2015年度P4前期実験

「⁴He(α, n)⁷Be反応の微分断面 積測定のための予備実験」

市川 真也 越川 亜美 四方 悠貴 高橋 祐羽 武田 朋也 宮脇 瑛介 渡邊 憲

目次

- 1. 理論的背景・実験目的
- 2. 実験Set up
- 3. 解析・実験結果
 - ビームエネルギー測定
 - 膜のバックグラウンド測定
- 4. Discussion

目次

- 1. 理論的背景・実験目的
- 2. 実験Set up
- 3. 解析・実験結果
 - ビームエネルギー測定
 - 膜のバックグラウンド測定
- 4. Discussion

最終目標・・・宇宙論における⁷Li問題の解決

⁴He(α, n) ⁷Be反応の微分断面積測定

そのための予備実験

⁷Li問題とは?

宇宙初期において、

⁷Li存在量のビッグバン元素合成(BBN)における理論予測 値と金属欠乏ハロ星による観測値が一致しない問題

⁷Li問題とは?

宇宙初期において、

⁷Li存在量のビッグバン元素合成(BBN)における理論予測 値と金属欠乏ハロ星による観測値が一致しない問題

青線と黄色の縦
 線との交点が理
 論予測値

●緑線が観測値

⁷Beの主な崩壊チャンネル

⁷Beの主な崩壊チャンネル

⁷Be(n,α)⁴He反応の分岐比が上方修正

⁷Be(n,p)⁷Liの分岐比の減少

低エネルギーにおける

⁷Be(n, α)⁴He反応の断面積を測りたい。

低エネルギーにおける ⁷Be(n,α) ⁴He反応の断面積を測りたい。

⁷Beとnは不安定核なので標的に出来ない。

but

逆反応の ⁴He(α,n) ⁷Beの断面積を測定!!

αビームエネルギーが 39.4MeV以下のデータがない!!

⁴Heガスの封入された容器に膜部分から αビームを入射し、出てくる中性子を検出する。

Aramid

少ない膜を選びたい!!

それぞれの膜にαビームを入射し断面積を測定

本実験可能かどうかの判断 (バックグラウンドが多すぎないかの確認)

どの膜が一番適しているか確定

ビームエネルギーの測定

本実験は400keVごとの測定

目次

- 1. 理論的背景・実験目的
- 2. 実験Set up
- 3. 解析・実験結果
 - ビームエネルギー測定
 - 膜のバックグラウンド測定
- 4. Discussion

- 測定したいもの
 薄膜による中性子の断面積

実験設備

大阪大学・核物理研究センター(RCNP)・中性子実験室

実験設備

大阪大学・核物理研究センター(RCNP)・中性子実験室

実験設備

大阪大学・核物理研究センター(RCNP)・中性子実験室

実験設備

- 散乱角
 - 運動学で計算すると 0~30°程度に散乱される
 - 0°から20°まで 5°刻みで測定する

Target

Aramid (9.9 µm)
 アミド結合のポリマー

Havar (2.4 μm)
 Coを主成分とする合金

Ta (4.6 μm)
 単体の金属

Target

Aramid (9.9 µm)
 アミド結合のポリマー

Havar (2.4 μm)
 Coを主成分とする合金

Ta (4.6 μm)
 単体の金属

Target

- Aramid (9.9 µm)
 アミド結合のポリマー
 散乱数が少ない
- Havar (2.4 µm)
 Coを主成分とする合金
 薄い膜を作ることができる
- Ta (4.6 µm)
 単体の金属
 等方的な散乱

Aramid (9.9 µm) アミド結合のポリマー 散乱数が少ない

- Havar (2.4 µm)
 Coを主成分とする合金
 薄い膜を作ることができる
- Ta (4.6 µm)
 単体の金属
 等方的な散乱

• ¹²C

αビームのエネルギーを正確に決定する

setup - 回路図

◎実験のキーワード

◎実験のキーワード

O PSD (Pulse Shape Discrimination)

波形の概念図

O PSD (Pulse Shape Discrimination)

波形の違いによって中性子とγ線を分別する方法

波形の概念図

◎ 全体の回路図

<u>③ 回路図 (PSD)</u>

◎実験のキーワード

③TDCモジュール

O TDC histogram (γ線)

◎ 全体の回路図

〇 回路図(TOF)

目次

- 1. 理論的背景・実験目的
- 2. 実験Set up
- 3. 解析・実験結果
 - ビームエネルギー測定
 - 膜のバックグラウンド測定
- 4. Discussion

ビームエネルギーの決定

※¹²C(α,n)¹⁵O反応のデータを用いて エネルギーの決定を行う

ビームエネルギーの決定

γ線のTDCの決定

ビームエネルギーの決定

- γ線のTDCの決定
- γ線のTDCとNeutronのTDCから

Neutronのエネルギー決定

ビームエネルギーの決定

- γ線のTDCの決定
- γ線のTDCとNeutronのTDCから
 - Neutronのエネルギー決定
- Neutronのエネルギーから[®]Oの
 励起エネルギーとビームエネルギーの決定

ビームエネルギーの決定

- γ線のTDCの決定
- γ線のTDCとNeutronのTDCから
 - Neutronのエネルギー決定
- Neutronのエネルギーから[®]Oの
 励起エネルギーとビームエネルギーの決定

線の TDC

3693.7

<u>ビームエネルギーの決定</u>

- γ線のTDCの決定
- γ線のTDCとNeutronのTDCから
 - Neutronのエネルギー決定
- Neutronのエネルギーから[®]Oの
 励起エネルギーとビームエネルギーの決定

<u>NeutronのTDC</u>

<u>NeutronのTDC</u>

<u>NeutronのTDC</u>

ピーク	1	2	3
Ch数	2975.9	2860.2	2802.1
4	5	6	7
2677.5	2609	2543.1	2367.4

<u>Neutronのエネルギー</u>

<u>Neutronのエネルギー</u>

<u>Neutronのエネルギー</u>

ビームエネルギーの決定

- γ線のTDCの決定
- γ線のTDCとNeutronのTDCから
 - Neutronのエネルギー決定
- Neutronのエネルギーから[®]Oの
 励起エネルギーとビームエネルギーの決定

・ $C(\alpha,n)^{10}O \subset C \subset C^{0}$ におけるneutronの エネルギーと $O \subset C \subset C^{10}$

運動学より、αビームのエネルギー(Εα)も分かる

<u>それぞれのピークに対応するExを決定したい!</u>

[™]の励起状態

¹⁵0の励起状態

- 最初のピークは基底状態
- それ以降のピークは基底状態 のときのビームエネルギーと 近くなるように、 N(ational)N(uclear)D(ata)C(enter)

のChart of Nucleidsの list of levelsの値から選ぶ

[™]の励起状態

g.sにおける Eα=39.31MeV

^{¹5}0の励起状態

g.sにおける Eα=39.31MeV

	NNDC Ex (MeV)	Ref Ex (MeV)	En (MeV)	Eα (MeV)
1	5.24	5.24	21.42	39.32
2	6.89 7.26	7.26	19.17	38.99 39.36
3	10.47	10.48	15.41	39.33
4	11.71	11.71	13.80	39.18
5	12.83	12.85	12.48	39.21
6	15.05	15.04	9.76	39.22

励起状態は右図の通り

※3つ目のExは 正確には決定できなかった

<u>ビームエネルギーの誤差</u>

誤差の要因 •TDCのキャリブレーション(0.152ns) •TDCの中性子ピークの読み取り誤差(~0.2ns) •TDCのγ線ピークの読み取り誤差(0.02ns) •標的とシンチレータの距離の誤差(5mm) •励起エネルギーの誤差(20keV)

判断材料がないため、適当に決める

<u>ビームエネルギーの誤差</u>

誤差の要因 •TDCのキャリブレーション(0.152ns) •TDCの中性子ピークの読み取り誤差(~0.2ns) •TDCのγ線ピークの読み取り誤差(0.02ns) •標的とシンチレータの距離の誤差(5mm) •励起エネルギーの誤差(20keV)

判断材料がないため、適当に決める

各励起状態ごとに誤差を求めて重 み付き平均をとり、(χ^2 /自由度)が 1に近づくように励起エネルギーの 誤差を決定する

<u>ビームエネルギーの誤差</u>

誤差の要因 •TDCのキャリブレーション(0.152ns) •TDCの中性子ピークの読み取り誤差(~0.2ns) •TDCのγ線ピークの読み取り誤差(0.02ns) •標的とシンチレータの距離の誤差(5mm) •励起エネルギーの誤差(20keV)

各励起状態ごとに誤差を求めて重 み付き平均をとり、(χ²/自由度)が 1に近づくように励起エネルギーの 誤差を決定する

判断材料がないため、適当に決める

ビームエネルギー (MeV)

 $E_{\alpha} = 39.21 \pm 0.021$ MeV $\chi^2/$ 自由度 = 1.2759

ビームエネルギーの決定

 決定出来たExを用いてビームエネルギーを 出したところ、39.21(±0.021)MeVと 決定できた

ビームエネルギーの決定

- 決定出来たExを用いてビームエネルギーを 出したところ、39.21(±0.021)MeVと 決定できた
- ただし、これは¹²Cの中心を通った時の
 エネルギーであり、実際のビームエネルギーは
 39.33MeVとなった

目次

- 1. 理論的背景・実験目的
- 2. 実験Set up
- 3. 解析・実験結果
 - ビームエネルギー測定
 - 膜のバックグラウンド測定
- 4. Discussion

微分断面積の求め方

$$\frac{d^{2}\sigma}{d\Omega dE} = \frac{(Y - BG)}{N_{b} \times N_{t} \times \Delta \Omega \times \Delta E} \times (補正係数)$$

Y:収量 BG:background N_b: α粒子の数 N_t:単位面積当たりのTarget粒子の数 (mb⁻¹) ΔΩ:検出器の立体角 (sr) ΔE:bin幅 (MeV)

補正係数について

1.空気のattenuation(¹²Cでtargetと検出器との距離を 変えて測定)~1.04 2.live time(triggerの数と時間を測って計算)~1.01 3.検出効率(Phys. Lett. B 551 255 (2003)を使用)

Taのファラデーカップでの様子

膜との反応によってαビームが大きく広がる

Taでの測定は時間の都合もあり、 0度と5度で打ち切り

Taの微分断面積 [mb/sr/MeV]

Kinema Energy of Neutron (MeV)

次回の実験では、測定中にデータを 確認することが重要!

漫画を読みながら寝ている 場合ではない!

TD

可能性大

きくなった

目次

- 1. 理論的背景・実験目的
- 2. 実験Set up
- 3. 解析・実験結果
 - ビームエネルギー測定
 - 膜のバックグラウンド測定
- 4. Discussion

第2回 膜決定杯

	膜	オッズ	T B
	Ta	12.5	
\bigcirc	Aramid	1.65	-
0	Havar	3.34	

膜の比較

40nAで20分間 αビームを

⁴He(α, n)の微分断面積の予想

⁴He(α, n)の微分断面積の予想

⁴He(α, n)の微分断面積の予想

Aramid 2枚と⁴He (6cm) の比較 (0deg)

Aramid 2枚と⁴He (6cm) の比較 (0deg)

まとめ

・今回比較した膜ではAramidが最も適切

•Aramidと⁴Heを比較すると、⁴Heの山を観測する ことができる

本実験可能!

¹²C(a, n)¹⁵O 微分断面積測定

今回の実験セットアップで既存の実験^[1]を再現出来るかCheck 液体シンチレータの中性子検出効率^[2]が正しいか?

¹²C(a, n)¹⁵O 微分断面積測定

今回の実験セットアップで既存の実験^[1]を再現出来るかCheck 液体シンチレータの中性子検出効率^[2]が正しいか?

結果1

結果2

おおむね合っている!

考察

励起エネルギーが大きい(nのエネルギーが小さい)ときの断面積は先 行研究の2倍の値 (´・ω・`) ______ Cross Section (Ex = 12.85 MeV)

- ✓ 検出器の劣化は起きていない
 (20年前の検出器,評価されたのは12年前)
- × 低エネルギー側での検出効率が 過小評価されていた?

△ 先行研究の妥当性?

- ➡本実験までに検出効率をより正しく評価する ビームを使った評価
- ➡ 川畑准教授に新しい検出器を買ってもらう 🛃 👉

まとめ

- ⁴He (a, n) ⁷Be の微分断面積の測定を38.2 MeV 39.4 MeVの範囲で、
 エネルギーを変えながら行いたい。
 - ◆ ガス標的の膜の候補としてHavar, Aramid, Taを用意したが、 Aramidが最もバックグラウンドが少なかった。 (S/N ~ 5)
 - ◆ αビームは (39.33 ± 0.02) MeV と要求される精度で測定出来た。
- ・今後の課題
 - ◆ ⁴Heガス標的の作成(膜によるビームの横広がり, Yield,)
 - ◆ 中性子検出器の性能評価

謝辞

- · 川畑貴裕准教授、延與佳子准教授
- ・TAの村田求基さん、森本貴博さん
- 京大原子核ハドロン物理学研究室の
 津村美保さん、古野達也さん
- 大阪大学RCNPの職員のみなさま

この場を借りて御礼申し上げます。

まとめ

- ⁴He (a, n) ⁷Be の微分断面積の測定を38.2 MeV 39.4 MeVの範囲で、
 エネルギーを変えながら行いたい。
 - ◆ ガス標的の膜の候補としてHavar, Aramid, Taを用意したが、 Aramidが最もバックグラウンドが少なかった。 (S/N ~ 5)
 - ◆ αビームは (39.33 ± 0.02) MeV と要求される精度で測定出来た。
- ・今後の課題
 - ◆ ⁴Heガス標的の作成(膜によるビームの横広がり, Yield,)
 - ◆ 中性子検出器の性能評価

setup - 回路図 - TDC - 補足

\bigcirc RFとTDCスペクトル

その他の角度

5deg

その他の角度

15deg

