs. In the data acquisition, not only
T5 (coincidence trigger) but also T1 and T4 (single trigger) were acquired to check the status
of the single arm. In the beginning, the DAQ efficiency was poor because a lot of data were
acquired by a single trigger. In the meantime, the ratio of the single trigger data acquisition
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Figure 3.23 Coincidence time distribution in the multiplicity event. Left shows the distri-
bution for (𝑀𝐿 , 𝑀𝑅) = (1, 2) and right shows for (𝑀𝐿 , 𝑀𝑅) = (2, 1), respectively.

was reduced by changing the pre-scale factor, so the DAQ efficiency improved. By averaging
the DAQ dead time for each run with the weight of the number of events, the efficiency due
to DAQ dead time was estimated to be 96.5%. The error was less than 0.1%.

In addition, the efficiency of S0 and S2, which are the trigger counters, was considered. This
was estimated using experimental data and was found to be 98.1± 0.1% [44]. Combining the
above, the efficiency associated with DAQ was estimated to be 94.6 ± 0.1%.
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Chapter 4

Monte Carlo Simulation

In this chapter, the Monte Carlo (MC) simulation used for data analysis is described. Some
physical quantities, such as acceptances and resolution, could not be obtained from only the
experimental data and they were evaluated by the MC simulation. The MC simulation was
built based on Geant4. In this chapter, the outline of the Geant4 simulator is described first.
Then, the event generator, which was used as inputs in the MC simulation, is explained. Next,
a setup model of the MC simulation and its validity test by comparing with the experimental
data are shown. Finally, various quantities evaluated by the optimized MC simulation are
given.

4.1 Introduction

The MC simulation based on Geant4 was built to evaluate various quantities such as
spectrometer acceptance,𝐾+ decay factor, and so on. There is an existing simulation SIMC [57].
SIMC uses the backward transfer matrix (BTM) which was obtained by using an optics
calculation software. Therefore, the optics calculation needs to be redone to generate a new
matrix as an input of SIMC when one studies different beam optics. SIMC runs much quicker
than Geant4 because it calculates particle distribution based on the transfer matrix. However,
we wanted to study the optics more detail by changing the magnetic field to quantitatively
evaluate systematic errors on the cross-section results.

A new simulator was constructed by the Geant4 [58–60] to enable more detailed simulations
for this analysis. This was built in C++ and provides a toolkit for Monte Carlo simulations.
The Geant4 can change the magnetic field in the simulation, so we can easily modify the
spectrometer optics. Since the optics of both HRS-L and HRS-R are identical, a simulator
reproducing HRS-L (HRS Geant4) was constructed, and HRS-R was used as a reversal of the
magnetic polarity of HRS-L.
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The procedure for obtaining the missing mass distribution by the HRS Geant4 is shown
in Fig. 4.1. First, the kinematics parameters (𝑝, 𝑥𝑇 , 𝑥′𝑇 , 𝑦𝑇 , 𝑦

′
𝑇) of scattered electrons and 𝐾+

are obtained using the event generator described in Sec. 4.2. Using this information as input,
the particle position and angular distribution on the VDC (𝑥, 𝑦, 𝑥′, 𝑦′) can be obtained by
simulating the particle trajectory using the HRS Geant4. The BTM can be obtained using the
Eqs. (3.2), (3.3), (3.4), and (3.5). Furthermore, by randomly varying these quantities with the
position and angle resolutions of VDC, the VDC distribution that represents the experiment
can be produced. The physical quantities at the target (𝑥′𝑇 , 𝑦

′
𝑇 , 𝑝𝑇 , 𝑧), which include the effects

of resolution and bremsstrahlung, can be reconstructed using the BTM. The missing mass
distribution can be calculated by applying this calculation to the scattered electron and 𝐾+.
Moreover, the resolution of each physical quantity can be estimated by comparing the quantity
with the true value. The details of the resolution will be described in Sec. 5.2.

HRS-L

Geant4

HRS-R

Geant4

Transfer 

Matrix

Transfer 

Matrix

Missing Mass
Event 

Generator

HRS-L

Geant4

e’

K+

Figure 4.1 Strategy for missing mass reconstruction with Geant4.

4.2 Event generator

The MC simulation was used for the particle transportation, and it needed the particles’
information of momentum vectors at the production point. We made a code to calculate the
momentum vectors of 𝑒′ and 𝐾+ at the production point assuming the (𝑒 , 𝑒′𝐾+) reaction. The
schematic view of the event generation is shown in Fig. 4.2. First, the energy of the incident
electron is determined, from which a virtual photon 𝛾∗ is emitted (Sec. 4.2.1–4.2.2). It then
reacts with the target to produce 𝐾+ and hyperon (Sec. 4.2.5). The calculation method is
different for the hydrogen target and the tritium target. In the following sections, details of
the generator are given.

4.2.1 Beam electron
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Figure 4.2 The schematic view of the 3H(𝑒 , 𝑒′𝐾+)𝑋 reaction.

The energy of the incident electrons was determined based on the distribution of the
experimental data. The central momentum of the incident electrons was 4.31 GeV/c, and the
energy resolution was Δ𝐸/𝐸 ∼ 1.0 × 10−4 (FWHM). In addition, the energy was lost in the
target cell. The energy loss was taken into account as shown in Sec. 4.4.3.

4.2.2 Scattering electron and virtual photon

The generator uses one-photon approximation, which assumes that the incident electron
only emits one virtual photon. The number of virtual photons (𝑁𝛾∗ ) is expressed as

𝑁𝛾∗ = 𝑁𝑒

∬
Γ𝑑Ω𝑒′𝑑𝐸𝑒′ . (4.1)

Here, 𝑁𝑒 is the number of the beam electrons. Γ is expressed as

Γ =
𝛼

2𝜋2𝑄2
𝐸𝛾

1 − 𝜖
𝐸𝑒′
𝐸𝑒

(4.2)

Each parameter is explained in Sec. 2.1.1. The four momentum of the scattered electron 𝑝𝑒′

are determined by using Eq. (4.2). The momentum of the virtual photon can be calculated as
follows

𝑝𝛾∗ = 𝑝𝑒 − 𝑝𝑒′ . (4.3)

4.2.3 Radiation effect
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Figure 4.3 Schematic view of internal and external radiation.

In electron scattering experiments, the radiation effect due to the small mass of the electron
cannot be ignored. The missing mass distribution has a large amount of radiative tails in the
high mass side as shown in Fig. 3.6. These radiative tails can be categorized into two types:
internal and external radiation. Internal radiation is caused by the scattering of electrons by
the electric field of the target nucleus. In contrast, external radiation is caused by scattering
of electrons by materials other than the target nucleus. The term "radiation" is usually used
to refer to the external radiation. Since external radiation is included in the physics process of
Geant4, the only radiation that needs to be included in the generator is the internal radiation.

Figure 4.4 Feynman diagrams contributed to the internal radiation. Panels a, b, and c
represent virtual internal radiation. Panel d represents the real internal radiation.

The internal radiation was calculated in the Ref. [61], and this calculation was incorporated
in the generator. The correction of the cross-section by internal radiation can be expressed as
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follows: (
𝑑𝜎
𝑑Ω𝑒′

)
exp

=

(
𝑑𝜎
𝑑Ω𝑒′

)
𝐵𝑂𝑅𝑁

𝑒𝛿𝑣𝑒𝑟𝑡𝑒𝑥+𝛿𝑅
(1 − 𝛿𝑣𝑎𝑐/2)2 . (4.4)

Here, 𝛿𝑣𝑒𝑟𝑡𝑒𝑥 , 𝛿𝑣𝑎𝑐 and 𝛿𝑅 represent the vertex correction, the vacuum polarization correction
and the real radiative correction, respectively. 𝛿𝑣𝑒𝑟𝑡𝑒𝑥 and 𝛿𝑣𝑎𝑐 come from the Feynman
diagrams in Fig. 4.4(a), (b), and (c), respectively. Since they denote the virtual internal
radiation, they do not contribute to the experimental observables. 𝛿𝑅 comes from the Feynman
diagram shown in Fig. 4.4(d), which contributes to the experiment as internal radiation. The
discussion will therefore be limited to the 𝑒𝛿𝑅 part. 𝛿𝑅 is expressed as follows under𝑄2 � 𝑚2

𝑒 .

𝛿𝑅 =
𝛼𝑒𝑚
𝜋

{
ln

(
Δ𝐸𝑒Δ𝐸𝑒′
𝐸𝑒𝐸𝑒′

) [
ln

(
𝑄2

𝑚2
𝑒

)
− 1

]
− 1

2 ln2
(
�̃�𝑒
�̃�𝑒′

)
+ 1

2 ln2
(
𝑄2

𝑚2
𝑒

)
− 𝜋2

3 + Sp
(
cos2 𝜃𝑒

2

)}
.

(4.5)

Here, the tilde symbol indicates the parameters in the center-of-mass frame, and Δ𝐸𝑒 and
Δ𝐸𝑒′ are the energy loss of the incident and scattered electrons due to internal radiation,
respectively. Sp denotes Spence’s function, which is defined as follows:

Sp(𝑥) = −
∫ 𝑥

0
𝑑𝑡

ln(1 − 𝑡)
𝑡

. (4.6)

It is the first term in Eq. (4.5) that contains the energy loss term, and the other terms do not
contribute to energy loss. Therefore, the contribution of internal radiation can be described
as follows:

𝑒𝛿𝑅 ∼
(
Δ𝐸𝑒Δ𝐸𝑒′
𝐸𝑒𝐸𝑒′

) 𝑎
(4.7)

=

(
Δ𝐸𝑒
𝐸𝑒

) 𝑎 (Δ𝐸𝑒′
𝐸𝑒′

) 𝑎
, (4.8)

where

𝑎 =
𝛼𝑒𝑚
𝜋

[
ln

(
𝑄2

𝑚2
𝑒

)]
. (4.9)

When an electron with energy 𝐸 loses energy Δ𝐸, the distribution is expressed as follows:

𝐼int(𝐸,Δ𝐸, 𝑎) = 𝑎
Δ𝐸

(
Δ𝐸
𝐸

) 𝑎
. (4.10)

Here, 𝑎/Δ𝐸 is the normalization factor. This equation is the same function as that for external
radiation, where the thickness of material 𝑡 is replaced by 𝑎. In the generator, the energy loss
was calculated for both the incident and scattered electrons. The result is shown in Fig. 4.5.
The external radiation alone does not reproduce the experimental data, but the inclusion of
internal radiation reproduces the data well.
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Figure 4.5 The effect of the internal radiation. The missing mass spectrum of the
𝑝(𝑒 , 𝑒′𝐾+)Λ/Σ0 reactions with and without the internal radiation is shown using a green
and red histogram, respectively.

4.2.4 Fermi motion and off-shell effect

The process of a virtual photon reacting with a proton in a target nucleus is considered. In
this experiment, a hydrogen target and a tritium target were used. In the case of the hydrogen
target, the proton is assumed to be at rest. In contrast, in the case of the tritium target, the
protons are bound in the nucleus and have Fermi momentum.

Fermi motion was incorporated using the spectral function 𝑆(𝐸, 𝑘). The spectral function is
the probability of finding a nucleon with momentum 𝑘 in a state with removal energy 𝐸. The
removal energy 𝐸 is expressed as follows:

𝐸 = |𝐸𝐴 | − |𝐸𝐴−1 | + 𝐸∗
𝐴−1 , (4.11)

where𝐸𝐴 is the binding energy of the target nucleus, 𝐸𝐴−1 is the binding energy of the residual
nucleus, and 𝐸∗

𝐴−1 is the excitation energy of the residual nucleus. The momentum of the
proton ®𝑘𝑝 can be obtained by using the spectral function. In the case of a tritium target, the
residual nucleus has two neutrons. By denoting their momentum as ®𝑘𝑛1 , ®𝑘𝑛2, the following
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equation is obtained:

𝐸∗
𝐴−1 =

®𝑘2
𝑟𝑒𝑙

𝑀
=

( ®𝑘𝑛1 − ®𝑘𝑛2)2
4𝑀 (4.12)

Here, ®𝑘𝑟𝑒𝑙 is the relative momentum of the two neutrons. The angle of ®𝑘𝑟𝑒𝑙 was uniformly
distributed. Based on Eq. (4.12) and conservation of momentum, the magnitude of the
momentum of the two neutrons can be determined as follows:

| ®𝑘𝑛1 | =
√

®𝑘2
𝑟𝑒𝑙 +

®𝑘2
𝑝

4 + | ®𝑘𝑟𝑒𝑙 | | ®𝑘𝑝 | cos𝜃, (4.13)

| ®𝑘𝑛2 | =
√

®𝑘2
𝑟𝑒𝑙 +

®𝑘2
𝑝

4 − | ®𝑘𝑟𝑒𝑙 | | ®𝑘𝑝 | cos𝜃. (4.14)

Theoretical calculations by Ciofi were used as the spectral function. For the tritium target,
the result published in 1980 [62] is shown in Fig. 4.6. However, since the calculations used are
outdated and there is a lack of experimental information to confirm this, the spectral function
result [63, 64] for 3He is used in this work. Assuming isospin symmetry, the theoretical
calculations for neutrons and protons in 3He were used to calculate the momentum of protons
and neutrons in 3H. The uncertainty of assumption has been reported by one of the JLab
tritium experiments [55] and was estimated to be less than 3% based on the Fermi momentum
calculation by Wiringa [56].
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Figure 4.6 Spectral function of the process 3H(e, e′p)2n. This figure is taken from Ref. [62].

Nucleons in nuclei are off-mass shells because they have Fermi momentum. However, as
will be discussed in a later section, the 𝛾 + 𝑁 → 𝐾+ + 𝑌 reaction was calculated using the
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cross-section results from the CLAS experiment [41]. The target of the CLAS experiment
is hydrogen, so the proton is an on-mass shell. The on-mass-shell approximation [65] was
applied to solve this issue. The proton mass (𝑀𝑝∗) assumed to be off-mass shell as follows:

𝑀2
𝑝∗ =

(
𝑀𝑇 −

√
𝑀2
𝑛 + | ®𝑘𝑛1 |2 −

√
𝑀2
𝑛 + | ®𝑘𝑛2 |2

)2

− | ®𝑝𝐹 |2 (4.15)

where 𝑀𝑇 and 𝑀𝑛 are the masses of the tritium nucleus and neutron, respectively, and ®𝑝𝐹 is
the momentum of the proton.

4.2.5 Hyperon production

The reaction between the virtual photon and the target nucleus is considered here. In the
case of a tritium target, the reaction 𝛾∗ +3 H → 𝐾+ + 𝑌 should be considered. However, the
impulse approximation, in which 𝛾∗ reacts with a single nucleon, can be used due to the high
energy of the virtual photon. Therefore, the reaction 𝛾∗ + 𝑝 → 𝐾+ + 𝑌 is considered. Since
experimental data and theoretical calculations on hyperon production with virtual photons
are scarce, the reaction is assumed to be with real photons. There are three types of hyperon
production reactions to be considered:

𝛾 + 𝑝 → 𝐾+ +Λ,

　𝛾 + 𝑝 → 𝐾+ + Σ0 , (4.16)
𝛾 + 𝑛 → 𝐾+ + Σ−.

The data from the CLAS experiment [41] were used to take into account the energy and
angular dependence of these reaction cross-sections. The CLAS experiment was performed
at Hall B in JLab and measured the hyperon-production cross section on a proton target using
real photons over wide energy and angular ranges. The experimental results are shown in
Fig. 4.7 and 4.8. Since there were no data available for the neutron target, the energy and
angle dependence of 𝛾 + 𝑝 → 𝐾+ + Λ reaction were applied assuming isospin symmetry.
These results were used to obtain the four momenta of 𝐾+ and the hyperons.

4.3 Geant4 setup

The momentum vectors of the scattered electrons and 𝐾+ created by the generator are used
as input for the HRS Geant4. The construction of the HRS Geant4 is described below.
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FIG. 8. (Color online) Differential cross sections for γ + p → K+ + �. The number in each panel designates W (= √
s). The solid lines

are results of the amplitude fits [Eq. (3)] discussed in the text.

The parameters of the fit may be used to gain some insight
into the reaction mechanism, unraveling effects from inter-
ference among partial waves. Figure 9 shows the coefficients
from the fit using Eq. (3). The ai were taken to be purely

real numbers. The range over which each parameter is plotted
depended upon its significance, as estimated by the statistical
F test. Mostly, the higher partial waves are not significant
near threshold, but our angular coverage is also less complete

FIG. 9. (Color online) Amplitude fit to the
differential cross sections for γ + p → K+ +
�. The coefficients are defined in Eq. (3). The
solid vertical lines mark the well-known N∗ res-
onances S11(1650), P11(1710), and P13(1720).
The dotted line marks the �0 threshold, and the
dashed line marks the D13(1895) position.

035202-9

Figure 4.7 Differential cross sections for 𝛾 + 𝑝 → 𝐾+ +Λ [41]. The number in each panel
shows𝑊(= √

𝑠).

4.3.1 Geometry

The geometrical information of the HRS spectrometer was taken from Ref. [66]. The visual-
ized result of the HRS Geant4 is shown in Fig. 4.9. Since the Q1 and D magnets considerably
contribute to acceptance, the design was reproduced by 3D-CAD and incorporated into the
simulator. In contrast, Q2 and Q3, which do not contribute significantly to the acceptance,
were incorporated in a simple cylindrical shape. The target cell is also incorporated in its
actual shape because it is important for the calculation of the energy loss. As for detectors,
the position and size of the VDC and S2 were also incorporated. The target chamber, vacuum
films, air, etc. were also incorporated to calculate the energy loss in the spectrometer path
correctly. The material list is summarized in Tab. 4.1.

4.3.2 Magnetic field

The magnetic field is one of the most important parameters that determine the yield and
resolution of an experiment. For the dipole magnet, the magnetic field was calculated using
the TOSCA code. TOSCA is a software which can calculate the 3D magnetic field maps using
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FIG. 11. (Color online) Differential cross sections for γ + p → K+ + �0. The number in each panel designates W (= √
s). The solid lines

are results of the amplitude fits [Eq. (3)] discussed in the text.

FIG. 12. (Color online) Ampli-
tude fit to the differential cross
sections for γ + p → K+ + �0.
The coefficients are defined in
Eq. (3). The solid vertical lines
mark the well-known N∗ reso-
nances S11(1650), P11(1710), and
P13(1720). The dotted line marks
the �0 threshold, and the dashed
line marks the D13(1895) position.

035202-11

Figure 4.8 Differential cross sections for 𝛾 + 𝑝 → 𝐾+ +Σ0 [41]. The number in each panel
shows𝑊(= √

𝑠).

the finite element method. In contrast, for the quadrupole magnets (Q1, Q2, Q3), an empirical
formula, the Kato formula [67], was used.

𝐵𝑥 = 𝑔𝑦

[
𝐻(𝑠) − 𝑦2 + 3𝑥2

12𝐺2
𝑑2𝐻(𝑠)
𝑑𝑠2

]
(4.17)

𝐵𝑦 = 𝑔𝑥

[
𝐻(𝑠) − 𝑥2 + 3𝑦2

12𝐺2
𝑑2𝐻(𝑠)
𝑑𝑠2

]
(4.18)

𝐵𝑧 = 𝑔
𝑥𝑦
𝐺
𝑑𝐻(𝑠)
𝑑𝑠

(4.19)

𝑠 =
𝑧
𝐺

(4.20)

𝐻(𝑠) = (1 + exp(𝐶0 + 𝐶1𝑠 + 𝐶2𝑠2 + 𝐶3𝑠3))−1 (4.21)
𝐶0 = −0.9842, 𝐶1 = 6.3375, 𝐶2 = −3.5134, 𝐶3 = 0.9895 (4.22)

The 𝑧 direction is the depth direction of a quadrupole magnet. 𝐺 is the bore radius and 𝑔 is
the magnetic field gradient.

As described above, an empirical formula was used for the magnetic field, which does not
completely reproduce the actual magnetic field. Therefore, the magnetic field was optimized
to reproduce the experimental values such as VDC hit distributions. The optimization process
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Figure 4.9 Visualization of the HRS Geant4 simulator.

is described below. Since the optics are equal for both HRS-L and HRS-R arms, the parameters
of the magnetic field were varied while keeping the ratio of each magnetic field strength as
follows:

𝐵𝐷𝐿 : 𝐵𝑄1𝐿 : 𝐵𝑄2𝐿 : 𝐵𝑄3𝐿 = 𝐵𝐷𝑅 : 𝐵𝑄1𝑅 : 𝐵𝑄2𝑅 : 𝐵𝑄3𝑅 , (4.23)

where 𝐵𝐷 is the magnetic field of the dipole magnet, 𝐵𝑄 is that of the quadrupole magnet, L
stands for HRS-L, and R stands for HRS-R. Furthermore, the ratio of 𝐵𝑄2 to 𝐵𝑄3 did not change
since the same magnets were used for Q2 and Q3. Therefore, the parameters to be optimized
were 𝐵𝐷 , 𝐵𝑄1, and 𝐵𝑄2. The 𝐵𝐷 was adjusted so that the central ray passed through the central
orbit, and the momentum and mass distributions were consistent with the experimental data.
The 𝐵𝑄1 and 𝐵𝑄2 were determined so that the angle distribution at VDC and target would be
consistent between the experimental data and the simulation. The details of the optimization
are shown in Appendix B. The residuals of the distributions from the experimental data were
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Table 4.1 Material list of the particle trajectory in HRS. The total amount of thickness is
shown in two different ways because S2 does not affect to the 𝐾+ absorption.

Section Element Density (g/cm3) Length (cm) Thickness (g/cm2)
Gas Target T2 3.16×10−3 25.0 0.079
Target Cell Al7075 2.81 0.04/sin(13.2) 0.492

Scattering Chamber Al7075 2.81 0.0279 0.078
Vacuum Entrance Ti 4.54 0.0127 0.058

Vacuum Exit Ti 4.54 0.0127 0.058
Air Air 1.29×10−3 139+50 0.248

VDC Al 2.7 0.0069 0.037
S0 CH2 1.03 1.0 1.03
S2 CH2 1.03 5.08 5.23

AC1 0.10 9.0 0.90
AC2 0.20 5.0 1.00
Total 10.22

Total(w/o S2) 4.99

calculated by changing the 𝐵𝑄1 and 𝐵𝑄2. The magnetic field setting where the residual was
the minimum value was adopted as the best setting. The results are shown in Fig. 4.10. The
axis shows the ratio with respect to the best setting. The experimental settings are shown as
black dots. There is a difference of up to 3% in the magnetic field between the experimental
setting and the best setting. The difference can be attributed to the accuracy of the HRS
Geant4 setup, such as geometry and magnetic field. Therefore, the region within the red
line in Fig. 4.10, which includes the experimental settings, was adopted as 𝐵𝑄1 and 𝐵𝑄2. The
difference in this line was assumed to be a systematic error.

4.3.3 Missing mass

The missing mass distribution calculated by the HRS Geant4 for a proton target is shown
in Fig. 4.11. The purple points show the experimental data, and the colored histogram is the
result of the simulation. Green represents 𝑝(𝑒 , 𝑒′K+)Λ events, and red represents 𝑝(𝑒 , 𝑒′K+)Σ0

events. The HRS Geant4 can reproduce the mass resolution and the tail of the high mass region
of the peaks since the HRS Geant4 includes matter in the particle path and radiation effects.
Systematic errors resulting from the difference of the missing mass distribution between the
experimental data and the simulation are discussed in Sec. 5.4.1.

The missing mass distribution for a tritium target is shown in Fig. 4.12. The left figure shows
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Figure 4.10 Residuals between the experimental data and the simulation. The residuals
were calculated for the angular distribution at VDC and target. The 𝐵𝑄1 and 𝐵𝑄2 are the
ratios with respect to the best setting.

the missing mass distribution calculated assuming a tritium target, and the right figure shows
the missing mass distribution calculated assuming a hydrogen target. The left figure shows
that the data and the simulation agree well in the high mass side. In contrast, near the
threshold, there is a discrepancy between the data and the simulation due to the Λ𝑛 final
state interaction or on-mass-shell approximation. As can be seen from the right figure, the
partial contamination of the proton target results in contamination of events generated by the
𝑝(𝑒 , 𝑒′𝐾+)Λ reaction. The number of quasi free Σ0 events is negligibly small in this kinematic
setting.

4.4 Evaluation results

The HRS Geant4 simulator was used to calculate the various quantities required for analysis.

4.4.1 𝐾+ decay and absorption
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Figure 4.11 Comparison with the Geant4 simulation and data in the case of hydrogen
target. The experimental data are shown in purple dots. The simulation results for the
𝑝(𝑒 , 𝑒′𝐾+)Λ and 𝑝(𝑒 , 𝑒′𝐾+)Σ0 reactions are shown in green and red histograms, respectively.

Most 𝐾+ (𝑐𝜏 = 3.7 m) will decay in the HRS path since the HRS has a long path length of
∼ 23 m. This decay rate depends not only on the momentum of 𝐾+ but also on the path length
of the particles in the spectrometer. This was investigated using the HRS Geant4 simulator.
The results are shown in Fig. 4.13. In the region with large momentum, the survival ratio is
larger because the time to reach the spectrometer is shorter. Typically, the survival ratio is
15% for the central momentum (𝑝𝐾 = 1.82 GeV/c).

The 𝐾+ passes through various materials such as target chambers and vacuum membranes
before being detected by the detector. Since the 𝐾+N interaction is relatively large, it is
necessary to consider the absorption effect of 𝐾+ in the material to derive the production
cross section. Absorption here refers to the 𝐾+ that were produced but did not reach the
detector. Therefore, it also includes multiple scattering in addition to true nuclear absorption.
The materials that exist on the trajectory of 𝐾+ are shown in Tab. 4.1. The absorption rate 𝑓𝑎𝑏𝑠
in the material is obtained by the HRS Geant4 simulation. For a typical value of the central
momentum 𝑝𝐾 = 1.82 GeV/c, the result is 8.9%. In the actual analysis, the absorption ratio
depends on momentum, and the data were corrected for each event.
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Figure 4.12 Comparison with Geant4 simulation and data in the case of tritium target.
The experimental data are shown as purple dots. The simulation results are shown as
colored histograms. Left and right figures show missing mass spectra calculated assuming
the tritium target and hydrogen target, respectively.
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Figure 4.13 𝐾+ momentum dependence of 𝐾+ survival ratio in HRS-R path. The accep-
tance region (|𝛿𝑝/𝑝 | < 4%) is also shown as a blue line.

4.4.2 Acceptance

Acceptance is the solid angle at which the spectrometer can detect particles. The accep-
tances of spectrometers are a function of momentum. Therefore, the momentum-dependent
acceptances of each spectrometer, ΔΩ𝑒′(𝑝𝑒′) and ΔΩ𝐾(𝑝𝐾), were obtained and used in the
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analysis. The momentum and angular distributions of the particles were uniformly produced
when estimating the acceptance. When 𝑁gen particles ejected in the range of Ωgen (msr) and
𝑁𝑎𝑐𝑐 are detected, the acceptance ΔΩ(𝑝) for a given momentum 𝑝 is expressed as follows:

ΔΩ(𝑝) = 𝑁acc(𝑝, cos𝜃)
𝑁gen(𝑝, cos𝜃)Ωgen. (4.24)

The magnetic field was taken from the one described in Sec. 4.3.2. The red point in Fig. 4.10
was used as the central value, and the deviations from the central value of the magnetic field
within the red line in Fig. 4.10 were treated as systematic errors. The results of the acceptance
for HRS-L are shown in Fig. 4.14. The blue dots indicate the acceptance of the central value,
and the shaded area indicates the systematic error. The red line is the result of SIMC, i.e., the
conventionally used simulator. From this result, the number of virtual photons 𝑁𝛾∗ can be
obtained. The number of virtual photons is expressed as follows: 𝑁𝛾∗ = Γint𝑁𝑒 , where

Γint =
∬

Γ𝑑Ω𝑒′𝑑𝐸𝑒′ . (4.25)

Γ is a quantity calculated using the Eq. (2.7).
The systematic errors were obtained by calculating the acceptance for the magnetic field

within the red line in Fig. 4.10, as described above. The errors shown below are averaged
over the momentum acceptance of the experiment. The error of the ΔΓint was estimated to be
8.5%. If we define ΔΩ𝐾 × 𝜖decay × 𝜖absorp as ΔΩall, the error of ΔΩall was estimated to be 7.6%.
Here, 𝜖decay and 𝜖absorp represent the efficiencies of 𝐾+ decay and absorption, respectively.
The difference of from SIMC in Γint was also 2%, which was within the range of systematic
errors.

4.4.3 Energy loss correction

The particles lose their energy in the material. Therefore, the momentum measured by BCM
and HRS spectrometers are different from the momentum at the hyperon production. The
momentum loss should be corrected to calculate the missing mass accurately. The momentum
used for mass reconstruction 𝑝real is represented as

𝑝real
𝑒 = 𝑝mea

𝑒 − Δ𝑝𝑒 (4.26)
𝑝real
𝑒′ = 𝑝mea

𝑒′ + Δ𝑝𝑒′ (4.27)
𝑝real
𝐾 = 𝑝mea

𝐾 + Δ𝑝𝐾 , (4.28)

where 𝑝mea
𝑒 is the momentum measured with BCM and 𝑝mea

𝑒′ , 𝑝mea
𝐾 are the momentum mea-

sured in HRS-L, HRS-R, respectively. Δ𝑝 is the momentum loss in the material. Especially,
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Figure 4.14 Acceptance estimated by the HRS Geant4 and SIMC. The result of the HRS
Geant4 is shown as blue points, and the blue shaded area represents the systematic error.
The result of SIMC is shown as a red solid line.

the target cell and air have significant effects on the energy loss. The electrons lose their
energy more than 𝐾+ due to the radiation effect.

As for the target cell, special corrections are required because of the shape. The thickness of
the target cell is shown in Tab. 4.2 and the name scheme is shown in Fig. 4.15. The thickness
of the target cells for H and 3H are typically 424.83 𝜇m and 427.50 𝜇m, although it has a
systematic error of 25% and 7.6% depending on the position of the cell, respectively. The cell,
which is called the cigar-type cell, can be separated into two parts based on the difference in
the energy loss as shown in Fig. 4.16. The central part is cylindrical and the downstream part
is hemispherical. We measured the particles at 13.2◦ to the beam direction; thus, the particles
pass through a distance of 1./sin 13.2◦ (≈ 4.4) times their actual thickness when the particle
crosses the cylindrical part. In this case, the energy loss is ∼ 1 MeV and has a significant
effect on the energy accuracy and resolution. Moreover, this has 𝑦′𝑇 dependence because
the actual thickness depends on the particle angle. In the case of the hemispherical part,
particles pass through the actual cell thickness and the energy loss is relatively small. We
distinguished whether the particles passed the cylindrical or hemispherical part depending
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on the reaction point 𝑧𝑇 . From the geometric calculations, the division point was determined
to be 𝑧𝑇 = 8.0 cm, which is downstream in the target.

The results of these energy loss estimations are shown in Fig. 4.17. This shows the 𝑦′𝑇 angle
dependence of energy loss. The solid line shows the energy loss of the cylindrical part, and
the dotted line shows that of the hemispherical part. Polynomial functions were used as
the correction function. The momentum of the particles were corrected event by event with
these functions. The systematic error of cell thickness affect the mass accuracy and will be
described in Sec. 5.3.2.

The energy loss of each particle follows a Landau distribution. If the MPVs of two Landau
distributions are 𝑥 MeV and 𝑦 MeV, the MPV of the sum of the two Landau distributions
is not 𝑥 + 𝑦 MeV because the Landau distribution is asymmetric. Therefore, even if the
energy loss is corrected for each particle, there will be a discrepancy when the missing mass
is reconstructed. This was also estimated by reconstructing the missing mass in the HRS
Geant4.

Mid

Left

Beam direction

Entrance

Entrance

Right

Mid

Right

Exit

Right

Exit

Entrance

Left

Exit

Left

Figure 4.15 The name scheme of cell thickness.
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Figure 4.16 An illustration of the energy-loss correction for the the target cell.

Table 4.2 The measurement values of cell thickness. The names of location are shown in
Fig. 4.15. These data are taken from [45]. Unit in mm.

Location Empty cell 3H Cell 1H Cell 2H Cell 3He Cell
Entrance 0.254±0.005 0.253±0.004 0.311±0.001 0.215±0.004 0.203±0.007
Exit 0.279±0.005 0.343±0.047 0.330±0.063 0.294±0.056 0.328±0.041
Exit left 0.406±0.005 0.379±0.007 0.240±0.019 0.422±0.003 0.438±0.010
Exit right 0.421±0.005 0.406±0.004 0.519±0.009 0.361±0.013 0.385±0.016
Mid left 0.457±0.005 0.435±0.001 0.374±0.004 0.447±0.009 0.487±0.060
Mid right 0.432±0.005 0.447±0.004 0.503±0.005 0.371±0.012 0.478±0.007
Entrance left 0.508±0.005 0.473±0.003 0.456±0.010 0.442± 0.005 0.504±0.003
Entrance right 0.424±0.005 0.425±0.003 0.457±0.006 0.332±0.011 0.477±0.011
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Figure 4.17 𝑦′𝑇 dependence of energy loss of electron in HRS-L. The solid line shows the
energy loss of the cylindrical part, and the dotted line shows that of the hemispherical part.



78

Chapter 5

Results and Discussion

5.1 Derivation of the differential cross section

The cross section of the hypernuclear electro-production by the 𝛾(∗)𝑝 reaction is defined as
follows: (

𝑑𝜎
𝑑Ω𝐾

)
=

∫
HRS−R 𝑑Ω𝐾

(
𝑑𝜎
𝑑Ω𝐾

)∫
HRS−R 𝑑Ω𝐾

=
1
𝑁𝑇

1
𝑁𝛾∗

𝑁HYP∑
𝑖=1

1
𝜖𝑖ΩHRS−R

𝑖

, (5.1)

where 𝑁𝑇 and 𝑁𝛾∗ are the number of target nuclei and virtual photon, 𝜖𝑖 is the efficiency, and
ΩHRS−R
𝑖 represents the HRS-R acceptance estimated by the HRS Geant4. The efficiencies are

summarized in Tab. 5.1. The cross section of this experiment is shown in Fig. 5.1.
Although the accidental background can be estimated using the side-band data of the

coincidence time, mixed event analysis was used to improve the statistics. First, we divided
the distribution of coincidence time into 2 ns intervals, which are the cycles of the beam
electron. Next, we selected two different accidental regions of the distribution. The missing
mass was reconstructed by randomly selecting an event for each region as shown in Fig. 5.2.
By scaling this to the correct number of events, the accidental background with increased
statistics can be obtained. The bunches selected for the side-band data are the same as
described in Sec. 3.3.1. The systematic error was 1.9%, which was determined by the number
of events used in the mixed event analysis.

The missing mass distribution of the 3H(𝑒 , 𝑒′𝐾+)𝑛𝑛Λ reaction appear to be some excess
around the 𝑛𝑛Λ threshold (−𝐵Λ ∼ 0 MeV). To evaluate this excess quantitatively, the spectral
fit should be performed. The mass resolution and shape of the 𝑛𝑛Λ signal were required to
perform the fit and will be estimated in the following section.
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Figure 5.1 Differential cross section for the 3H(𝑒 , 𝑒′𝐾)𝑛𝑛Λ reaction. The only statistical
errors are shown in this histogram. The black points show the accidental coincidence back-
ground. The distribution was obtained with mixed event analysis using the experimental
data.

5.2 Missing mass resolution

The mass resolution in the 3H(𝑒 , 𝑒′𝐾+)𝑛𝑛Λ reaction needs to be estimated to search for
𝑛𝑛Λ state. However, since the significant peak has not been observed in the spectrum for the
tritium target, it cannot be estimated from the experimental data itself. Therefore, the HRS
Geant4 was used to estimate the mass resolution.

The missing mass can be calculated using the following equation:

𝑀𝑋 =
√
(𝐸𝑒 +𝑀𝑡 − 𝐸𝐾 − 𝐸𝑒′ )2 − ( ®𝑝𝑒 − ®𝑝𝑘 − ®𝑝𝑒′ )2 , (5.2)

where 𝑀𝑡 is the mass of target. The mass resolution is represented with the error propagation
method as follows:

Δ𝑀=

√(
𝜕𝑀
𝜕𝑝𝑒

Δ𝑝𝑒

)2

+
(
𝜕𝑀
𝜕𝑝𝑒′

Δ𝑝𝑒′
)2

+
(
𝜕𝑀
𝜕𝑝𝐾

Δ𝑝𝐾

)2

+
(
𝜕𝑀
𝜕𝜃𝑒𝑒′

Δ𝜃𝑒𝑒′
)2

+
(
𝜕𝑀
𝜕𝜃𝑒𝐾

Δ𝜃𝑒𝐾

)2

(5.3)
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Table 5.1 Efficiencies and correction factors used for the cross-section calculation in Eq. (5.1).

Item Efficiency or correction factor
𝜖track 0.981
𝜖decay 0.15 at 𝑝cent.

𝜖T 0.986
1/𝜖He 0.97
𝜖DAQ 0.95
𝜖ctime 0.96
𝜖absorp 0.91 at 𝑝cent.

𝜖density 0.901
𝜖vertex 0.71
𝜖PID 0.91
1/𝜖𝜋 0.98

The differential coefficients are represented as follows:

𝜕𝑀
𝜕𝑝𝑒

=
1

𝑀𝐻𝑌𝑃

{
𝑝𝑒
𝐸𝑒

(𝑀𝑡 − 𝐸𝐾 − 𝐸𝑒𝑝) + 𝑝𝑒𝑝 cos𝜃𝑒𝑒′ + 𝑝𝐾 cos𝜃𝑒𝐾
}
, (5.4)

𝜕𝑀
𝜕𝑝𝑒′

= − 1
𝑀𝐻𝑌𝑃

{
𝑝𝑒′

𝐸𝑒′
(𝑀𝑡 + 𝐸𝑒 − 𝐸𝐾) − 𝑝𝑒 cos𝜃𝑒𝑒′ + 𝑝𝐾 cos𝜃𝑒′𝐾

}
, (5.5)

𝜕𝑀
𝜕𝑝𝐾

= − 1
𝑀𝐻𝑌𝑃

{
𝑝𝐾
𝐸𝐾

(𝑀𝑡 + 𝐸𝑒 − 𝐸𝑒′) − 𝑝𝑒 cos𝜃𝑒𝐾 + 𝑝𝑒′ cos𝜃𝑒′𝐾
}
, (5.6)

𝜕𝑀
𝜕𝜃𝑒𝑒′

= − 1
𝑀𝐻𝑌𝑃

𝑝𝑒𝑝𝑒′ sin𝜃𝑒𝑒′ − 𝑝𝑒′𝑝𝐾 sin(𝜃𝑒𝑒′ + 𝜃𝑒𝐾), (5.7)

𝜕𝑀
𝜕𝜃𝑒𝐾

= − 1
𝑀𝐻𝑌𝑃

𝑝𝑒𝑝𝐾 sin𝜃𝑒𝐾 − 𝑝𝑒′𝑝𝐾 sin(𝜃𝑒𝑒′ + 𝜃𝑒𝐾), (5.8)

where 𝑀𝐻𝑌𝑃 is a mass of the hypernuclei. Here, 𝜃𝑒′𝐾 = 𝜋 − 𝜃𝑒𝑒′ − 𝜃𝑒𝐾 is assumed because
the reaction plane angle at which 𝐾+ is generated is approximately zero. From Eqs. (5.7) and
(5.8), which represent the angular resolution, we can see that the contribution of the angle is
inversely proportional to 𝑀𝐻𝑌𝑃 . In contrast, Eqs. (5.4), (5.5), and (5.6), which represent the
momentum resolution, show that the contribution of 𝑀𝐻𝑌𝑃 is small and is less dependent on
the target mass number (A). Although the mass resolution was directly estimated with the
HRS Geant4 as shown in Sec. 4.1, each component needs to be checked for the confirmation
of the A dependence of mass resolution.

5.2.1 Angular resolution
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Figure 5.2 Strategy of the mixed event analysis. The accidental coincidence event can be
reproduced with randomly mixed events.

The angular resolution was evaluated using the sieve-slit data. It was necessary to subtract
the size effect of the sieve-slit hole because the hole itself has a finite size. In addition, the
solid angle appears to be smaller toward the edge because the sieve-slit has a thickness of
2.54 cm. Here, Δ𝑥′ and Δ𝑦′ were used as angle parameters since it was easier to estimate Δ𝑥′

and Δ𝑦′ than Δ𝜃.
A simple Monte Carlo simulation was performed to estimate the angular resolution. A

schematic diagram is shown in Fig. 5.3. We took the sieve-slit data with several carbon foils.
The particle direction was uniformly distributed and the straight line was extended to the
sieve slit from the position of carbon foils. When the intersection of the line and the sieve slit
was in the position of holes, the particle was accepted. The thickness of the sieve slit was also
considered. This represents the maximum resolution, i.e., Δ𝑥′ = 0 rad and Δ𝑦′ = 0 rad. The
results of the simulation in this state are shown on the left in Fig. 5.4. The straight line was
randomly varied with a Gaussian distribution. An example is shown on the right of Fig. 5.4.
The sigma of the Gaussian was determined to match the simulation results and the sieve-slit
data (Fig. 3.5). The results are shown in the following.

At first, only the central hole was simply used although the sieve slit has many holes.
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Figure 5.3 Strategy of the simple Monte Carlo simulation for angle resolution estimation.

The central hole was extracted from the data and projected in the 𝑥 and 𝑦 directions. The
one-dimensional histograms were compared to the simulation. MINUIT method was used
for the comparison, and the resolution as the one with the smallest residue was searched.
The results are shown in Fig. 5.5. In this case, the resolution was Δ𝑥′ = 2.23 × 10−3 rad and
Δ𝑦′ = 8.95 × 10−4 rad.

To examine the resolution including the edge of the sieve slit, the data of an entire row
and column were also examined. The resolution in this case was Δ𝑥′ = 2.37 × 10−3 rad and
Δ𝑦′ = 1.52 × 10−3 rad. The Δ𝑦′ is worse than that estimated from only the central hole. This
may be because the accuracy of 𝑦 becomes worse toward the edge of the acceptance, as can
be seen from the sieve-slit data.

The angular resolution was expected to be worse by Al cell. The Al cell has a thickness
of ∼ 400 𝜇m, and the particles have an angle of 13.2◦, so that it has an effective thickness
of 400/sin 13.2◦ and the effect of multiple scattering is significant as mentioned in Sec. 4.4.3.
This effect was estimated by the HRS Geant4 simulator. Materials on the HRS path were
incorporated to include the multiple scattering effect. As a result of the simulation, it was
found that the case with the Al cell was worse than the case with carbon foil by Δ𝑥′ =
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Figure 5.4 Result of Monte Carlo simulation for the sieve slit. The left figure shows the
sieve pattern not including resolution. The right figure shows including resolution.
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Figure 5.5 Comparison between simulation and data of sieve-slit pattern. Figures show
the projection of the center hole profile. Left and right show the x- and y-projections,
respectively.

5.0 × 10−4 rad and Δ𝑦′ = 8.5 × 10−4 rad. Finally, the angle resolution with the tritium target
was estimated to be Δ𝑥′ = 2.4 × 10−3 rad and Δ𝑦′ = 1.7 × 10−3 rad.

5.2.2 Momentum resolution

The momentum resolution was also estimated with the HRS Geant4 since we did not
acquire reference data for momentum resolution. In Sec. 9.2.2 of Ref. [66], results of the
elastic scattering of electrons are described. In this study, it is reported that a resolution of
Δ𝑝/𝑝 = 1.1 × 10−4 was achieved in the acceptance region at 𝛿𝑝/𝑝 = 1.5%. The momentum
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resolution was estimated with the HRS Geant4 under the same conditions and was found to
be Δ𝑝/𝑝 = 1.1 × 10−4. This agrees with the result of Ref. [66].

The momentum resolution under the same conditions as in the present experiment was
estimated with the HRS Geant4. The air and other materials were also taken into account for
estimating multiple scattering effects. The momentum resolution for the scattered electrons
is shown in Fig. 5.6. The blue line shows Δ𝑝/𝑝 = 1.3 × 10−4 with 𝑧 = 0 and without material,
the purple line shows Δ𝑝/𝑝 = 1.8× 10−4 with 𝑧 = target length and without material, and the
red line shows Δ𝑝/𝑝 = 4.7× 10−4 with 𝑧 = target length and with material, which is the same
set up as in this experiment.

In actual analyses, a correction function was used to compensate for the energy loss, as
shown in Sec. 4.4.3. The red line shifts due to the energy loss. By correcting the energy
loss effect, not only the momentum shift is corrected, but also the width is expected to
be improved. A Geant4 simulator that implements only the target was constructed, and the
difference in momentum resolution between the cases with and without energy loss correction
was compared to estimate this effect. The result is shown in Fig. 5.7. The blue line is the
result without correction, and the red line is that with the correction. The resolution without
energy loss correction is 150 keV. The angular dependence can be corrected, resulting in an
increase in the resolution to 100 keV.

The momentum resolution can be decomposed into three items: intrinsic resolution of
the spectrometer, energy straggling, and multiple scattering. The intrinsic resolution can be
calculated as 1.8×10−4×2218 MeV = 400 keV. Moreover, the overall resolution is known to be
4.7 × 10−4 × 2218 MeV = 1040 keV; thus, the contribution of multiple scattering is calculated
to be 950 keV. The decomposition of the momentum resolution is shown in Tab. 5.2. The
resolution after correction is Δ𝑝/𝑝 = 4.7×10−4 as shown in the black line in the Fig. 5.6, which
has no large difference due to the large contribution of multiple scattering. The momentum
resolution of incident electrons was Δ𝑝/𝑝 ≈ 1.0 × 10−4 in FWHM.

Table 5.2 Decomposition of momentum resolution.

Δ𝑝 (w/o Ene. Cor.) Δ𝑝 (w/ Ene. Cor.)
Spectrometer 400 keV 400 keV

Straggling 150 keV 100 keV
Multi. Scat. 950 keV 950 keV

All 1040 keV 1040 keV

5.2.3 Result
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Figure 5.6 Momentum resolution estimated by the HRS Geant4. The blue line shows
with 𝑧 = 0 and without material. The purple line shows with 𝑧 ∈ [−12.5, 12.5] and without
material. The red line shows with 𝑧 ∈ [−12.5, 12.5] and with material. The black line shows
after the energy loss correction for the red line.

The mass resolution was estimated using the HRS Geant4 and found to be 𝜎 = 1.4 ±
0.1 MeV/c2 for Λ. This agrees with the experimental value of 𝜎 = 1.3 ± 0.1 MeV/c2. In the
same way, the mass resolution for 𝑛𝑛Λ was found to be 𝜎 = 1.5 ± 0.2 MeV/c2. The above
systematic error is mainly due to the error in the magnet setting described in Sec. 4.3.2.

5.3 Systematic uncertainties

5.3.1 Cross section

Systematic errors related to efficiencies have been discussed in Chap. 3 and Chap. 4. These
systematic errors are summarized in Tab. 5.3. Δ𝑁HYP will be discussed in Sec. 5.4.1. Table 5.3
shows common systematic errors for the events, and the total result is shown as a sum of
these squares. The systematic errors due to ΔΩ𝐾 were calculated separately because they
were used for each event.

5.3.2 Mass accuracy
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Figure 5.7 Momentum distribution before (blue) and after (red) energy correction.

If the number of signals is 𝑁 and the resolution is 𝜎, the mass accuracy from the statistics
is expressed as 𝜎/√𝑁 . In this analysis, the resolution was estimated with the Gaussian
function; thus, 𝑁 was also estimated with the Gaussian integral. The data points in Fig. 4.11
were fitted with the Gaussian function. Here, the number of Λ’s in the region represented
by the Gaussian was 830, and the number of Σ0’s was 220. The accuracy from the statistics
was calculated to be Δ𝐵Λ = ±0.1 MeV. The accuracy becomes worse by the number of events
missed in the radiative tale. The number of 𝑝(𝑒 , 𝑒′𝐾)Λ/Σ0 reactions in the whole region was
1899, which means that 45% events are included in the radiative tale. The systematic error of
𝐵Λ from transfer matrix tuning was already studied in Ref. [30] and was estimated to be less
than 0.1 MeV.

The uncertainty of the thickness of the Al cell causes the largest error in the mass measure-
ment. The thickness of hydrogen cell and tritium cell have uncertainties of 25% and 7.6%,
respectively, as described in Sec. 4.4.3. If the thickness is estimated improperly, the energy
loss cannot be corrected properly. We denote Δ𝑀Λ

𝐻 as the mass difference in Λ resulting
from the uncertainty in the thickness of the hydrogen cell, and Δ𝑀Λ

𝑇 as the mass difference
in Λ resulting from the uncertainty in the thickness of the tritium cell. If the hydrogen cell
thickness is incorrectly estimated, there will be a shift in the peak mass of Λ in the setting of
𝑀calib.. Since matrix tuning uses the mass of Λ, Σ0 as a reference, the momentum matrix is
distorted to reproduce the peak value of Λ, Σ0. This distortion is reflected in the setting of
𝑀phys.; thus, there will be a deviation of Δ𝑀Λ

𝐻 in the tritium cell, even if the thickness of the
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Table 5.3 Relative errors for the efficiencies and correction factors that contributed to the
uncertainty on the cross-section calculation in addition to the acceptance uncertainties.

Item Relative error
Δ𝜖track 0.2%
Δ𝜖T 0.3%
Δ𝜖He 0.7%
Δ𝜖DAQ 0.1%
Δ𝜖ctime 0.5%
Δ𝜖density 1.1%
Δ𝜖vertex 7.8%
Δ𝜖PID 6.9%
Δ𝜖𝜋 1.8%
Δ𝜖multi 1.3%
ΔΓint 8.5%
Δ𝑁𝑒 1.0%
Δ𝑁𝑇 0.9%
Δ𝑁HYP 6.8%
Side band estimation 1.9%
Total 15%

tritium cell is estimated correctly. In contrast, if the thickness of the tritium cell is incorrectly
estimated, an error Δ𝑀Λ

𝑇 will be caused by the error in the correction function. To prevent the
deterioration of the mass accuracy due to the above effects, calibration was performed using
the hydrogen contamination in the tritium cell. Since the tritium cell contained several per-
cent of hydrogen, the Λ peak could be observed by recalculating the missing mass assuming
the mass of hydrogen. This is shown in Fig. 5.8. Since there is a large amount of background
due to the quasi free Λ coming from the tritium, fitting was performed by representing the
BG as a polynomial and the signal as a Gaussian function. The function is shown by the red
line in Fig. 5.8. The position of the Λ peak was −0.3± 0.3 MeV. Therefore, this value was used
to correct for the shift. The error in the accuracy resulting from Δ𝑀Λ

𝐻,𝑇 was estimated to be
Δ𝐵Λ = ±0.3 MeV.

Furthermore, a systematic error Δ𝑀𝑛𝑛Λ exists due to the difference in kinematics between
Λ and 𝑛𝑛Λ. Since the above correction for the hydrogen in the tritium cell is based on the
assumption of a hydrogen target, it is necessary to estimate how much the peak position can be
shifted in the case of a tritium target. Figure 5.9 shows the simulation results for the case of a
tritium cell with a thickness of 428 𝜇m. In the figure, the peak position ofΛ is 425±11 keV and
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Figure 5.8 Missing mass distribution of 3H(𝑒 , 𝑒′𝐾+)𝑋 reaction assuming hydrogen target.

that of 𝑛𝑛Λ is 513 ± 25 keV, indicating a significant difference. The difference was estimated
to be Δ𝐵Λ = ±0.1 MeV by changing the cell thickness in the range of uncertainties. This
is thought to be because the contribution from the momentum correction is stronger when
the mass number is larger. Summarizing all the above uncertainties, the error of the mass
accuracy was estimated to be 0.4 MeV.

5.4 Upper limit

5.4.1 Fitting function

Three response functions for accidental background, quasi-free Λ (QF) production, and
𝑛𝑛Λ signal are necessary for the fitting.

The shape of the accidental background was obtained from the mixed event analysis as
described in Sec. 5.1. The function is flat around the threshold and does not make sharp
peaks as shown by the black points in Fig. 5.1. This was fitted with a quadratic function in the
fitting region. The scale was fixed from the number of events; thus, this function including
the scale was fixed when fitting.

In general, QF is considered to rise at −𝐵Λ = 0 MeV and to increase monotonically. The line
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Figure 5.9 Missing mass distributions for 𝑝(𝑒 , 𝑒′𝐾+)Λ and 3H(𝑒 , 𝑒′+)𝑛𝑛Λ reactions esti-
mated with the HRS Geant4.

shape near the binding threshold may be affected by the Λ𝑛 final state interaction (FSI); how-
ever, this has not been confirmed either in theory or through experimental results. Therefore,
a linear function, which is the simplest assumption, was adopted in the present analysis. The
above linear function was convoluted with a Gaussian function assuming the experimental
resolution to consider the leakage of QF events below −𝐵Λ < 0 MeV.

For the 𝑛𝑛Λ signal, a template function was created. As can be seen from Fig. 3.6 of the
𝑝(𝑒 , 𝑒′𝐾+)Λ/Σ0 reactions, the contribution of the radiative tale is significant. Similarly, the
𝑛𝑛Λ signal is also expected to have a large radiative tale. To obtain a shape that incorporates
the radiative tale and the experimental resolution, the HRS Geant4 simulation was used to
obtain the spectrum of the 𝑛𝑛Λ response. The template function was obtained by fitting to
this spectrum. This is shown in Fig. 5.10. In addition, to incorporate the natural width of
𝑛𝑛Λ, the function was convoluted with a Breit-Wigner function of the natural width Γ. This
is shown in Fig. 5.11. This function was used as a template function.

However, the function estimated by the HRS Geant4 has a slightly smaller number of
radiative tails than the experimental data. Since this difference may also exist in 𝑛𝑛Λ, the
contribution to the 𝑛𝑛Λ production cross section was estimated through a simple test. In this
test, the strength of the tale in the radiative region was adjusted to reproduce the experimental
spectrum of 𝑝(𝑒 , 𝑒′𝐾+)Λ as shown in Fig. 5.12. The black line is the function originally obtained
by the HRS Geant4. The red line shows the result of adjusting the radiative region, where
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Figure 5.10 𝑛𝑛Λ signal estimated with the HRS Geant4.

the number of events in the radiative tails is equal for the experimental data and simulation.
This change was also assumed to exist in the 𝑛𝑛Λ signal. The cross-sections were estimated
under this condition, and the difference from the case of the original function was taken as
the systematic error. The effect to the cross section was Δ𝑀HYP = ±6.8%. The differences in
the left side of the 𝑝(𝑒 , 𝑒′𝐾+)Λ peak between the HRS Geant4 and the experimental data were
also examined in the same test and found to be negligibly small.

5.4.2 Spectral fit

A systematic error due to the binning effect was large in the threshold region where the
number of events was limited. The missing mass distribution for the 3H(𝑒 , 𝑒′𝐾+)X reaction
when the binning was changed are shown in Fig. 5.13. The upper left figure is the same as
Fig. 5.1, with binning at 2 MeV. The upper right figure shows the result when the splitting
is shifted by 1 MeV while maintaining the binning width. The lower left figure and the
lower right figure show the results for the binning width of 4 MeV and 6 MeV, respectively.
Bin-dependent fitting results in large systematic errors, as can be seen from these figures.
Therefore, fitting was performed using the unbinned-maximum-likelihood method. The
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Figure 5.11 Template functions for the 𝑛𝑛Λ signal. The functions with several widths of
Breit-Wigner distributions are shown.

Likelihood was maximized with the parameter 𝜃:

𝐿(𝒙;𝜽) =
𝑁∏
𝑖=1

𝑓 (𝑥𝑖 , 𝜽), (5.9)

where 𝒙 = 𝑥1 , 𝑥2 , ..., 𝑥𝑁 denotes the cross-section data for each event. 𝑓 (𝑥𝑖 , 𝜽) is the probability
density function (PDF). In this fitting, the sum of QF distribution, accidental background,
and 𝑛𝑛Λ signal were normalized. The 𝑠𝜎 statistical error is defined as the point where the
likelihood difference from the minimum (Δ𝐿) is 𝑠2/2. However, since the vertical axis is not
in a count but a cross section, correction is necessary. This correction was incorporated as a
form of correction to the Hessean matrix that represents the error [68, 69].

5.4.3 Discussion

The upper panel of Fig. 5.14 shows the fitting results assuming that the 𝑛𝑛Λ signal cor-
responds to the theoretical prediction (−𝐵Λ , Γ) = (0.25, 0.8) [19] and (0.55, 4.7) MeV [23],
respectively. The red line is the assumed QF distribution, the black dotted line is the acciden-
tal background, and the blue line is the 𝑛𝑛Λ signal. The differential cross sections for the 𝑛𝑛Λ
signal were obtained to be 11.2 ± 4.8(stat.)+4.1

−2.1(sys.) nb/sr and 18.1 ± 6.8(stat.)+4.2
−2.9(sys.) nb/sr,

respectively. In addition, the bottom figure in Fig. 5.14 shows the fitting results when the
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Figure 5.12 The correction for the radiative tale. Black line shows the fitting result without
the modification. Red line shows the fitting result with the modification.

binding energy is varied while keeping the width of this theoretical line shape. The horizontal
axis shows the peak position of the 𝑛𝑛Λ signal. The black line shows the 1𝜎 statistical error,
and the systematic error is indicated by the selection symbol. Although an excess event can
be found around−5 < −𝐵Λ < 5 MeV, the statistical significance was not greater than 3𝜎. Here,
a sharp drop in cross section was observed in the −𝐵Λ > 10 MeV region. This is considered
because the slope of the QF distribution becomes steeper due to the presence of an excess
near −𝐵Λ ∼ 0 MeV, and the cross section of the 𝑛𝑛Λ signal was reduced in −𝐵 > 10 MeV to
compensate for this. In addition, the fit range is limited to −𝐵Λ < 20 MeV because the QF
distribution cannot be reproduced by the linear function above −𝐵Λ > 20 MeV. Moreover,
systematic errors that are not considered in the present analysis are expected in the region
where −𝐵Λ is large because the 𝑛𝑛Λ signal has a large tail on the high mass side.

Since no significant peak were found, the 90%-confidence level (C.L.) of the upper limit of
the differential cross section was obtained. The statistical error of 90% C.L. was calculated as
follows ∫ 𝑥

0 𝑔(𝑥)𝑑𝑥∫ ∞
0 𝑔(𝑥)𝑑𝑥 = 0.90, (5.10)

where 𝑔(𝑥) denotes the Gaussian function. The final upper limit is the sum of the statistical
error and the systematic error. The upper limit assuming (−𝐵Λ , Γ) = (0.25, 0.8), (0.55, 4.7)MeV
is 21 nb/sr and 31 nb/sr, respectively. In addition, to obtain results independent of the
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Figure 5.13 The change in histograms for 3H(𝑒 , 𝑒′𝐾+)𝑛𝑛Λ reaction due to binning. The
upper left figure is the same as the one shown in Fig. 5.1. The upper right figure shows the
same binning width but with the binning internally shifted by 1 MeV. The lower left figure
and the lower right figure show the histogram when the bin width is doubled and tripled,
respectively.

theoretical predictions, two-dimensional scans of −𝐵Λ and Γ were performed. The results are
shown in Fig. 5.15. The horizontal axis shows the peak position of the 𝑛𝑛Λ signal and the
vertical axis shows the natural width.

In the current results, a significant peak exceeding 3𝜎 was not found. The reason that the
peak structure could not be observed may be due to the small cross section or the broad
width of the resonance. In contrast, there are some events around 𝑛𝑛Λ threshold over the
background but we cannot draw definitive conclusions due to the low statistics. It is desired
that further experiments would confirm this structure. Schäfer [24,25] suggests the existence
of the resonance is highly depend on the model of Λ𝑛 interactions. It is calculated that the
physical resonance appears with in the NSC97f and Chiral EFT (NLO) but not in the Alexander
B and Chiral EFT (LO). In contrast, Afnan’s calculations show that there are no resonance in
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Figure 5.14 The results of the spectral fit assuming the 𝑛𝑛Λ signal by theoretical calcu-
lations. The top figures show the fitting results assuming (−𝐵Λ , Γ) = (0.25, 0.8) MeV [19]
and (0.5, 4.7) MeV [23], respectively. The blue, red and black dotted lines show the 𝑛𝑛Λ
signal, QF and accidental background, respectively. The black solid line shows the sum of
the functions. The bottom figures show the results of the cross section as a function of −𝐵Λ
when the natural widths are assumed. The 90% C.L. upper limits are shown in blue solid
line.

any interaction. No Λ𝑛 scattering data exist so far, and the Λ𝑛 interaction is highly uncertain.
If the results of the cross section calculations exist, we can expect to impose limitations on
these interactions and calculation methods. However, there are no theoretical work on the
production cross section of the 𝑛𝑛Λ signal in this reaction. It is strongly interesting to compare
with the calculation.
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Figure 5.15 The 90% C.L. of the upper limit of the 𝑛𝑛Λ cross section when the spectral fit
was performed by changing 𝐵Λ and natural width.
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Chapter 6

Summary

The existence of the 𝑛𝑛Λ state was claimed by the HypHI collaboration at GSI. However,
considering that 3

ΛH with 𝐼 = 0 is a weakly bound state, it is difficult for the 𝑛𝑛Λ state with
𝐼 = 1 to be bound. For example, the existence of a bound state (−𝐵Λ < 0) is considered difficult
in theoretical calculations using the models that explains the currently observed few-body
hypernuclei. In contrast, some papers suggest the existence of a resonant state (−𝐵Λ > 0), but
the results strongly depend on the Λ𝑛 interaction, which is currently uncertain.

We performed a search experiment for the 𝑛𝑛Λ state using the 3H(𝑒 , 𝑒′𝐾+)𝑋 reaction at JLab
in 2018. We used a 4.32-GeV/c electron beam at CEBAF in JLab. In the electro-production
of hypernuclei, high mass accuracy can be achieved by using 𝑝(𝑒 , 𝑒′𝐾+)Λ/Σ0 reactions as
reference. It is also possible to explore a wide range of binding energy from bound to
resonant state. Scattered electrons and 𝐾+ were measured with two spectrometers, HRS-L
and HRS-R. The central momenta of the electron and 𝐾+ were 2.22 GeV/c and 1.82 GeV/c,
respectively, and the central angles of HRSs were set at 13.2◦ with respect to the electron
beam.

To estimate some physical quantities, such as acceptance and resolution, we developed a
Monte Carlo simulator (HRS Geant4) for this experiment. The HRS Geant4 was successful to
reproduce the experimental data. The estimated mass resolution for Λ is 1.4 ± 0.1 MeV/c2,
which agrees with the experimental value of 1.3±0.1 MeV/c2. The mass resolution for the 𝑛𝑛Λ
state was also estimated to be 1.5± 0.2 MeV/c2 by using the simulation. The differential cross
section of the 3H(𝛾∗ , 𝐾+)X was calculated by estimating efficiencies and correction factors
with the experimental data and the HRS Geant4.

The obtained missing-mass spectrum for the 3H(𝑒 , 𝑒′𝐾+)𝑛𝑛Λ reaction shows some excess
around the 𝑛𝑛Λ threshold. We performed a spectral fit to this distribution to evaluate the
excess above expected background events quantitatively. The Breit-Wigner (BW) function for
the decay width was convoluted with a response function estimated by the HRS Geant4 to
obtain the functional form of the 𝑛𝑛Λ signal. Typical theoretical predictions that show the
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small and large decay widths were used for the BW function, which are (−𝐵Λ , Γ) = (0.25, 0, 8)
and (0.55, 4.7) MeV. The unbinned maximum likelihood was used for the spectral fit since the
statistics near the threshold was limited. As a result, no peak that was statistically significant
above 3𝜎 was observed. The cross-section upper limits at the 90%-confidence level for the
3H(𝛾∗ , 𝐾+)𝑛𝑛Λ reaction were obtained to be 21 nb/sr and 31 nb/sr, when (−𝐵Λ , Γ) = (0.25, 0.8)
and (0.55, 4.7) MeV were assumed. In addition, the cross-section upper limit with various
𝐵Λ and Γ other than the above fixed assumptions were obtained to provide data that are
independent on the theoretical predictions.

Currently, no other experimental or theoretical information is available for the 𝑛𝑛Λ pro-
duction cross section. The present data is the first result for the upper limit of the cross
section. This has a significant impact on the existence of 𝑛𝑛Λ. In the theoretical calculations,
the existence of 𝑛𝑛Λ resonant states strongly depends on the Λ𝑛 interactions and calculation
methods. Schäfer [24, 25] suggests the resonance peak exists in the NSC97f and Chiral EFT
(NLO) but not in the Alexander B and Chiral EFT (LO). The present data will constrain the
Λ𝑛 interaction models by comparing with theoretical calculations. Therefore, theoretical
calculations on the cross section are strongly desirable.

In this experiment, we did not observe clear signals of the 𝑛𝑛Λ state reported by the HypHI
collaboration. The next 𝑛𝑛Λ search experiment is currently being prepared and will be carried
out in the spring of 2022 by the HypHI collaboration. Furthermore, a new experiment at JLab
can also be designed based on the present result. Experimental attempts such as the above
new experiments are indispensable to solve the existence puzzle of the 𝑛𝑛Λ state.
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Appendix A

Summary of theoretical study

A.1 Bound state

B. W. Downs and R. H. Dalitz (1959) [12]
The first theoretical calculation for a three-body system including hyperons was reported by

Downs and Dalitz in 1958, only six years after the discovery of the hyperon. The calculations
were carried out by the variational method. As a trial function, the following exponential
function with 6 parameters was used.

𝜓 = (𝑒−𝑎𝑟1 + 𝑥𝑒−𝑏𝑟1)(𝑒−𝑎𝑟2 + 𝑥𝑒−𝑏𝑟2)(𝑒−𝑎3𝑟3 + 𝑦𝑒−𝑏3𝑟3), (A.1)

where 𝑟1 and 𝑟2 are the distances between individual nucleons and the Λ particle, and 𝑟3 is
the distance between two nucleons. They concluded that it is difficult to bound the 𝑁𝑁Λ

system with I = 1.

K. Miyagawa et al. (1995) [13]
Miyagawa et al. used the Faddeev method to calculate the 𝑁𝑁Λ three-body system. The

Nĳmegen89 potential was used as the YN interaction. The main feature of this calculation
is that it incorporates the Λ-Σ conversion. The binding energy of the Hypertriton for (𝐼 , 𝐽) =
(0, 1/2) was successfully explained without heavily relying on 𝑁𝑁 interactions (Nĳmegen93,
Paris, Bonn B). Furthermore, the interaction due to Λ-Σ conversion was found to be attractive
and played an important role in the binding of hypertriton.

In contrast, the same method was applied to the 𝐼 = 1 state. The interactions used were
the Nĳmegen89 YN interaction and the Bonn B NN interaction, which successfully explained
the hypertriton. As a result of this calculation, there was no bound state for both 𝐽 = 1/2 and
𝐽 = 3/2. Therefore, it was examined by scaling the entire YN interaction to see whether a
bound state would appear. For (𝐼 , 𝐽) = (1, 1/2), the bound state appeared at 1.2 times, and for
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(𝐼 , 𝐽) = (1, 3/2), the bound state did not appear even at 1.32 times. Furthermore, the effect of
the Λ-Σ conversion was suggested to be an attractive force for (𝐼 , 𝐽) = (1, 1/2) and a repulsive
force for (𝐼 , 𝐽) = (1, 3/2).

E. Hiyama et al. (2014) [14]
Hiyama et al. performed variational calculations following the report on the observation

of the 𝑛𝑛Λ bound state at GSI in 2013. The NN interaction is AV8 potential, and the YN
interaction is NSC97f, which incorporates Λ𝑁-Σ𝑁 coupling. The advantage of using the
above interactions is that the binding energies of 3

ΛH, 4
ΛH, 4

ΛHe are well reproduced at
0.19, 2.33, 2.28 MeV. Even with these interactions, the 𝑛𝑛Λ bound state does not exist.

Therefore, by modifying some interactions, a way for the 𝑛𝑛Λ state to be bound while
maintaining the above binding energy was explored. First, the tensor components of the
Λ𝑁-Σ𝑁 coupling were scaled. Then, the bound state appeared after scaling by 1.2. However,
the binding energy of the 3

ΛH was found to be over bound at −𝐵Λ = 0.72 MeV, and the excited
state of 𝐽 = 3/2, which was not confirmed in the experiment, was also bound. When T=1,
the 1𝑆0 component of 𝑛𝑛 was scaled, and it was found that 𝑛𝑛Λ was bound by a factor of
1.35. However, since di-neutron (𝑛𝑛) is bound by a factor of 1.13, the 𝑛𝑛Λ state could not be
interpreted by the present nuclear physics.

A. Gal and H. Garcilazo (2014)
Gal and Garcilazo discussed the 𝑛𝑛Λ bound state, and compared the experimental results

on the current few-body systems (Λ𝑝 scattering, 3
ΛH, 4

ΛH). As a result, they found that the 𝑛𝑛Λ
bound state cannot be explained by the current understanding of hypernuclei. In particular,
Faddeev calculations that incorporate Λ𝑁-Σ𝑁 coupling were performed for the comparison
with 4

ΛH. For the YN interaction, the G-matrix 0𝑠𝑁0𝑠𝑌 effective interaction developed by
Akaishi [70] et al. based on the NSC97 was used. Even under this condition, 𝑛𝑛Λ was
unbound, and even when the interaction was adjusted to be bound, dineutron (nn) was
bound first. This calculation does not incorporate the effect of the 𝑁𝑁Λ three-body force
which is not directly related to the Λ𝑁-Σ𝑁 conversion. However, even if other three-body
forces are considered, such as those involving Σ(1385), the effect of the attractive force on the
𝑛𝑛Λ state is still considered to be small compared to that on the 3

ΛH, and its existence would
be still difficult.

H. Garcilazo and A. Valcarce (2007, 2014) [16, 17]
Garcilazo et al. used the chiral constituent quark model to derive interactions. In this

model, a baryon is represented as a three-body cluster of constituent quarks, and its mass
is generated by spontaneous breaking of chiral symmetry. Here, Λ𝑁-Σ𝑁 conversion is
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incorporated, which includes not only the S-wave but also the D-wave tensor component.
The Faddeev equation was solved to calculate the 𝑛𝑛Λ bound state using this interaction. As
a result of the calculation, it was found that the bound state of 𝑛𝑛Λ is difficult. In contrast, for
simplicity, Faddeev calculations were also performed for separate potentials containing only
S waves, but the results did not significantly change.

Shung-Ichi Ando et al. (2015) [18]
Ando et al. calculated the 𝑛𝑛Λ state by solving the coupled integral equation using pionless

effective field theory (Z𝜋 EFT) of the leading order. The Lagrangian of this model incorporates
three body forces as the contact terms. As a result of this calculation, the possibility of the
existence of Effimov states was suggested. However, since the experimental data to determine
the parameters of this three-body force are very scarce, no quantitative discussion has been
presented.

A.2 Resonant state

V. B. Belyaev et al. (2008) [19]
Belyaev et al. were the first to discuss resonant states in 𝑛𝑛Λ three-body systems. The

resonant state was searched for by calculating the zeros of the three-body Jost function. The
model proposed by Nemura et al. [20] was used as the interaction. This model is based on the
Minnesota potential used for NN potential, and its parameters were determined to reproduce
the 𝐴 = 3, 4 Λ-hypernuclei. There are three Λ𝑛 potentials which were proposed by Nemura
et al., and they are denoted A, B, and C. Figure 1.4 shows the potential of the S-state under
the assumption of these potentials. In all of them, there is a pocket of weak attraction. The
results are shown in Tab. 1.1. It can be seen that there is a broad resonance in A and B, while
there is no resonance in C. The results highly depend on how the Λ𝑁 potential. These do
not incorporate the Λ𝑁-Σ𝑁 channel, which may result in a narrower width and closer to the
threshold. When this potential was scaled, a bound state appeared at 1.5 times the potential.

I. R. Afnan and B. F. Gibson (2015) [21]
Afnan et al. performed a Faddeev calculation using the separate potential. The separable

potential of a two-body S-wave is described as follows

𝑉(𝑘, 𝑘′) = 1
𝑘2 + 𝛽2𝐶

1
𝑘′2 + 𝛽2 , (A.2)

where 𝐶 and 𝛽 are the parameters determined by the scattering length and effective range
of the Nĳmegen model D potential, respectively. The calculations were performed with
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and without the tensor force, respectively. These models do not incorporate the Λ𝑁-Σ𝑁
conversion and the three-body force. When the calculations were performed without tensor
force, the result was 𝐸 = −0.154 − 𝑖0.753 MeV and no resonant state existed. However, by
multiplying the strength of 1𝑆0, 3𝑆1 components by 1.07, a resonant state appeared, and
by multiplying it by 1.35, a bound state appeared. A similar calculation was performed
with various Λ𝑛 interactions including tensor forces, and no significant differences were
observed. Figure A.2 shows the results of the calculations with Nĳmegen model D, Chiral
EFT, Nĳmegen NSC97f, and Julich. The calculation result was −0.107 − 𝑖0.622 MeV, and no
resonant state existed. However, by multiplying 1𝑆0, 3𝑆1 by 1.05, a resonant state appeared,
and by multiplying by 1.25, a bound state appeared.IRAJ R. AFNAN AND BENJAMIN F. GIBSON PHYSICAL REVIEW C 92, 054608 (2015)

0.0 0.1

0.0

Re[E]
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[E

]

1S0 ,  3S1  
3D1 AG

FIG. 1. Trajectory of the resonance pole as one varies the strength
of the �N interaction. In this case we have used the NN and �N

interaction for Tables IV and VI of Ref. [11] with a tensor interaction
for the �N potential.

with E = 0.024–0.550i MeV, the singlet �n scattering length
becomes as = −2.409 fm and the effective range becomes
rs = 3.462 fm, which are closer to the values coming from
the other three models given in Table II. For the threshold
bound state corresponding to s = 1.350, the singlet scattering
length and effective range would be −4.922 fm and 2.919 fm,
which seem to be ruled out by �p scattering data unless there
exists a sizable charge symmetry breaking. Clearly ours is not
a precision analysis, and the actual answer will depend on a
more detailed model for the �n and nn interactions.

As a measure of the uncertainty in our results, we consid-
ered the �nn system with the NN and �N interactions in
Tables IV and VI of Ref. [11] with a tensor force in the �N
potential. In this case the resonance pole for s = 1.0 lies at

E = −0.107–0.622 i MeV with an eigenvalue

λ(E) = 1.0000–0.0000 i. (19)

Then an increase in the strength scale s of 5% will produce
a resonance at E = 0.024–0.455 i MeV, while an increase in
strength of 25% will produce a threshold bound state in the
�nn system. In Fig. 1 we plot the trajectory of the resonance
pole as one increases the strength of the �N interaction.
This illustrates how the subthreshold resonance turns into a
bound state as one increases the strength of the potential,
with unit scaling s = 1.0 corresponding to a sub threshold
resonance at E = −0.107–0.622 i MeV and with increasing
steps (dots) of �s = 0.025 to obtain a bound state with energy
E = −0.068 MeV at s = 1.250 and E = −0.195 MeV for
s = 1.275.

One can plot a similar trajectory for different �n in-
teractions with the starting point corresponding for s = 1.0

0.0 0.1 0.2

0.0

Re[E]

Im
[E

]

Mod D
Chiral
 NSC97f
Julich04

FIG. 2. (Color online) Trajectory of the resonance pole as one
varies the strength of the �n interaction. In this case we use the
same nn potential given in Eq. (14) for all four curves. The �n

potentials correspond to Yamaguchi fits as given in Table II with Mod
D for Nijmegen model D, Chiral for chiral (� = 600), NSC97f for
Nijmegen NSC97f, and Jülich04 for the Jülich one boson exchange
potential. (In scaling the �n potential we have insured that no two-
body bound state is formed. For example, for Mod D the scaling of
the potential by s = 1.35 moved the two-body pole closest to the real
axis from k = −0.315 i fm to k = −0.164 i fm.)

depending on the scattering lengths and effective ranges of the
�n potential. In Fig. 2 we plot four different trajectories for the
resonance pole. In each case we use the same nn potential given
in Eq. (14). For the �n interaction we use the 1S0 and 3S1

(i.e., no tensor force) that fit the effective range and scattering
length from either the chiral model or meson exchange model.
The Yamaguchi fits to these potentials are given in Table II
and are: Mod D for a fit to Nijmegen model D [5], Chiral for a
fit to chiral (� = 600) [8], and NSC97f for a fit to Nijmegen
NSC97f [6], and Jülich04 for the Jülich one boson exchange
potential [7]. We first observe that all the curves are similar
in that they trace the same shape as one varies the strength of
the �n interaction. However, the starting points for the four
curves corresponding to s = 1.0 are all different, suggesting
that a pole at a given energy will require a different scaling.
This is illustrated in Table IV where we state the energy of
the pole for s = 1.0 for the four different �n potential curves
plotted in Fig. 2. This demonstrates that the Jülich04 model
gives a pole closest to being a resonance, while the model D
pole is farthest from being a resonance.

The above trajectory for the pole in the �nn amplitude, as
one changes the strength s of the �n potential, is interesting
if we compare it with the equivalent situation in two-body
scattering, where a bound-state pole on the first energy sheet
moves onto the second energy sheet, and often is referred

TABLE IV. The position of the pole of the �nn amplitude for the four different �n potentials considered in Fig. 2.

Potential Mod D Chiral NSC97f Jülich04

Pole energy (MeV) −0.154–0.753 i −0.114–0.782 i −0.120–0.730 i −0.097–0.758 i

054608-4

Figure A.1 The pole trajectory of 𝑛𝑛Λ state taken from Refs. [21]. The trajectories show
the dependence of the Λ𝑛 interaction.

I. Filikhin et al. (2016) [22]
NSC97f was used as the Λ𝑁 potential and MT-I-III semi-realistic NN potential was used

as the 𝑁𝑁 potential. As a result of this calculation, a rather wide range of resonant states
in the 𝐸 = 0.2 − 𝑖1 MeV range was found. In addition, the following were perturbatively
incorporated as three-body forces.

𝑉3𝑏 𝑓 (𝜌) = −𝛿 exp (−𝛼𝜌2)𝑆(𝑠Λ , 𝑠𝑁𝑁 ) (A.3)

where 𝜌 is the hyper-radius:𝜌2 = 𝑥2 + 𝑦2 and 𝑥, 𝑦 are mass scaled Jacobi coordinates. In
addition, 𝑆(𝑠Λ , 𝑠𝑁𝑁 ) is a parameter that depends on the spin, and the following two cases
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were attempted.

𝑆(1/2, 1)
𝑆(1/2, 0) = 1 (A.4)

𝑆(1/2, 1)
𝑆(1/2, 0) = 1/3 (A.5)

However, it was not possible to create a 𝑛𝑛Λ bound state while maintaining the bound energy
of 3

ΛH.

H. Kamada et al. (2016) [23]
YN Nĳmegen potential (NĳmYN89) was used as the YN interaction and NN Nĳmegen

potential (Nĳm93) as the NN interaction. Λ𝑁-Σ𝑁 coupling was also incorporated. The
Faddeev equation was calculated by using these interactions. Partial waves were incorporated
up to 𝐽𝑚𝑎𝑥 = 4 or 5. Thus, the resonant states of 𝐸 = 0.25 − 𝑖0.40 MeV were found. Moreover,
when the YN interaction was changed to NSC97f, the result of 𝐸 = 0.60 ± 0.05 − 𝑖(0.25 ±
0.05) MeV was obtained. Furthermore, the YN potential of NSC97f was scaled, and the
bound state appeared by multiplying it by 1.2.

M. Schäfer et al. (2020,2021) [24, 25]
The pionless effective field theory (Z𝜋EFT) of the leading order was used as an interaction.

The s-wave contact interaction was included as the two-body and three-body force. These
parameters were determined to fit the experimental data and theoretical calculations for the
A=3, 4 system. For the calculation of bound states, the three-body Schrödinger equation
was solved using the stochastic variational method (SVM). In addition, two independent
methods—the inverse analytic continuation in the coupling constant method (IACCC) and
the complex scaling method (CSM)—were used to enable the calculation of the resonant
states. Thus, no 𝑛𝑛Λ bound state was found, but there existed a resonant state depending on
the interaction. The interaction models NSC97f and Chiral EFT (NLO) showed the existence
of resonant states, while Alexander B and Chiral EFT (LO) showed no resonant states. The
pole position of the resonant state differs depending on the model, but it exists in the energy
range of 𝐸 ≤ 0.3 and the width range of 1.16 ≤ Γ ≤ 2.00 MeV.
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Appendix B

Determination of the magnetic setting
of the HRS Geant4

As described in Sec. 4.3.2, the quadrupole magnetic field setting of the HRS Geant4 was
adjusted to satisfy the following,

𝐷𝐿 : 𝑄1𝐿 : 𝑄2𝐿 : 𝑄3𝐿 = 𝐷𝑅 : 𝑄1𝑅 : 𝑄2𝑅 : 𝑄3𝑅 . (B.1)

Q2 and Q3 are identical quadrupole magnets, and the ratio of their magnetic fields is fixed.
Therefore, the optimal magnetic field setting was searched by varying the magnetic field of Q1
and Q2. Comparisons were made between experimental data and simulations, and residuals
were obtained. As examples, the results of the search for the momentum distribution and
𝑦′ are shown in Fig. B.1 and B.2. In particular, Fig. B.2 shows that the distributions differ
significantly depending on the magnetic field of Q1 and Q2. In Fig. B.1, the distributions also
show a slight change. The red line is the region that we adopted as the systematic error in
this study, as mentioned in the text. The distributions used for the search are the momentum
distributions and the angular distributions at the VDC (𝑥′, 𝑦′), and the angular distributions
at the target (𝑥′𝑡 𝑔 , 𝑦

′
𝑡 𝑔). The residuals were taken for all of these, and the results are shown

in Fig. 4.10. A comparison of each distribution in the best setting is shown in Fig. B.3. We
found that the momentum distributions agree well when the momentum cut (|𝛿𝑝/𝑝 | < 4%)
was applied. The momentum acceptance and resolution for varying magnetic field of Q1 and
Q2 are also shown in Fig. B.4 and B.5, respectively.
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Q2

Q1

Δp/p

Figure B.5 The simulation results of momentum resolution. The axis shows the ratio with
respect to the most consistent magnetic field setting. See the text about the red line.
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