Nucleon－Lambda interaction from lattice QCD

土居孝寛（Takahiro Doi in Kyoto Univ．）

And HAL QCD collaboration．

```
S. Aoki, E. Itou, (YITP),
T. M. Doi, (Kyoto)
T. Aoyama (KEK)
T. Doi, T. Hatsuda, L. Yan (RIKEN)
F. Etminan (Univ. of Birjand)
N．Ishii，T．Sugiura，K．Murano，H．Nemura（RCNP）
Y．Ikeda，K．Sasaki（Osaka Univ．）
T．Inoue（Nihon Univ．）
K．Murakami（Tokyo Tech）
```


Purpose of HAL QCD collaboration:

To obtain the hadron-hadron interaction from the first-principles calculation of QCD.

Our hadron-hadron interaction can be input of many-body calculation of hadrons, then we want to quantitatively understand phenomena related to hadron physics.

Baryon-Baryon interactions in Strangeness=-1

S=-1: N $\wedge-N \Sigma$ potentials

©importance

- They are important to go from nuclear physics (including only nucleons), to strangeness nuclear physics(nucleons + hyperons).
- Experiment for $\mathrm{N} \Lambda-\mathrm{N} \Sigma$ is more difficult than experiment of NN .

Then, it is important to determine the interaction by theoretical calculations(lattice QCD).

- N \wedge-N Σ interaction can be determined also by recent experiments at J-PARC, and HAL QCD potential can be directly compared to the experimental results.
©Application
- Spectroscopy of hyper nucleus
- Microscopic understanding of Inner structure of a neutron star.
© Difficult
- large error (light baryons)
- Bad signals due to contamination from higher excited states \leftarrow discussed later

Outline

- Generation of Gauge Configuration on Supercomputer Fugaku(Only results)
- N^-N乏 potential
- Outlook
nearly physical point

physical point

K-conf.
$\mathrm{Nf}=2+1$, Iwasaki gauge + clover fermion action beta $=1.82(1 / a \simeq 2.3 \mathrm{GeV})$
$96^{4} \leftrightarrow(8.1 \mathrm{fm})^{4}$
$\left(\kappa_{u, d}, \kappa_{s}\right)=(0.126117,0.124790)$
$m_{\pi} \simeq 146 \mathrm{MeV}, m_{K} \simeq 525 \mathrm{MeV}$
F-conf.
$\mathrm{Nf}=2+1$, Iwasaki gauge + clover fermion action beta $=1.82(1 / a \simeq 2.3 \mathrm{GeV})$
$96^{4} \leftrightarrow(8.1 \mathrm{fm})^{4}$
$\left(\kappa_{u, d}, \kappa_{s}\right)=(0.126117,0.124902)$
total independent conf=1600conf.
(320 conf. $\times 5$ run $=1600$ conf.)
Preliminary results of hadron mass
$\pi \quad 137[\mathrm{MeV}] \quad N \quad 940[\mathrm{MeV}]$
$K 502[\mathrm{MeV}]$

Experimental data(Particle Data Group 2020)
$m_{\pi^{+}} \simeq 139.57 \mathrm{MeV}, m_{\pi^{0}} \simeq 134.98 \mathrm{MeV}$
Isospin averaged pion mass $m_{\pi} \simeq 138.0 \mathrm{MeV}$
$m_{K^{+}} \simeq 493.68 \mathrm{MeV}, m_{K^{0}} \simeq 497.61 \mathrm{MeV}$
Isospin averaged Kaon mass $m_{K} \simeq 495.6 \mathrm{MeV}$

Outline

- Generation of Gauge Configuration on Supercomputer Fugaku(Only results)
- N Λ-N乏 potential
- Outlook

HAL QCD method

In the case of NN potential

$$
\left.G_{N N}(\boldsymbol{r}, t)=\langle 0| N(\boldsymbol{r}, t) N(\mathbf{0}, t)\left|\overline{J_{\mathrm{src}}(t=0)}\right| 0\right\rangle
$$

t : imaginary time on lattice

Nambu-Bethe-Salpeter(NBS) wave function with relative momentum k is obtained at infinite t

$$
\begin{aligned}
G_{N N}(\boldsymbol{r}, t) & \rightarrow \psi_{l, k}(\boldsymbol{r}) \simeq A_{l, k} \frac{\sin \left(k r-l \pi / 2+\left(\delta_{l}(k)\right)\right.}{k r}(r>R) \\
t \rightarrow \infty & \quad \text { R: interaction range }
\end{aligned}
$$

NBS wave function is a solution of Schrödinger eq. with NN potential.

- We can extract scattering phase shift from NBS wave function.
- NN potential can be calculated so that Schrödinger eq. has NBS w.f. as solution.

(time-dependent) HAL QCD method

In the case of NN potential

$$
\begin{aligned}
& \left.G_{N N}(\boldsymbol{r}, t)=\langle 0| N(\boldsymbol{r}, t) N(\mathbf{0}, t)\left|\overline{J_{\mathrm{src}}(t=0)}\right| 0\right\rangle \\
& \begin{aligned}
R(\boldsymbol{r}, t) & \equiv G_{N N}(\boldsymbol{r}, t) / G_{N}(t)^{2} \quad \text { Many states contributes } \\
& =\sum_{i} A_{W_{i}} \psi_{W_{i}}(\boldsymbol{r}) \mathrm{e}^{-\left(W_{i}-2 m\right) t} \quad i \text { each energy eigen state }
\end{aligned}
\end{aligned}
$$

Under inelastic threshold, all excited scattering states share the same $U\left(r, r^{\prime}\right)$:

$$
\left(\nabla^{2}+k_{W_{i}}\right) \psi_{W_{i}}(\boldsymbol{r})=m \int d \boldsymbol{r}^{\prime} U\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) \psi_{W_{i}}\left(\boldsymbol{r}^{\prime}\right)
$$

- All equations(i=0,1,2,3,... up to elastic threshold) can be combined as

$$
\left(-\frac{\partial}{\partial t}+\frac{1}{4 m} \frac{\partial^{2}}{\partial t^{2}}+\frac{\nabla^{2}}{m}\right) R(\boldsymbol{r}, t)=\int d \boldsymbol{r}^{\prime} U\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right) R\left(\boldsymbol{r}^{\prime}, t\right)
$$

- Local potential is obtained by derivative expansion

$$
U\left(\boldsymbol{r}, \boldsymbol{r}^{\prime}\right)=V_{\mathrm{C}}(r)+V_{\mathrm{T}}(r) S_{12}+V_{\mathrm{LS}}(r) \boldsymbol{L} \cdot \boldsymbol{S}+\cdots
$$

Partial wave(L=0,2) decomposition on the lattice

Method 1. A_{1}^{+}projection of cubic group
M. Luscher, Nucl. Phys. B 354 (1991), 531. Aoki, Hatsuda, Ishii, PTEP 123 (2010).

$$
R^{A_{1}^{+}}(\boldsymbol{r}) \equiv \frac{1}{48} \sum_{g \in O_{h}} R\left(g^{-1} \boldsymbol{r}\right): \begin{aligned}
& \text { : This has dominant contribution from } \mathrm{L}=0 \\
& \text { and small contribution from } \mathrm{L}=4,6, \ldots .
\end{aligned}
$$

$$
\begin{aligned}
& \text { S-wave } R_{\mathrm{S}}(\boldsymbol{r})=R^{A_{1}^{+}}(\boldsymbol{r}) \\
& \text { D-wave } R_{\mathrm{D}}(\boldsymbol{r})=R(\boldsymbol{r})-R^{A_{1}^{+}}(\boldsymbol{r})
\end{aligned}
$$

Method 2. Misner's method
C. W. Misner, Class. Quant. Grav. 21 (2004) S243.
T. Miyamoto et al., Phys. Rev. D 101 (2020) 074514.

$$
\begin{aligned}
& \text { Use } R(\boldsymbol{r})=\sum_{n, l, m} c_{n l m}^{\Delta} G_{n}^{\Delta}(r) Y_{l m}(\theta, \phi) \\
& \text { new basis function in r(radial direction) } \\
& \text { instead of } R(\boldsymbol{r})=\sum_{l, m} g_{l m}(r) Y_{l m}(\theta, \phi)
\end{aligned}
$$

sophisticated partial wave decomposition on the lattice

Outline

- Generation of Gauge Configuration on Supercomputer Fugaku(Only results)
- N Λ-N乏 potential
- Outlook

			signal
$S=-1$	- N \wedge \& N $\Sigma \mathrm{l}=1 / 2$	1SO central $\mathrm{N} \wedge$ - $\mathrm{N} \Sigma$ potential	bad
		3S1-3D1 central \& tensor $\mathrm{N} \wedge$ - $\mathrm{N} \Sigma$ potential	good
		1SO central N乏 potential	good
	N $21=3 / 2$		
		3S1-3D1 central \& tensor N p potential	bad

1s0_3ov2_cen_NS_NS
$\mathrm{N} \Sigma$ potential

1SO, I=3/2 central binsize=80

Nconf=800
w/ Misner

$*$	$t=12$
$:$	$t=11$
\cdot	$t=10$
	$t=9$
	$t=8$

1SO, l=3/2 central
binsize=80
Nconf=800
w/ Misner

$$
\begin{aligned}
& t=14 \\
& t=13 \\
& t=12 \\
& t=11 \\
& t=10
\end{aligned}
$$

1s0_3ov2_cen_NS_NS, t=10
$\mathrm{N} \Sigma$ potential

1SO, l=3/2 central
binsize $=80$
Nconf=800
w/ Misner

Outline

- Generation of Gauge Configuration on Supercomputer Fugaku(Only results)
- N Λ-N乏 potential
- Outlook

$\mathrm{N} \Lambda-\mathrm{N} \Sigma$

 coupled channel potential 20 3S1, l=1/2 central binsize=80 Nconf=800 w/ Misner$$
\begin{aligned}
& t=12 \\
& t=11 \\
& t=10 \\
& t=9 \\
& t=8
\end{aligned}
$$

Outline

- Generation of Gauge Configuration on Supercomputer Fugaku(Only results)
- N Λ-N乏 potential
- Outlook

$\mathrm{N} \Lambda-\mathrm{N} \Sigma$

coupled channel potential 1S0, l=1/2 central
binsize $=80$
Nconf=800
w/ Misner

$$
\begin{aligned}
& t=12 \\
& t=11 \\
& t=10 \\
& t=9 \\
& t=8
\end{aligned}
$$

Outline

- Generation of Gauge Configuration on Supercomputer Fugaku(Only results)
- N Λ-N乏 potential
- Outlook

			signal
$S=-1$	[$\mathrm{N} \wedge$ \& $\mathrm{N} \Sigma \mathrm{l}=1 / 2$	1SO central $\mathrm{N} \wedge$ - N S potential	bad
		3S1-3D1 central \& tensor $\mathrm{N} \wedge$ - $\mathrm{N} \Sigma$ potential	good
		1SO central N Σ potential	good
	N $\sum 1=3 / 2$		
		3S1-3D1 central \& tensor N potential	bad

$\mathrm{N} \Sigma$ potential
$3 S 1, \mathrm{l}=3 / 2$ central
binsize=80
Nconf=800
w/ Misner

3s1_3ov2_ten NS NS
$\mathrm{N} \Sigma$ potential

T. Inoue et al. [HAL QCD Collaboration], Prog. Theor. Phys. 124, 591 (2010).
attractive

Outline

- Generation of Gauge Configuration on Supercomputer Fugaku(Only results)
- N^-N Σ potential
- Outlook

We want to extract signals

$$
\begin{aligned}
& \left.G_{\mathrm{N} \Lambda}(\mathbf{r}, t)=\langle 0| N(\mathbf{r}, t) \Lambda(\mathbf{0}, t)\left|\overline{J_{\mathrm{src}}(t=0)}\right| 0\right\rangle \\
& \begin{aligned}
R(\mathbf{r}, t) & \equiv \frac{G_{\mathrm{N} \Lambda}(\mathbf{r}, t)}{G_{\mathrm{N}}(t) G_{\Lambda}(t)} \quad \text { Many states contributes } \\
& =\sum_{i} A_{W_{i}} \psi_{W_{i}}(\mathbf{r}) \mathrm{e}^{-\left(W_{i}-m_{N}-m_{\Lambda}\right) t} \quad \text { i: each energy eigen state }
\end{aligned} \\
& R(\mathbf{r}, t)=R^{\text {signal }}(\mathbf{r}, t)+R^{\text {inelastic }}(\mathbf{r}, t) \quad\left(R^{\text {inelastic }}(\mathbf{r}, t) \rightarrow 0(t \rightarrow \infty)\right)
\end{aligned}
$$

We can get only LHS from lattice QCD, but we want to get only first term in RHS. (Second term is noise from inelastic excited states)

If we take large t enough, second term will vanish, but this method does not work in practice Then, we want to subtract second term other than taking large t enough.

Approximately subtract inelastic contamination

Consider inelastic contamination into one-baryon correlator:

$$
\begin{aligned}
& \left.G_{\mathrm{B}}(t)=\sum_{\mathbf{r}}\langle 0| B(\mathbf{r}, t)\left|\overline{J_{\mathrm{src}}(t=0)}\right| 0\right\rangle \\
& G_{\mathrm{B}}^{\mathrm{ela}}(t) \equiv A_{\mathrm{B}} \mathrm{e}^{-m_{\mathrm{B}} t} \quad \text { Fitted function } \\
& G_{\mathrm{B}}^{\text {inela }}(t) \equiv G_{\mathrm{B}}(t)-G_{\mathrm{B}}^{\mathrm{ela}}(t)
\end{aligned}
$$

Estimate the inelastic contamination of two-baryon correlator(NBS wave function) using the inelastic contamination of one-baryon correlator

$$
\begin{aligned}
& G_{\mathrm{N} \Lambda}^{\text {inela }}(t)=G_{\mathrm{N}}^{\text {ela }}(t) G_{\Lambda}^{\text {inela }}(t)+G_{\mathrm{N}}^{\text {inela }}(t) G_{\Lambda}^{\text {ela }}(t)+G_{\mathrm{N}}^{\text {inela }}(t) G_{\Lambda}^{\text {inela }}(t) \\
& \text { Nucleon Lambda } \\
& \text { 2pt corr. } 2 \text { pt corr. }
\end{aligned}
$$

Calculate potentials using improved two-baryon correlator:

$$
G_{\mathrm{N} \Lambda}(\mathbf{r}, t) \rightarrow G_{\mathrm{N} \Lambda}(\mathbf{r}, t)-\alpha G_{\mathrm{N} \Lambda}^{\text {inela }}(t)
$$

In the case of free gauge configuration: $\quad G_{\mathrm{N} \Lambda}(\mathbf{r}, t)=\frac{1}{4 L^{3}} G_{\mathrm{N}}(t) G_{\Lambda}(t) \quad \alpha=\frac{1}{4 V}$

original results
 $$
R(\mathbf{r}, t)=\frac{G_{\mathrm{N} \Lambda}(\mathbf{r}, t)}{G_{\mathrm{N}}(t) G_{\Lambda}(t)}
$$

Approximately subtract inelastic contamination

Summary and Outlook

(O)Generation of gauge configuration on physical point at Fugaku

$$
\begin{aligned}
& 1 / a \simeq 2339[\mathrm{MeV}] \\
& m_{\pi} \simeq 137[\mathrm{MeV}] \\
& m_{K} \simeq 502[\mathrm{MeV}] \\
& m_{N} \simeq 940[\mathrm{MeV}]
\end{aligned}
$$

Future

- topological charge
- Continuum limit

Preliminary (1600 configurations)
© Hadron interaction

- hadron interactions are calculated on physical point
- We see (light) quark-mass dependence.
- We must subtract the contamination from inelastic excited states for noisy cannel, e.g., $\mathrm{N} \wedge-\mathrm{N} \Sigma$.

We must establish the way of subtraction, then it will be applied to $N \wedge-N \Sigma$ potential.

Appendix

Target in this study:

Baryon-Baryon interactions in $\mathrm{S}=-1$ channel
S=-1: N \wedge and N Σ (coupled) channel potentials

On physical-point lattice QCD configuration!

We calculated the Baryon-baryon interaction using the gauge configuration. (Results of other channels will be reported by other collaborators in future.)

$\Xi \Sigma$ potential

1S0, l=3/2
central
binsize=80
Nconf=800
w/ Misner

$\Xi \Sigma$ potential

3S1-3D1, I=3/2
central
binsize=80
Nconf=800
w/ Misner

